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Abstract: We suggest to consider the spacetime as a non-equilibrium system with a
long-term stationary state that possess as a spatio-temporally fluctuating quantity β. These
systems can be described by a superposition of several statistics, “superstatistics”. We
propose a Gamma distribution for f(β) that depends on a parameter pl. By means of it
the corresponding entropy is calculated, pl is identified with the probability corresponding
to this model. A generalized Newton’s law of gravitation is then obtained following the
entropic force formulation. We discuss some of the difficulties to try to get an associated
theory of gravity.
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1. Introduction

Several years ago Beck and Cohen [1,2] considered nonequilibrium systems with a long-term
stationary state that possess a spatio-temporally fluctuating intensive quantity. They have shown that
after averaging over the fluctuations one can obtain not only non-extensive statistical mechanics [3,4]
but an infinite set of more general statistics that they called “superstatistics”. In their work they selected
the temperature as fluctuating quantity among various possible intensive quantities (e.g., chemical
potential or energy dissipation) and showed for general distributions f(β), how to get a kind of effective
Boltzmann factor

B(E) =

∫ ∞

0

dβ f(β)e−βE (1)
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where E is the energy of a microstate associated with each of the considered cells. The
ordinary Boltzmann factor is recovered for f(β) = δ(β − β0) and B(E), corresponding
to non-extensive statistical mechanics [3,4], is obtained assuming a Gamma (or χ2) inverse
temperature β distribution, depending on a parameter q. Also in [1,2] the uniform, bimodal,
log-normal and F-distributions were assumed for f(β). Later in [5], considering the examples
in [1,2] it was nicely shown how from the corresponding Boltzmann factors the associated
entropies S(x) could be obtained. The Boltzmann-Gibbs entropy and the non-extensive statistical
mechanics entropy can be calculated from their Boltzmann factors analytically. For other
f(β) distributions [1,2] it is not possible to get a closed analytic expression for S(x) and
in [5] the calculations have been performed numerically using the corresponding B(E) for each of
these cases.

From the classical Einstein equations, the laws of black hole mechanics, analogues to those of
thermodynamics, were originally derived [6]. It was understood that the analogy is in fact an identity
with the discovery of quantum Hawking radiation [7]. In an insightful work, Jacobson [8] was able to
turn this logic by deriving the Einstein equations from the proportionality of entropy and horizon area
together with the fundamental Clausius relation δQ = TdS. Thus the Einstein equations can be viewed
as an equation of state. Jacobson procedure presumes the existence of local equilibrium conditions in
which the relation δQ = T dS only applies between near states of local thermodynamic equilibrium.
Recently, Verlinde in a remarkable paper [9] proposed a framework for gravity as a kind of entropic
force. His proposal, while related with Jacobson’s approach, showed that Newtonian gravity could be
obtained by using entropic and holographic arguments [10,11]. The assumption was then that space is
emergent and that the holographic principle holds. The Einstein equations were also derived under
this hypothesis.

More recently nonequilibrium thermodynamics of spacetime has been studied [12]. Here the Clausius
relation is modified to dS = δQ/T + diS, where diS is a bulk viscosity entropy production term that
is determined by imposing energy-momentum conservation. General Relativity can still be the resulting
theory and it has been shown [13] that then the internal entropy production term is identical to the so
called tidal heating term of Hartle-Hawking [14,15]. It is also possible to make the entropy density
proportional to a function of the Ricci scalar leading to a breakdown of the local thermodynamical
equilibrium, emerging then a f(R) gravity theory.

In [16] an analogy is made between the description of a solid and that of spacetime. In the case of
solids three different levels are distinguished; elasticity for the macroscopic one, statistical mechanics
at the microscopic level and an intermediate thermodynamical description. Moving on from a solid to
the spacetime; the macroscopic level is the smooth spacetime continuum with the metric tensor and the
equations governing the metric. At the microscopic level, we expect a quantum description in terms
of the “atoms of spacetime” and some associated degrees of freedom which are still elusive. But as
Boltzmann taught us, for matter, heat is a form of motion and we will not have the thermodynamic
description layer of matter if it were not constituted by atoms. Just like a solid cannot exhibit thermal
phenomena if it does not have microstructure, horizons cannot exhibit thermal behavior if spacetime has
no microstructure. Superstatistics is a procedure that, in principle, allows us to generate several possible
entropies and their associated statistical mechanics, among them non-extensive statistical mechanics.
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We do not know gravitation at the level of the “atoms of spacetime”, we can then assume that spacetime
could be described as a nonequilibrium system of the kind generated by superstatistics. It is then possible
to obtain different entropies by assuming the appropriate f(β) distribution. From this distribution we
get the associated Boltzmann factor (1) and by means of it the entropy [5], in general not in an analytical
closed form.

What kind of modified Newton’s laws of gravitation will we get as a consequence of these generalized
entropies? Which is the expected structure of the corresponding gravity theories?

In this work we will assume a particular Gamma distribution for β, this is similar to the one associated
with non-extensive statistical mechanics [1–4], that depends on a parameter q. However the one
presented in this work does not have any free parameter, it depends on the probability pl corresponding to
this model and, clearly, on β. For other distributions like the log-normal distribution in [1,2] that depends
also on a free parameter q, one can similarly propose a distribution depending also only on the associated
probability pl to the model of interest. The relation between these pl, and the product β0E differs from the
standard one of the Boltzmann-Gibbs statistics. This is, however, a certain limit of these models, as the
same happens with the F-distribution which depends on two parameters [1,2], its dependence on one of
them can also be understood in terms of its corresponding probability pl. A comprehensive presentation
of these models and their physical implications will be presented elsewhere [17]. In this work we will be
interested in a f(β) Gamma distribution depending on the pl resulting in this model [3,4] and will analyze
its consequences in connection with gravity. It should be mentioned that the Gamma, the log-normal and
the F-distributions depending on q, all have the same approximated Boltzmann factor B(E) [1,2], up to
the first correction term. For the same three distributions depending on pl [17] also their approximated
corresponding Boltzmann factors coincide and consequently their associated entropies will coincide to
the corresponding order of approximation by following the procedure in [5].

In section II the Gamma f(β) distribution depending on pl is introduced and from it the Boltzmann
factor and the entropy are calculated. In section III the entropy is analyzed in connection with the
usual Boltzmann-Gibbs entropy and with the entropy-area law. From it, following [9] the generalized
Newton’s law is obtained and discussed. Section IV is devoted to discussion and outlook.

2. The Entropy

Let us begin by assuming a Gamma distribution for β depending on an associated probability pl

fpl(β) =
1

β0plΓ
(

1
pl

) (
β

β0

1

pl

) 1−pl
pl

e−β/β0pl (2)

integration over β gives the generalized Boltzmann factor (1),

Bpl(E) = (1 + plβ0E)
− 1

pl (3)

this expression can be expanded for small plβ0E to get

Bpl(E) = e−β0E

[
1 +

1

2
plβ

2
0E

2 − 1

3
p2l β

3
0E

3 + ...

]
(4)
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Up to this point if one assumes a fixed pl = q − 1 expressions (2,3,4) coincide with those corresponding
to non-extensive statistical mechanics [1–4]. As shown in [1,2] for the Gamma, the log-normal and
F-distributions, depending now on pl the second term in (4) is the same for these three cases.

As nicely shown in [5] one can deduce the entropy S(x) from the Boltzmann factor. S(x) is defined

as S =
Ω∑
l=1

s(pl), in terms of a generic s(pl); as known s(x) = −x lnx for the Boltzmann-Gibbs entropy

SBG. The authors in [5] expressed s(x) as well as a generic u(x) in terms of integrals on a function
E(y) that can be directly calculated from the Boltzmann factor B(E) of interest. They considered
the functional

Φ = S − α
Ω∑
l=1

pl − βU (5)

where U =

Ω∑
l=1

u(pl)El

Ω∑
l=1

u(pl)

is the constraint associated with the energy and α and β are Lagrange

parameters. They imposed the condition ∂Φ
∂pl

= 0 and assuming a particular form for the function u(x) in
terms of x and s(x) they were able to arrive to the integrals

s(x) =

∫ x

0

dy
α+ E(y)

1− E(y)/E∗ (6)

and

u(x) = (1 + α/E∗)

∫ x

0

dy

1− E(y)/E∗ (7)

where E(y) is to be identified with the inverse function of Bpl(E)/
∫∞
0

dE ′ Bpl(E
′). One proceeds first

by selecting the f(β) of interest, then B(E) is calculated and the integral
∫∞
0

B(E ′) dE ′ is performed.
Inverting the axes of the variables, E(y) of the Beck-Cohen superstatistics is found, and from it E∗. In
our case, the starting point is the fpl(β) distribution (2), E(y) results in

E(y) =
y−x − 1

x
(8)

E∗ = −1/x. A straightforward calculation gives for u(x)

u(x) = xx+1 (9)

where α has been already determined by means of the condition u(1) = 1

s(x) = 1− xx (10)

These expressions fulfill the conditions s(0) = 1, u(0) = 0 and u(1) = 1, s(1) = 0. By this means
the desired entropy results in

S = k
Ω∑
l=1

(1− ppll ) (11)
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where k is the conventional constant and
Ω∑
l=1

pl = 1. The expansion of expression (11) gives

−S

k
=

Ω∑
l=1

pl ln pl +
(pl ln pl)

2

2!
+

(pl ln pl)
3

3!
+ · · · (12)

being the first term the usual entropy expression in information theory.
One should remember that the above condition on the functional (5), ∂Φ

∂pl
= 0 allows for

S = −k
Ω∑
l=1

pl ln pl to obtain pl ∼ e−βE . This nonrenormalized probability coincides in this case with

the corresponding Boltzmann factor B(E) ∼ e−βE . The associated probability pl for nonextensive
statistical mechanics is also function of this product βE, however is a more elaborated expression and
does not coincide with the corresponding Boltzmann factor [1–4]; for q → 1 its limit is the above
standard pl. The same condition on Φ for our case, the entropy (11), gives a more involved expression in
which the corresponding pl results a function also of the product βE but pl can not be written explicitly
as a function of this product it is an implicit function. It has, however, as a limit the usual pl ∼ e−βE .
This and other aspects of β distributions and generalized entropies depending on pl in the context of
superstatistics will be discussed in a forthcoming work [17].

3. Newton’s modified gravity

Verlinde [9] followed Bekenstein argument to deduce his famous entropy formula; a particle of mass
m is dropped in the black hole just before the horizon. The increase of the mass of the black hole
can be made infinitely small due to the infinite redshift. If one takes a gas of particles this would lead
to problems with the second law of thermodynamics, Bekenstein argued that when a particle is one
Compton wavelength from the horizon it should be considered to be part of the black hole and solved
this problem. Therefore it increases the mass and horizon area by a small amount identified with one
bit of information. Mimicking this reasoning, in his holographic considerations, Verlinde takes a flat
nonrelativistic space and a particle that approaches it from the side at which space has emerged. He
assumed then that the change of entropy associated with the information on the boundary is linear in the
displacement ∆x

∆S = 2πk
mc

~
∆x (13)

When a particle has an entropic reason to be on one side of the membrane and the membrane carries
a temperature it will experience an effective force equal to

F∆x = T∆S (14)

and this results in the same expression as the entropic force in standard thermodynamics. Then to have a
nonzero force the temperature should not vanish, the force leads to an acceleration that is identified with
Unruh’s temperature for an observer in an accelerated frame

kT =
1

2π

~a
c

(15)
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Verlinde’s picture is an attempt to model nonrelativistic gravity as a force originating from an entropy
gradient, analogous to the known entropic forces on polymers immersed in a heath bath. A number of
results have been obtained recently in connection with this entropic force [18–32]. Also the following
considerations were taken into account by Verlinde [9,26,32]; the energy of the surface S is identified
with the relativistic rest mass of the source E = Mc2, and the energy of the surface S is equipartitioned

among N bytes, E =
1

2
NkT , these bytes of information scale proportionally to the area of the surface

A = QN , where Q is a fundamental constant, ∆S is one fundamental unit of entropy when ∆x = ηλm,
with λm the Compton’s wavelength, being N the number of bytes, ∆N = 1 and hence ∆A = Q.

We are interested in expressing the entropy (11,12) for the equiprobability case, i. e. pl = 1/Ω, it
results in

S = kΩ

[
1− 1

Ω1/Ω

]
(16)

To study the nonrelativistic gravity associated with the entropy (16), we first express it in terms of the
Boltzmann entropy SB = k lnΩ,

S = eSB

[
1− e−SBe−SB

]
(17)

where the entropies have been redefined and the factor 1/k has been suppressed. Verlinde’s derivation of
Newton’s law of gravitation is based on the assumption of the entropy-area relationship and corresponds

to the standard entropy SB =
A

4l2p
for black holes in Einstein gravity, where A = 4πR2 represents the

area of the horizon and l2p = G~/c3 is the Planck length. We note that the entropy (17), for large SB

gives S ∼ SB. The expansion of (17) gives

S = SB − S2
B

2!
e−SB +

S3
B

3!
e−2SB − S4

B

4!
e−3SB + · · · (18)

With all these previous assumptions it can be shown [26,32] that it is possible to obtain a modified
Newton’s law from a certain modified entropy, namely

F = −GMm

R2

[
1 + 4l2p

∂s

∂A

]
A=4πR2

(19)

where for SB =
A

4l2p
,

S =
A

4l2p
+ s (20)

For the entropy (17,18) assumed in this work, consequence of the superstatistics model for the fpl(β)
distribution (2), s can be read from (18) and

4l2p
∂s

∂A
=

∂s

∂SB

=− A

4l2p
e−A/4l2p

[
1− 1

2

A

4l2p

]
+

(
A

4l2p

)2

e−2A/4l2p

[
1

2
− 1

3

A

4l2p

]
− 1

6

(
A

4l2p

)3

e−3A/4l2p + · · · (21)
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as already noted from the general expression for the entropy (17,18) for large SB =
A

4l2p
the terms in

(18,20) will not significantly contribute to modify the standard Newtonian force, corresponding to the
first terms in (19).

As A = 4πR2, SB = A/4l2p = πR2/l2p. From (21) it can be seen that corrections to Newton’s law of
gravitation are of certain relevance for R2 ∼ l2p. For this case one can expand the exponential functions
and substituting them in (19), the modified Newtonian force results in

F = −GMm

R2

[
1− πR2

l2p
+

2π2R4

l4p
− 5

2

π3R6

l6p
+ . . .

]
(22)

The nature of these terms is different to the one of those appearing in other formalisms with different
assumptions. By example, quantum gravity models arising from a Wheeler-DeWitt equation for a black
hole [33,34] or those considering loop quantum gravity [26,35,36]. There the terms that modify Newton’s
law are proportional to inverse powers of the radius R and are relevant for radius very close to the
Planck’s length.

In our case (22) the standard Newton’s force will significantly change only for extremely small radius
too. The correction terms grow with the power of the radius. Our assumptions, as those in [8,9] have
nothing to do with quantizing gravity; the question we are exploring is of a very different nature, namely
what kind of emergent gravity will we get if the spacetime is a nonequilibrium system with a long-term
stationary state that possess a spatio-temporally fluctuating quantity (in our example β) and that after
averaging a superstatistics arises providing the entropy (11,12,17,18).

4. Discussion and Outlook

The entropy (11,12,17,18) is a consequence of the Gamma distribution (2) and its associated
Boltzmann factor (3). Unfortunately, as mentioned in the Introduction and shown in [5], for the
log-normal and F-distributions it is not possible to get analytic expressions for the associated entropies.
However, their approximated Boltzmann factor (4) is the same for all these distributions up to the first
correction term and the next term is similar for these three cases. Consequently, one expects their
approximated entropies to be analogous and by this means their associated modified Newtonian
forces (22).

In [8] the Einstein equations were derived from the requirement that the Clausius relation dS = δQ/T

holds for all local accelerating horizons through each spacetime point, where dS is proportional to the
area change in Planck length units and δQ and T are the energy flux across the horizon and the Unruh
temperature seen by an accelerating observer inside the horizon. Then, in a nonequilibrium
setting [12,13] the entropy balance relation dS = δQ/T + diS, with diS a bulk viscosity entropy was
considered in an attempt to extend the approach in [8] to the case of f(R) theories of gravity.

Considering the spacetime as a nonequilibrium system with a long term stationary state that has β

as a spatio-temporally fluctuating quantity after averaging the fluctuations we have shown a particular
model that has a generalized entropy (11,16,17). The exact differential of this entropy is then given in
terms of dSB and SB itself as

dS = dSBe
SB + dSBe

−SBe−SB
[
1− SB − eSB

]
(23)
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As it happens with the entropy (17,18) dS ≃ dSB for large SB and the procedure in [8] to get the Einstein
equations follows with dSB = ηδA, where η is a universal entropy density per unit horizon area. The
entropy (17) and its differential (23) are now complex functions of A and δA and by considering the
Clausius relation dS = δQ/T it is not at all clear how to try to obtain the gravitation equations for this
proposal. In [8] the heat was defined as the mean flux of the boost energy current of matter across the
horizon. Taking the integral over a short segment of a thin pencil of horizon generators centered on the
one that terminates at p and taking the Killing vector χa = −λka and T = ~/2π to order O(x3), it was
shown that

δQ

T
=

2π

~

∫
Tabk

akb(−λ)dλd2A (24)

The entropy change δSB = ηδA was determined by the area change of the horizon by means of the
Raychaudhuri equation; θ = d(ln d2A)/dλ, the expansion of the congruence of null geodesics generating
the horizon was obtained in terms of the Ricci tensor θ = −λRabk

akb +O(λ2) and by means of it

δSB = η

∫
Rabk

akb(−λ)dλd2A (25)

In our model, even for the limiting case SB < 1 in which δS = δSB(1 − SB), to be able to
relate (24) with this modified δS one would need to find SB itself as certain integral over (25) and this
would already result in a complicated expression where it is to be expected that the integrals on both
sides of the Clausius relation will not cancel out. To define the appropriate assumptions to search for the
most simple modified gravity associated with the entropy (17,23) is beyond the scope of this work.

The generalized statistical description of nonequilibrium complex systems [1,2] was assumed for the
spacetime. These systems have a spatio-temporally inhomogeneous dynamics that can be effectively
described by a superposition of several statistics, a “superstatistics”. We have assumed a f(β)

distribution (2), depending on pl by means of which one gets the generalized Boltzmann factor (3) and
from it [5] the entropy (11). This, for the equiprobability case can be written in terms of SB (17). Being
SB the standard entropy that has been related with the area of a black hole, we have obtained now a very
different entropy-area relation (17,20,21) and this allowed us to compute the associated Newtonian
force (22). As discussed above it is not at all clear how to find the generalized gravitation equations.
This requires a detailed analysis that will be the subject of future work.
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