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Abstract: We discuss a one-parameter family of generalized cross entropy between two

distributions with the power index, called the projective power entropy. The cross entropy is

essentially reduced to the Tsallis entropy if two distributions are taken to be equal. Statistical

and probabilistic properties associated with the projective power entropy are extensively

investigated including a characterization problem of which conditions uniquely determine

the projective power entropy up to the power index. A close relation of the entropy with the

Lebesgue space Lp and the dual Lq is explored, in which the escort distribution associates

with an interesting property. When we consider maximum Tsallis entropy distributions under

the constraints of the mean vector and variance matrix, the model becomes a multivariate

q-Gaussian model with elliptical contours, including a Gaussian and t-distribution model.

We discuss the statistical estimation by minimization of the empirical loss associated with

the projective power entropy. It is shown that the minimum loss estimator for the mean

vector and variance matrix under the maximum entropy model are the sample mean vector

and the sample variance matrix. The escort distribution of the maximum entropy distribution

plays the key role for the derivation.

Keywords: elliptical contoured distribution; escort distribution; Lp space; maximum

entropy distribution; statistical distribution; Tsallis entropy
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1. Introduction

In the classical statistical physics and the information theory the close relation with

Boltzmann-Shannon entropy has been well established to offer elementary and clear understandings.

The Kullback-Leibler divergence is directly connected with maximum likelihood, which is one of

the most basic ideas in statistics. Tsallis opened new perspectives for the power entropy to elucidate

non-equilibrium states in statistical physics, and these give the strong influence on the research for

non-extensive and chaotic phenomenon, cf. [1,2]. There are proposed several generalized versions of

entropy and divergence, cf. [3–7]. We consider generalized entropy and divergence defined on the space

of density functions with finite mass,

F =
{
f :

∫
f(x)dx < ∞, f(x) ≥ 0 for almost everywhere x

}
in a framework of information geometry originated by Amari, cf. [8,9].

A functional D : F × F �→ [0,∞) is called a divergence if D(g, f) ≥ 0 with equality if and only

if g = f . It is shown in [10,11] that any divergence associates with a Riemannian metric and a pair of

conjugate connections in a manifold modeled in F under mild conditions.

We begin with the original form of power cross entropy [12] with the index β of R defined by

C
(o)
β (g, f) = − 1

β

∫
g(x){f(x)β − 1}dx+

1

1 + β

∫
f(x)1+βdx

for all g and f in F , and so the power (diagonal) entropy

H
(o)
β (f) = C

(o)
β (f, f) = − 1

β(β + 1)

∫
f(x)1+βdx+

1

β

∫
f(x)dx

See [13,14] for the information geometry and statistical applications for the independent component

analysis and pattern recognition. Note that this is defined in the continuous case for probability density

functions, but can be reduced to a discrete case, see Tsallis [2] for the extensive discussion on statistical

physics. In fact, the Tsallis entropy

Sq(f) =
1

q − 1

{
1−
∫

f(x)qdx
}

for a probability density function f(x) is proportional to the power entropy to a constant with

qH
(o)
β (g)− 1, where q = 1 + β. The power divergence is given by

D
(o)
β (g, f) = C

(o)
β (g, f)−H

(o)
β (g)

as, in general, defined by the difference of the cross entropy and the diagonal entropy.

In this paper we focus on the projective power cross entropy defined by

Cγ(g, f) = − 1

γ(1 + γ)

∫
g(x)f(x)γdx{∫
f(x)1+γdx

} γ
1+γ

(1)

and so the projective power entropy is

Hγ(f) = − 1

γ(1 + γ)

{∫
f(x)1+γdx

} 1
1+γ

(2)



Entropy 2011, 13 1748

The log expression for Cγ(g, f) is defined by

C log
γ (g, f) = −1

γ
log{−γ(1 + γ)Cγ(g, f)}

See [15,16] for the derivation of C log
γ , and detailed discussion on the relation between C

(o)
β (g, f) and

Cγ(g, f). The projective power cross entropy Cγ(g, f) satisfies the linearity with respect to g and the

projective invariance, that is Cγ(g, λf) = Cγ(g, f) for any constant λ > 0. Note that Hγ(f) has a

one-to-one correspondence with Sq(f) as given by

Hγ(f) = − 1

q(q − 1)
{1− (q − 1)Sq(f)}

1
q

where q = 1 + γ. The projective power divergence is

Dγ(g, f) = Cγ(g, f)−Hγ(g) (3)

which will be discussed on a close relation with the Hölder’s inequality. The divergence defined by

Cγ(g, f) satisfies

Dlog
γ (g, f) = C log

γ (g, f)− C log
γ (g, g) ≥ 0

for all γ of R if there exist integrals in Dlog
γ (g, f). The nonnegativity leads to

Dγ(g, f) ≥ 0 (4)

We remark that the existence range of the power index γ for Cγ(g, f) and Hγ(f) depends on the

sample space on which f and g are defined. If the sample space is compact, both Cγ(g, f) and Hγ

are well-defined for all γ ∈ R. If the sample space is not compact, Cγ(g, f) is defined for γ ≥ 0 and

Hγ(f) is for γ > −1. More precisely we will explore the case that the sample space is Rd in a subsequent

discussion together with moment conditions. Typically we observe that

lim
γ→0

Dγ(g, f) = D0(g, f) (5)

where D0(g, f) denotes the Kullback-Leibler divergence,

D0(g, f) =

∫
g(x) log

g(x)

f(x)
dx (6)

See Appendix 1 for the derivation of (5).

Let {x1, · · · , xn} be a random sample from a distribution with the probability density function g(x).

A statistical model {f(x, θ) : θ ∈ Θ} with parameter θ is assumed to sufficiently approximate the

underlying density function g(x), where Θ is a parameter space. Then the loss function associated with

the projective power entropy Cγ(g, f(·, θ)) based on the sample is given by

Lγ(θ) = − 1

γ(1 + γ)

1

n

n∑
i=1

kγ(θ)f(xi, θ)
γ
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in which we call

θ̂γ ≡ argmin
θ∈Θ

Lγ(θ) (7)

the γ-estimator, where

kγ(θ) =
{∫

f(x, θ)1+γdx
}− γ

1+γ

We note that

Eg{Lγ(θ)} = Cγ(g, f(·, θ))

where Eg denotes the statistical expectation with respect to g. It is observed that the 0-estimator is

nothing but the maximum likelihood estimator (MLE) since the loss Lγ(θ) converges to the minus

log-likelihood function,

L0(θ) = − 1

n

n∑
i=1

log f(xi, θ)

in the sense that

lim
γ→0

{
Lγ(θ) +

1

γ(1 + γ)

}
= L0(θ)

If the underlying density function g(x) belongs to a Gaussian model with mean μ and variance σ2, then

the MLEs for μ and σ2 are the sample mean and sample variance. The reverse statement is shown in

[17,18]. We will extend this theory to a case of the γ-estimator under γ-model.

In Section 2 we discuss characterization of the projective power entropy. In Section 3 the maximum

entropy distribution with the Tsallis entropy Sq with q = 1 + γ under the constraints of mean vector μ

and variance matrix Σ is considered. We discuss the model of maximum entropy distributions, called

the γ-model, in which 0-model and 2-model equal Gaussian and Wigner models, respectively. Then we

show that the γ-estimators for μ and Σ under the γ-model are the sample mean and sample variance.

Section 4 gives concluding remarks and further comments.

2. Projective Invariance

Let us look at a close relation of F with Lebesgue’s space

Lp =
{
f(x) :

∫
|f(x)|pdx < ∞

}
where p ≥ 1 and the Lp-norm ‖ ‖p is defined by

‖f‖p =
{∫

|f(x)|pdx
} 1

p

Let q be the conjugate index of p satisfying 1/p+1/q = 1, in which p and q can be expressed as functions

of the parameter γ > 0 such that p = 1 + γ−1 and q = 1 + γ. We note that this q is equal to the index q
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in Tsallis entropy Sq in the relation q = 1 + γ. For any probability density function f(x) we define the

escort distribution with the probability density function,

eq(f(x)) =
f(x)q∫
f(y)qdy

cf. [2] for extensive discussion. We discuss an interesting relation of the projective cross entropy (1)

with the escort distribution. By the definition of the escort distribution,

Cγ(g, f) = − 1

γ(1 + γ)

∫
{eq(f(x))}

1
p g(x)dx (8)

We note that eq(f)
1
p is in the unit sphere of Lp in the representation. The projective power diagonal

entropy (2) is proportional to the Lq-norm, that is,

Hγ(f) = − 1

γ(1 + γ)
‖f‖q

from which the Hölder’s inequality∫
g(x)f(x)γdx ≤ ‖g‖q ‖fγ‖p (9)

claims that Cγ(g, f) ≥ Hγ(g), or equivalently

Dγ(g, f) ≥ 0 (10)

for all f and g in F , which is also led by C
(o)
γ (g, f) ≥ H

(o)
γ (g). The equality in (10) holds if and only

if f(x) = λg(x) for almost everywhere x, where λ is a positive constant. The power transform suggests

an interplay between the space Lp and Lq by the relation,

‖fγ‖p = ‖f‖qγ

Taking the limit of γ to 0 in the Hölder’s inequality (9) yields that∫
g(x) log f(x)dx ≤

∫
g(x) log g(x)dx

since

lim
γ→0

∫
g(x)

f(x)γ − 1

γ
dx =

∫
g(x) log f(x)dx

and

lim
γ→0

‖fγ‖p‖g‖q − 1

γ
=

∫
g(x) log g(x)dx (11)

This limit regarding p associates with another space rather than the L∞ space, which is nothing but

the space of all density functions with finite Boltzmann-Shannon entropy, say Llog. The power index γ

reparameterizes the Lebesgue space Lp and the dual space Lq with the relation p = 1 + γ−1, however,

to take the power transform f(x)γ is totally different from the ordinary discussion of the Lebesgue
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space, so that the duality converges to (Llog, L1) as observed in (11). In information geometry the

pair (Llog, L1) corresponds to that of mixture and exponential connections, cf. [9]. See also another

one-parameterization of Lp space [19].

We now discuss a problem of the uniqueness for Cγ(g, f) as given in the following theorem. A

general discussion on the characterization is given in [16], however, the derivation is rather complicated.

Here we assume a key condition that a cross entropy Γ(g, f) is linear in g to give an elementary proof.

The Riesz representation theorem suggests

Γ(g, f) = c(f)

∫
g(x)ψ(f(x))dx

where c(f) is a constant that depends on f . Thus we observe the following theorem when we make a

specific form for c(f) to guarantee the scale invariance.

Theorem 1. Define a functional Γ : F × F �→ R by

Γ(g, f) = ϕ
(∫

ρ(f(x))dx
)∫

g(x)ψ(f(x))dx (12)

where ϕ, ρ and ψ are differentiable and monotonic functions. Assume that

(i). Γ(g, g) = minf∈F Γ(g, f) for all g ∈ F ,

and that

(ii). Γ(g, f) = Γ(g, λf) for all λ > 0 and all g, f ∈ F .

Then there exists γ such that Γ(g, f) = Cγ(g, f) up to a constant factor, where Cγ(g, f) is the projective

power cross entropy defined by (1).

Proof. The requirement (ii) means that

∂

∂λ

{
ϕ
(∫

ρ(λf(x))dx
)∫

ψ(λf(x))g(x)dx
}
= 0

which implies that, if f is absolutely continuous and g is the Dirac measure at x0, then

ψ̇(λf(x0))

ψ(λf(x0))
λf(x0) = c(λ)

where

c(λ) = −
λϕ̇
( ∫

ρ(λf(x))dx
) ∫

ρ̇(λf(x))f(x)dx

ϕ
( ∫

ρ(λf(x))dx
)

Since we can take an arbitrary value f(x0) for any fixed λ,

ψ̇(t)

ψ(t)
= c(λ)t−1
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which is uniquely solved as ψ(t) = tγ where γ = c(λ). Next let us consider a case of a finite discrete

space, {xi : 1 ≤ i ≤ m}. Then, since ψ(f) = fγ , we can write

Γ(g, f) = ϕ
( m∑

i=1

ρ(fi)
) m∑

i=1

gif
γ
i

where fi = f(xi) and gi = g(xi). The requirement (i) leads that (∂/∂fj)Γ(g, f)|f=g = 0 for all

j, 1 ≤ j ≤ m, which implies that

ρ̇(gj) = −γc(g1, · · · , gm)gγj (13)

where

c(g1, · · · , gm) =
ϕ
(∑m

i=1 ρ(gi)
)

∑m
i=1 g

1+γ
i ϕ̇

(∑m
i=1 ρ(gi)

) (14)

It follows from (13) that c(g1, · · · , gm) must be a constant in g1, · · · , gm, say C, so that we solve (13) as

ρ(gj) = −γCg1+γ
j /(1 + γ). Therefore, Equation (14) is written by

ϕ̇(t)

ϕ(t)
= − γ

1 + γ
t−1

which leads to ϕ(t) = t−
γ

1+γ . We conclude that Γ(g, f) ∝ Cγ(g, f), which completes the proof.�

Remark 1. The proof above is essentially applicable for the case that the integral (11) is given by the

summation just for a binary distributions. In this sense the statement of Theorem 1 is not tight, however,

statistical inference is discussed in a unified manner such that the distribution is either continuous or

discrete. In a subsequent discussion we focus on the case for continuous distributions defined on R
d.

Remark 2. We see the multiplicative decomposition for Cγ(g, f) for statistical independence. In fact, if

f and g are decomposed as f = f1 ⊗ f2, g = g1 ⊗ g2 in the same partition, then

Cγ(g, f) = Cγ(g1, f1)Cγ(g2, f2)

This property is also elemental, but we do not assume this decomposability as the requirement in

Theorem 1.

3. Model of Maximum Entropy Distributions

We will elucidate a dualistic structure between the maximum entropy model on Hγ , defined in (2)

and the minimum cross entropy estimator on Cγ , defined in (1). Before the discussion we overview the

classical case in which the maximum likelihood estimation nicely makes good performance under the

maximum entropy model on the Boltzmann-Shannon entropy, that is, a Gaussian model if we consider

the mean and variance constraint. We will use conventional notations that X denotes random variable

with value x. Let {x1, · · · , xn} be a random sample from a Gaussian distribution with the density

function

f0(x, μ,Σ) = det(2πΣ)−
1
2 exp{−1

2
(x− μ)TΣ−1(x− μ)}
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The Gaussian density function is written by a canonical form

(2π)−
d
2 exp

{
− 1

2
(x− μ)TΞ(x− μ) +

1

2
log det(Ξ)

}
(15)

where Ξ is called the canonical parameter defined by Σ−1. The differentiation of (15) on μ and Ξ yields

Ef0(·,μ,Σ)(X) = μ and Vf0(·,μ,Σ)(X) = Σ

where Ef and Vf denote the expectation vector and variance matrix with respect to a probability density

function f(x), respectively.

The maximum likelihood estimator is given by

(μ̂0, Σ̂0) = (x̄, S) (16)

where x̄ and S are the sample mean vector and the sample variance matrix,

x̄ =
1

n

n∑
i=1

xi, S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T (17)

This is because the minus log-likelihood function is

L0(μ,Σ) = − 1

n

n∑
i=1

log f0(xi, μ,Σ)

which is written by

1

2
trace(S(μ)Ξ)− 1

2
log det(Ξ)

apart from a constant, where

S(μ) =
1

n

n∑
i=1

(xi − μ)(xi − μ)T (18)

Hence the estimating equation system is⎡⎢⎢⎣
∂

∂μ
L0(μ,Σ)

∂

∂Ξ
L0(μ,Σ)

⎤⎥⎥⎦ =

⎡⎣ Ξ(x̄− μ)

1

2
{S(μ)− Σ}

⎤⎦ =

[
0

O

]

which concludes the Expression (16) of the MLE since S(μ) = S + (x̄− μ)(x̄− μ)T. Alternatively, we

have another route to show (16) as follows. The Kullback-Leibler divergence defined in (6) is given by

D0(f0(·, μ,Σ), f0(·, μ1,Σ1))

=
1

2
(μ− μ1)

TΣ−1
1 (μ− μ1) +

1

2
trace{(Σ− Σ1)Σ

−1
1 } − 1

2
log det(ΣΣ−1

1 )

Thus, we observe that

L0(μ,Σ)− L0(x̄, S) = D0(f0(·, x̄, S), f0(·, μ,Σ)) (19)
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which is nonnegative with equality if and only if (μ,Σ) = (x̄, S). This implies (16).

Under mild regularity conditions the reverse statement holds, that is, the MLE for a location and

scatter model satisfies (16) if and only if the model is Gaussian, cf. [17,18]. However, even if we

do not assume anything for the underling distribution g(x), the statistics x̄ and S are asymptotically

consistent for

μg = Eg(X) and Σg = Vg(X)

This is a direct result from the strong law of large numbers, and the central limit theorem leads to the

asymptotic normality for these two statistics. In this sense, (x̄, S) is also a nonparametric estimator for

(μg,Σg).

We explore a close relation of the statistical model and the estimation method. We consider a

maximum entropy distribution with the γ-entropy Hγ over the space of d-dimensional distributions with

a common mean and variance,

F(μ,Σ) = {f ∈ F :

∫
f(x)dx = 1,Ef (x) = μ,Vf (x) = Σ} (20)

Then we define a distribution with a probability density function written by

fγ(x, μ,Σ) =
cγ

det(2πΣ)
1
2

{
1− γ

2 + dγ + 2γ
(x− μ)TΣ−1(x− μ)

}
+

1
γ

(21)

where ( )+ denotes a positive part and cγ is the normalizing factor,

cγ =

⎧⎪⎨⎪⎩
(

2γ
2+dγ+2γ

) d
2

Γ(1+ d
2
+ 1

γ
)

Γ(1+ 1
γ
)

if γ > 0(− 2γ
2+dγ+2γ

) d
2

Γ(− 1
γ
)

Γ(− 1
γ
− d

2
)

if − 2
d+2

< γ < 0
(22)

See the derivation for cγ in Appendix 2. If the dimension d equals 1, then fγ(x, μ,Σ) is a q-Gaussian

distribution with q = γ + 1. We remark that

lim
γ↑0

cγ = lim
γ↓0

cγ = 1

in which fγ(x, μ,Σ) is reduced to a d-variate Gaussian density when γ = 0. The support of fγ(·, μ,Σ)
becomes an ellipsoid defined as{

x ∈ R
d : (x− μ)TΣ−1(x− μ) ≤ 2 + dγ + 2γ

γ

}
if γ > 0. On the other hand, if − 2

d+2
< γ < 0, the density function (21) is written as

fγ(x, μ,Σ) = det(πτΣ)−
1
2

Γ(− 1
γ
)

Γ(− 1
γ
− d

2
)

{
1 +

1

τ
(x− μ)TΣ−1(x− μ)

} 1
γ

(23)

where

τ = −2 + (d+ 2)γ

γ
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The d-variate t-distribution is defined by

gν(x, μ, P ) = det(πνP )−
1
2
Γ(ν+d

2
)

Γ(ν
2
)

{
1 +

1

ν
(x− μ)TP−1(x− μ)

}− ν+d
2

(24)

cf. [20] for the extensive discussion. Assume that

ν + d

2
= −1

γ
and νP = τΣ

Then we observe from (23) and (24) that

fγ(x, μ,Σ) = gν(x, μ, P )

Accordingly, the density function fγ(x, μ,Σ) with − 2
d+2

< γ < 0 is a t-distribution. The distribution

has elliptical contours on the Euclidean space R
d for any γ > − 2

d+2
, as shown in Figure 1 for typical

cases of γ.

Figure 1. t-distribution (γ = −0.4), Gaussian (γ = 0) and Wigner (γ = 2) distributions.
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Figure 1. Cont.
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Let

Mγ =
{
fγ(x, μ,Σ) : μ ∈ R

d,Σ ∈ Sd

}
(25)

which we call γ-model, where Sd denotes the space of all symmetric, positive-definite matrices of order

d. We confirm the mean and variance of the γ-model as follows.

Lemma. Under the model Mγ defined in (25) with the index γ > − 2
d+2

,

Efγ(·,μ,Σ)(X) = μ and Vfγ(·,μ,Σ)(X) = Σ

Proof. We need to consider a family of escort distributions. In the model Mγ we can define the escort

distribution as

eq(fγ(x, μ,Σ)) =
c∗γ

det(Σ)
1
2

{
1− γ

2 + dγ + 2γ
(x− μ)TΣ−1(x− μ)

} 1+γ
γ

+
(26)

where q = 1 + γ and c∗γ is the normalizing factor. Hence,

eq(fγ(x, μ,Σ)) = c∗γ
{

det(Σ)−
1
2

γ
1+γ − γ

2 + dγ + 2γ
(x− μ)T{det(Σ)− 1

2
γ

1+γ Σ−1}(x− μ)
} 1+γ

γ

+
(27)

Here we define alternative parameter Ξγ to the original parameter Σ by the transform

Ξγ = det(Σ)−
1
2

γ
1+γΣ−1 (28)

and so that the inverse transform is given by

Σ = det(Ξγ)
γ

dγ+2γ+2Ξ−1
γ (29)

noting that det(Ξγ) = det(Σ)−
1
2

dγ+2γ+2
1+γ . Thus, we get a canonical form of (26) as

eq(fγ(x, μ,Σ)) = c∗γ
{

det(Ξγ)
γ

2+dγ+2γ − γ

2 + dγ + 2γ
(x− μ)TΞγ(x− μ)

} 1+γ
γ

+
(30)
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By analogy of the discussion for an exponential family we have the following expression for the braced

term in (30) as

− 2γ

2 + dγ + 2γ

{1
2
trace(xxTΞγ)− μTΞγx+

1

2
μTΞγμ− 2 + dγ + 2γ

2γ
det(Ξγ)

γ
dγ+2γ+2

}
(31)

A property of the escort distribution suggests moment formulae for the distribution (25) as follows: We

have an identity

∂

∂μ

∫
c∗γ
{
det(Ξγ)

γ
dγ+2γ+2 − γ

2 + dγ + 2γ
(x− μ)TΞγ(x− μ)

} 1+γ
γ

+
dx = 0

which implies that∫ {
det(Ξγ)

γ
dγ+2γ+2 − γ

2 + dγ + 2γ
(x− μ)TΞγ(x− μ)

} 1
γ

+
Ξγ(x− μ)dx = 0

which concludes that

Efγ(·,μ,Σ)(X) = μ

Similarly,

∂

∂Ξγ

∫
c∗γ
{
det(Ξγ)

γ
dγ+2γ+2 − γ

2 + dγ + 2γ
(x− μ)TΞγ(x− μ)

} 1+γ
γ

+
dx = 0

which is ∫
c∗γ
{
det(Ξγ)

γ
dγ+2γ+2 − γ

2 + dγ + 2γ
(x− μ)TΞγ(x− μ)

} 1
γ

+

×
{ γ

dγ + 2γ + 2
det(Ξγ)

γ
dγ+2γ+2Ξ−1

γ − γ

2 + dγ + 2γ
(x− μ)(x− μ)T

}
dx = 0 (32)

which concludes that

Vfγ(·,μ,Σ)(X) = Σ

because of the relation of Ξγ and Σ as observed in (29). The proof is complete. �

Remark 3. The canonical form (30) of the escort distribution (26) plays an important role on the proof

of Lemma. Basically we can write the canonical form of (21), however it is not known any link to

distributional properties like a case of exponential family.

Remark 4. In Equation (31) the function

ϕ(Ξ) =
1

2ω
det(Ξ)ω (33)

is viewed as a potential function in the Fenchel convex duality, where

ω =
γ

2 + dγ + 2γ

cf. [21,22] for the covariance structure model.
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From Lemma we observe that fγ(·, μ,Σ) ∈ F(μ,Σ). Next we show that the distribution with density

fγ(·, μ,Σ) maximizes the γ-entropy Hγ over the space F(μ,Σ), where Hγ is defined in (2).

Theorem 2.

(i). If − 2
d+2

< γ ≤ 0, then

fγ(·, μ,Σ) = argmax
f∈F(μ,Σ)

Hγ(f) (34)

where F(μ,Σ) is defined in (20).

(ii). If γ > 0, then

fγ(·, μ,Σ) = argmax
f∈F(μ,Σ)

(γ)

Hγ(f) (35)

where

F(μ,Σ)
(γ) = {f ∈ F(μ,Σ) : f(x) = 0 for almost everywhere x ∈ B(μ,Σ)}

with B(μ,Σ) being {x ∈ R
d : (x− μ)TΣ−1(x− μ) > 2+dγ+2γ

γ
}.

Proof. By the definition of F(μ,Σ), we see from Lemma that fγ(·, μ,Σ) ∈ F(μ,Σ) for any γ ∈ (− 2
d+2

, 0).

This leads to

Efγ(·,μ,Σ){fγ(X,μ,Σ)γ} = Ef{fγ(X,μ,Σ)γ}

for any f in F(μ,Σ), which implies that

Hγ(fγ(·, μ,Σ)) = Cγ(f, fγ(·, μ,Σ))

Hence

Hγ(fγ(·, μ,Σ))−Hγ(f) = Dγ(f, fγ(·, μ,Σ)) (36)

which is nonnegative as discussed in (4). This concludes (34). Similarly, we observe that (36) holds for

any γ > 0 and any f in F(μ,Σ)
(γ) since the support of f includes that of f(·, μ,Σ). This concludes (35). �

We would like to elucidate a similar structure for the statistical inference by the minimum projective

cross entropy in which the data set {x1, · · · , xn} is assumed to follow the model Mγ . We recall (8) from

the relation of the projective cross entropy with the escort distribution

Cγ(g, f) = − 1

γ(1 + γ)

∫
eq(f(x))

γ
1+γ g(x)dx

When we have got data {x1, · · · , xn} to be fitted to the model Mγ , the loss function is

Lγ(μ,Σ) = − 1

γ(1 + γ)

1

n

n∑
i=1

eq(fγ(xi, μ,Σ))
γ

1+γ
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where fγ(x, μ,Σ) defined in (21). The γ-estimator is defined by

(μ̂γ, Σ̂γ) = argmin
(μ,Σ)

Lγ(μ,Σ)

see the general definition (7). It follows from the canonical form defined in (30) with the canonical

parameter Ξγ defined in (28) that

Lγ(μ,Σ) = − 1

γ(1 + γ)
(c∗γ)

γ
γ+1
[
det(Ξγ)

ω − ω{trace(ΞγS) + (μ− x̄)TΞγ(μ− x̄)}] (37)

where (x̄, S) and ω are defined in (17) and (33), and c∗γ is the normalizing factor defined in (27). Here

we note that if γ > 0, then the parameter (μ,Σ) must be assumed to be in Θn, where

Θn = {(μ,Σ) ∈ R
d × Sd : (xi − μ)TΣ−1(xi − μ) < ω−1 (∀i = 1, · · · , n) } (38)

We note that Lγ(μ,Σ) = Cγ(f(·, x̄, S), f(·, μ,Σ)) and Lγ(x̄, S) = Hγ(f(·, x̄, S)) since

Ef(·,x̄,S)(X) = x̄, and Vf(·,x̄,S)(X) = S

Accordingly, we observe the argument similar to (19) for the MLE. The projective divergence Dγ defined

in (3) equals the difference of the γ-loss functions as

Lγ(μ,Σ)− Lγ(x̄, S) = Dγ(fγ(·, x̄, S), fγ(·, μ,Σ)), (39)

which is nonnegative with equality if and only if (μ,Σ) = (x̄, S). See the discussion after equation (10).

In this way, we can summarize the above discussion as follows:

Theorem 3. Let {x1, · · · , xn} be a random sample from a γ-model defined in (21). Then the γ-estimator

defined in (7) for (μ,Σ) is (x̄, S), where (x̄, S) is defined in (17).

Proof. Let us give another proof. The estimating equation system is given by⎡⎢⎢⎢⎣
∂

∂μ
Lγ(μ,Σ)

∂

∂Ξγ

Lγ(μ,Σ)

⎤⎥⎥⎥⎦ =

⎡⎣ Ξγ(x̄− μ)

ω{det(Ξγ)
ωΞ−1

γ − S(μ)}

⎤⎦ =

[
0

O

]
(40)

which is equivalent to ⎡⎣ μ− x̄

Σ− S(μ)

⎤⎦ =

[
0

O

]

because of the relation of Ξγ into Σ as given in (29). Thus, we also attain the conclusion

(μ̂γ, Σ̂γ) =
(
x̄, S
)
. In this way, we obtain the solution of the equation system defined by (40)

via the parameter Ξγ using the relation of the escort distribution with the loss function (37). �
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Remark 5. Consider the location model {fγ(·, μ,Σ)} with the location parameter μ, where Σ is known

in Theorem 3. Then we easily see that the γ-estimator for μ is x̄. What about the reverse statement?

We observe that if the γ-estimator for μ is x̄ with the sample size n ≥ 3, then the model is the γ-model,

{fγ(·, μ,Σ) with the known Σ. The proof is parallel to that of Theorem 2 given in [17]. In fact, we

conclude that the model density function f(x) satisfies that

{f(x− μ)}γ = a+ b(x− μ)TΣ−1(x− μ)

where a and b are constants.

Remark 6. If we look at jointly Theorem 2 and 3, then

min
(μ,Σ)∈Rd×Sd

Lγ(μ,Σ) = max
f∈F(x̄,S)

Hγ(f) (41)

since Lγ(x̄, S) = Hγ(fγ(·, x̄, S)). Both sides of (41) associate with inequalities (39) and (36) on

γ-divergence in separate discussion.

Remark 7. The derivation of the γ-estimator in Theorem 3 is provided by the canonical parameter Ξγ

of the escort distribution as given in (28). Here we directly calculate the gradient of the loss with respect

to Σ as follows:

∂

∂Σ
Lγ(μ,Σ) = − 1

2(1 + γ)2
det(Σ)−

1
2

γ
1+γ (1− ωtrace{S(μ)Σ−1})Σ−1

+
γ

(1 + γ)
ω det(Σ)−

1
2

γ
1+γ Σ−1S(μ)Σ−1

= − 1

2(1 + γ)2
det(Σ)−

1
2

γ
1+γ

×
[
(1− ωtrace{S(μ)Σ−1})Σ−1 − 1 + γ

1 + 1
2
dγ + γ

Σ−1S(μ)Σ−1
]

Therefore we observe that if we put μ = x̄ and Σ = αS(x̄), then

∂

∂Σ
Lγ(x̄, αS(x̄)) = −1

2

γ

1 + γ
det(αS(x̄))−

1
2

γ
1+γ (αS(x̄))−1

×
[
(1− ωtrace{S(x̄)(αS(x̄))−1})αS(x̄)− 1 + γ

1 + 1
2
dγ + γ

S(x̄)
]
(αS(x̄))−1 (42)

The bracketed term of (42) is given by[
α(1− ωtrace{S(x̄)(αS(x̄))−1})− 1 + γ

1 + 1
2
dγ + γ

]
S(x̄)

=
(
α− dγ

2 + dγ + 2γ
− 1 + γ

1 + 1
2
dγ + γ

)
S(x̄)

which concludes that if α = 1, then (∂/∂Σ)Lγ(x̄, αS(x̄)) = 0. This is a direct proof for Theorem 3, but

it would accompany with a heuristic discussion for the substitution of (μ,Σ) into (x̄, αS(x̄)).
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4. Concluding Remarks

We explored the elegant property (39), the empirical Pythagoras relation between the γ-model and

γ-estimator, in the sense that (39) directly shows Theorem 3 without any differential calculus. Another

elegant expression is in the minimax game between Nature and a decision maker, see [23]. Consider

the space F(μ,Σ) defined in (20). The intersection of the γ-model (21) and F(μ,Σ) is a singleton

{fγ(·, μ,Σ)}, which is the minimax solution of

max
g∈F(μ,Σ)

min
f∈F

Cγ(g, f) = Cγ(fγ(·, μ,Σ), fγ(·, μ,Σ))

Consider different indices γ and γ∗ which specify the γ-model and γ∗-estimator, respectively.

Basically the γ∗-estimator is consistent under the γ-model for any choice of γ and γ∗. If we specifically

fix γ = 0 for the model, that is, a Gaussian model, then the γ∗-estimator is shown to be qualitatively

robust for any γ∗ > 0, see [16]. The degree of robustness is proportional to the value of γ∗ with a trade

for the efficiency. The γ∗-estimator for (μ,Σ) of the Gaussian model is given by the solution of

μ =

∑n
i=1 f0(xi, μ,Σ)

γ∗xi∑n
i=1 f0(xi, μ,Σ)γ∗

Σ = (1 + γ∗)
∑n

i=1 f0(xi, μ,Σ)
γ∗(xi − μ)(xi − μ)T∑n

i=1 f0(xi, μ,Σ)γ∗

The weight function f0(xi, μ,Σ)
γ∗ for the i-th observation xi becomes almost 0 when xi is an outlier.

Alternatively, the classical robust method employs γ∗ = 0, that is, the MLE for the misspecified model

γ < 0 or t-distribution model, see [24,25]. Thus, the different indices γ and γ∗ work robust statistics in

a dualistic manner.

This property is an extension of that associated between the exponential model and MLE, however, it

is fragile in the sense that (19) does not hold if the indices in the γ-model and γ∗-estimator are slightly

different. In practice, we find some difficulties for a numerical task for solving the MLE under the

γ-model with γ > 0 because the support of the density depends on the parameter and the index γ. We

discussed statistical and probabilistic properties on the model and estimation associated with the specific

cross entropy. A part of properties discussed still holds for any cross entropy in a much wider class,

which is investigated from the point of the Fenchel duality in [13,26].
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Appendix 1

We show (5). It follows from l’Hôpital’s rule that

lim
γ→0

Dγ(g, f) =

⎛⎜⎝ ∂

∂γ

[{∫
g(x)1+γdx

} 1
1+γ −

∫
g(x)f(x)γdx{∫
f(x)1+γdx

} γ
1+γ

]⎞⎟⎠
γ=0

which is written as⎛⎜⎝ 1

1 + γ

{∫
g(x)1+γdx

} −γ
1+γ

∫
g(x)1+γ log g(x)dx−

∫
g(x)f(x)γ log f(x)dx{∫

f(x)1+γdx
} γ

1+γ

+
γ

1 + γ

∫
g(x)f(x)γdx{∫
f(x)1+γdx

} 1+2γ
1+γ

∫
f(x)1+γ log f(x)dx

⎞⎟⎠
γ=0

which is reduced to ∫
g(x) log g(x)dx−

∫
g(x) log f(x)dx

This completes the proof of (5). �

Appendix 2

First, we give the formula for cγ in (22) when γ > 0. Let

I =
1

det(2πΣ)
1
2

∫ {
1− ω(x− μ)TΣ−1(x− μ)

} 1
γ

+

dx

where ω = γ
2+dγ+2γ

. The integral is rewritten as

I = (2πω)−
d
2

∫
(1− yTy)

1
γ

+dy

where y = (ω)
1
2Σ−1/2(x− μ). It is expressed in polar coordinates as

I = (2πω)−
d
2Sd−1

∫ 1

0

(1− r2)
1
γ rd−1dr (43)
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where Sd−1 is the surface area of the unit sphere of d− 1 dimension, that is,

Sd−1 =
2π

d
2

Γ(d
2
)

Since the integral in (43) is expressed by a beta function, we have

cγ = I−1 = (2ω)
d
2

Γ(1 + d
2
+ 1

γ
)

Γ(1 + 1
γ
)

Second, we give the formula when − 2
d+2

< γ < 0. The argument similar to the above

I = (−2πω)−
d
2

∫
(1 + yTy)

1
γ dy

where y = (−2πω)1/2Σ−1/2(x− μ). It is expressed in polar coordinates as

I = (−2πω)−
d
2Sd−1

∫ ∞

0

(1 + r2)
1
γ rd−1dr

which leads that

cγ = (−2ω)
d
2

Γ(− 1
γ
)

Γ(− 1
γ
− d

2
)
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