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Abstract: We review a general framework of pressure effects on the structures formed by 

entropically driven self-assembly (for example, denaturation of proteins from their native 

structure and dissociation of ordered structure of the amyloid fibril occur at high pressures). 

In the framework, the translational entropy of water is an essential factor. Our findings are as 

follows: at low pressures, the structures almost minimizing the excluded volume (EV) 

generated for water molecules are stable. On the other hand, at high pressures, the structures 

possessing the largest possible water-accessible surface area together with sufficiently small 

EV become more stable. These characteristics are consistent with experimental 

observations. 

Keywords: water; translational entropy; pressure denaturation of proteins; dissociation of 

protein complexes caused at high pressures; pressure-induced helix-coil transition of 
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1. Introduction 

A variety of self-assembly processes have been observed in biological systems [1]. The most 

fundamental example of such processes is the folding of proteins into their unique native structures in 

aqueous solution under physiological conditions. It has also been recognized that protein complexes 

are often formed by aggregation of proteins. An example is the amyloid fibril, which is a fibril-like 

aggregation of misfolded or denatured proteins [1]. However, the stability of the native structure and 
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the ordered structures formed by folding and aggregation is strongly dependent on the thermodynamic 

variables such as pressure and temperature. Elucidation of the major factor governing the stability of 

these structures will provide physical insights into the mechanism of the biological self-assembly 

processes. In the present review, we focus on pressure effects on the stability of these structures. 

It has been observed in experiments that denaturation of the native structure (pressure 

denaturation) [2-6] and dissolution of amyloid-fibrils [7-9] and virus assemblies [10] occur at high 

pressures. A common feature of these phenomena is that the volume change upon the pressure 

denaturation and dissociation is negative [3,6,10,11]. These pressure effects have often been discussed 

in terms of the Le Châtelier principle, which states that a pressure increase will shift a given 

equilibrium to the side that occupies the smallest volume [3,6,9]. Although this discussion is simple, 

the microscopic mechanism of pressure effects on the structures formed by biological self-assembly 

processes is still unclear. 

The characteristics of the pressure-denatured structure of a protein have been analyzed in detail [2,4-

6,12-16]. For example, the pressure dependence of the radius of gyration, Rg, of staphylococcal 

nuclease has been studied using synchrotron X-ray small-angle scattering [2] and small-angle neutron 

scattering [5]. The application of high pressure leads to an approximate twofold increase of Rg of the 

native structure. However, it is still much smaller than that of the random-coil structure [2]. In addition, 

some degree of β-like secondary structure is retained, even above 300 MPa [2], indicating that the 

pressure-denatured structure is different from the random-coil structure. Some authors have suggested 

that water has to penetrate into the protein interior to explain the experimental results [4,5,16]. The 

penetration of water into the protein interior has been observed using molecular dynamics (MD) 

simulations [13-15]–the number of the water molecules in the protein interior increases as the pressure 

becomes higher. According to these results, we can conclude that the pressure-denatured structure is 

characterized by swelling, water penetration into the protein interior, and only a moderate reduction of 

the compactness [6]. 

A puzzling result has recently been reported by Kato et al., who analyzed the pressure effect on the 

helix-coil transition of alanine-based peptides using FTIR spectroscopy [17,18]. They showed that the 

fraction of the helix increases as the pressure becomes higher. Namely, the helix state is more stable 

than the coil state at high pressures. The volume of the helix is smaller than that of the coil state. The 

experimental result by Kato et al. appears to be inconsistent with the pressure denaturation or 

dissociation caused at high pressures known for many proteins because their result indicates that the 

peptides adopt the compact helix structure at high pressures. We note that Paschek et al. [19] have 

performed MD simulations for an α-helical peptide with an explicit solvation method and obtained 

results that are opposite to those of Kato et al.–the helix state becomes less stabilized by an increase in 

the pressure and the volume of the helix state is larger than that of the coil state, indicating that the coil 

state is more favored at high pressures.  

Therefore, the picture which describes the pressure effects on the structures formed by biological 

self-assembly processes must explain all of the three experimental results: pressure denaturation of 

proteins, dissociation of protein aggregation, and pressure effect on the helix-coil transition of alanine-

based peptides. The physical mechanism of pressure denaturation is often discussed in terms of the 

pressure dependence of the hydrophobicity. Using an information theory model of hydrophobic 
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interactions, Hummer et al. showed that stability of the contact configuration of two methane 

molecules relative to a water-mediated one decreases with rising pressures [16]. Based on this result it 

is concluded that the weakening of the hydrophobic interactions between nonpolar side chains is the 

major cause of pressure denaturation [6,20]. However, the experimental results of alanine-based 

peptides [17,18] cannot be explained in terms of the weakening of the hydrophobicity for the following 

reason. In the conventional view of the hydrophobicity [21], the water adjacent to a nonpolar group is 

entropically unstable, and this effect drives the solvent-accessible surface area (ASA) of nonpolar 

group to decrease (here, the ASA is the area of the surface that is accessible to the centers of solvent 

particles [22]). We have confirmed that for the helix structure composed of 20 alanines the ASA of the 

side chains remains almost unchanged upon the transition from the coil state to the helix state. 

Therefore, the transition of alanine-based peptides from the coil state to the helix state cannot be 

elucidated by the conventional hydrophobic effect. The transition does not follow the weakening of the 

hydrophobicity at high pressures. Therefore, a unified picture explaining all three experimental results 

described above is not provided by the notion of a weakening of the hydrophobicity. A breakthrough is 

not likely to be obtained unless a novel concept is employed.  

Recent theoretical studies based on the statistical thermodynamics of fluids have shown that the 

translational entropy of water is a principal driving force in a variety of biological self-assembly 

processes such as protein folding [23-28], molecular recognition between guest ligands and host 

enzymes [27,29,30], and aggregation of protein molecules like the amyloid fibril [27,31,32]. We first 

note that the presence of proteins generate an excluded volume (EV) which the centers of water 

molecules cannot enter [23,24]. Upon the self-assembly processes, the EV is largely decreased by the 

overlap of EV (see Figure 1), leading to an increase in the total volume available to the translational 

displacement of water molecules.  

Figure 1. Schematic representation of three side chains. The excluded volume generated by 

a side chain is the volume occupied by the side chain itself plus the volume shown in gray. 

When side chains are closely packed, the excluded volumes overlap, leading to a gain of 

the water entropy. 

 

Thus, the formation of the self-assembly leads to increases in the number of accessible 

configurations arising from the translational displacement of water molecules and in the water entropy. 

In the entropically driven self-assembly at ambient pressure and temperature, the structures almost 

minimizing the EV for water molecules are stabilized. Experimental studies support the present 
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picture: it has been shown that in protein folding [33], receptor-ligand binding [34], amyloid-fibril 

formation [35], association of virus [10], and formation of actin filaments [36,37] the enthalpic and 

entropic changes are both positive at ambient temperature and pressure, proving that these processes 

are entropically driven.  

From a viewpoint of water-entropy effect, one might think that the native structure and the ordered 

structure formed by aggregation would be further stabilized by applying a higher pressure. However, as 

shown by experiments, this is not the case. It is interesting to study whether the pressure effects on the 

structures formed by entropically driven self-assembly can also be explained in terms of the 

translational entropy of water. In the present review, we present the general framework of pressure 

effects on the structures formed by entropically driven self-assembly from a fairly general 

viewpoint [38]. In the framework, the translational entropy of water is an essential factor (our concern 

is to elucidate why the structures formed by the entropically driven self-assembly dissociate at high 

pressures, although from the viewpoint of the translational entropy of water the structure with small 

EV seems to be even more stable at high pressures. Highly charged or natively unfolded proteins are 

excluded from the discussion because the water-entropy effect is weaker than the other effect such as 

the solute-solvent interaction energy). 

The outline of the present review is as follows. We first briefly describe the studies on pressure 

denaturation of proteins by Harano and Kinoshita [39,40] (Section 2). The models of solute and solvent, 

and the theoretical approach are shown in Section 3. We show the following general feature of the 

structures at low and high pressures in Section 4: at low pressures, the structural stability can be argued 

in terms of the EV. On the other hand, the structures possessing the largest possible solvent-accessible 

surface area (ASA) together with sufficiently small EV turn more stable at high pressures. As an 

illustration of the present picture, we discuss two examples, pressure denaturation of a protein [38] and 

pressure-induced helix-coil transition of a polypeptide [41]. We also comment on the dissolution of 

amyloid fibrils caused at high pressures in terms of the translational entropy of water [38]. Final 

conclusions are drawn in Section 5. 

2. Driving Force of Pressure Denaturation of Proteins: Translational Entropy of Water 

The free energy change upon denaturation can be described as follows: 

∆G = ∆EI + ∆µ − T∆SC (1)  

where EI is the protein intramolecular energy, µ is the solvation free energy which is the free-energy 

change by the insertion process of a solute into solvent, SC is the conformational entropy of protein, 
and T is the absolute temperature. ∆B≡BD−BN denotes the change in a thermodynamic quantity B  

upon denaturation. The subscripts “N” and “D” represent the values for the native state and for the 

denatured state, respectively. 

At ambient pressure, the native structure is stabilized and therefore ∆G is positive. For pressure 

denaturation to occur, ∆G must turn negative at high pressures. The change in the conformational 

entropy upon denaturation, |∆SC|, is expected to be independent of the pressure or smaller at high 

pressures due to the constraint caused by the denser solvent [42]. Within the framework of classical 

mechanics, the intramolecular energy for any structure remains unchanged against a pressure change. 
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Thus, ∆µ must decrease to a significant extent as the pressure P increases and eventually become 

negative for the denaturation to occur.  

We also discuss the negative sign of the volume change, ∆V = (∂∆G/∂P)T upon denaturation. 

According to the discussion in the previous paragraph, both of (∂∆EI/∂P)T and (∂∆SC/∂P)T are non-

negative, therefore, the sign of ∆V is determined by (∂∆µ/∂P)T. The partial molar volume (PMV), 

which is denoted by VPMV, is the change of the system volume occurring upon the solute insertion in 

the isobaric process. Thermodynamically, the PMV is the pressure derivative of the solvation free 

energy expressed as: 

VPMV = (∂µ/∂P)T (2)  

The present discussion indicates that the change in PMV upon denaturation is negative (∆VPMV < 0). 

The solvation free energy µ is the excess chemical potential of the solute in the fluid of interest and is 

the same, irrespective of the solute insertion process (isochoric or isobaric) [43]. We consider the isochoric 

process hereafter. Under the isochoric condition, the solvation free energy is given by µ = U − TS where U is 

the solvation energy and S is the solvation entropy (SE). It has been observed that nonpolar side chains 

are more separated in a denatured structure with water molecules penetrating its hydrophobic core 

[5,14-16]. When the penetration occurs, the breakage of hydrogen bonds of water is unavoidable, 

leading to a loss in terms of the solvation energy. There must be an even larger gain in terms of the 

solvation entropy, a dominant increase in the solvent entropy. 

Harano and Kinoshita have made a statistical-mechanical analysis of pressure denaturation of a 

protein using the three-dimensional (3D) integral equation theory [39,40]. To focus on the translational 

entropy of water, the protein is modeled as a set of fused hard spheres and water is taken to be hard 

spheres. Their results are as follows: at high pressures the water entropy becomes higher when the 

protein takes a specific unfolded structure. The unfolded structure is moderately less compact than the 

native structure (i.e., the EV is only moderately larger; see Table 1) and characterized by the cleft 

and/or swelling and solvent penetration into the interior [39,40] (hereafter we refer to this structure as 

the “swelling structure”). The change in the PMV upon denaturation to this unfolded structure is 

negative [39,40]. These characteristics are consistent with the experimental observations [3,5,6] and 

they concluded that the pressure denaturation is driven by the translational entropy of water.  

Table 1. Values of excluded volume (EV) and solvent-accessible surface area (ASA) for 

native, swelling, and random-coil structures of protein G [38,42]. Those of the random-coil 

state are the average for 32 structures. 

 EV (Å 3) ASA (Å 2)            
Native 11,600.3 3,670.90 

Swelling 11,926.9 4,210.81 
Random coil 14,002.9 5,947.13 

 

It is, however, difficult to give an interpretation of the results in terms of the translational entropy of 

water because the EV of swelling structure is larger than that of the native structure. It appears that the 

native structure with almost the smallest EV seems to become more stable as the pressure increases. 

For example, within the framework of the Asakura-Oosawa (AO) theory [44,45], which is widely used 
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as a simple way of understanding the EV effect, the entropic gain upon a self-assembly is given by 

−kBρS∆Vex where kB is the Boltzmann constant, ρS the solvent density, ∆Vex (< 0) the decrease in the 

EV. Since ρS becomes higher as the pressure increases, the structures with small EV should further be 

stabilized by applying high pressures. This statement clearly conflicts with the theoretical 

results [39,40] as well as the experimental observations [6]. It is also unclear whether the other 

phenomena such as the dissolution of amyloid fibril occurring at high pressures can also be explained 

in terms of the translational entropy of water. To solve these problems, we employ the morphometric 

approach described in the next section. 

3. Models and Theoretical Approach for the Calculation of Solvation Thermodynamic Quantities 

3.1. Models 

To focus our analysis on the entropic effect, we employ the hard-body model system: the solvent 

particles are modeled as hard spheres with diameter dS = 2.8 Å that is the molecular diameter of water, 

and the solutes (proteins and polypeptides) are modeled as a set of fused hard spheres. In this model 

system, all the configurations share the same energy and the system behavior is purely entropic in 

origin. The polyatomic structure, which is crucially important, is accounted for on the atomic level. 

The (x, y, z) coordinates of all the protein or polypeptide atoms (hydrogen, carbon, nitrogen, oxygen, 

etc.) in the backbone and side chains are taken into consideration.  

In the present review, we focus on the SE S and the PMV VPMV. The validity of the hard-body model 

in calculating S and VPMV has been shown in the previous papers [40,46]. For example, Imai et al. have 

considered the native structures of a total of eight peptides and proteins and calculated S using the 

three-dimensional reference interaction site model (3D-RISM) theory combined with the all-atom 

potentials and SPC/E water model [46]. Even when the protein-water electrostatic potentials, which are 

quite strong, are shut off and only the Lennard-Jones potentials are retained, S only decreases by less 

than 5%. Further, an approximate value of S can be obtained even by using the 3D integral equation 

theory [29,31,47] combined with the hard-body model. For example, −TS of human erythrocyte 

ubiquitin (PDB code: 3EBX) is 1,802 kcal/mol when the 3D-RISM theory combined with the all-atom 

potentials is applied, and it is 1,882 kcal/mol when the 3D integral equation theory combined with the 

hard-body model is applied [46]. This is because the contribution to the SE from the water molecules 

near the protein is much smaller than that from those in the system [26]. 

We note that in general, the solvation energy is largely dependent on the solute-water interaction 

potential, while the SE is not. The hydration free energy µ, entropy SVH, and energy UVH under the 

isochoric condition are calculated for a spherical solute with diameter 2.8 Å using the angle-dependent 

integral equation theory [48,49] combined with the multipolar water model [50,51] (when the solvent 

is water, the solvation free energy, entropy, and energy are referred to as the hydration free energy, 

entropy, and energy, respectively). This theory combined with the multipolar water model can 

reproduce well the experimental observations such as the dielectric constant of bulk water [48] and the 

hydrophobic [48] and hydrophilic [49] hydrations. For the hard-sphere solute with zero charge, the 

calculated values are µ = 5.95kBT, SVH = −9.22kB, and UVH = −3.27kBT [28]. When the point charge 

−0.5e (e is the electronic charge) is embedded at its center, the calculated values are µ = −32.32kBT, 
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SVH = −10.11kB, and UVH = −42.43kBT [28]. Thus, SVH is fairly insensitive to the solute-water 

interaction potential while µ and UVH are largely influenced by it. This gives another justification of the 

protein model, a set of fused hard spheres. 

Harano and Kinoshita [40] have obtained the values of VPMV of five different proteins in accordance 

with the Kirkwood-Buff formulation [52]: 

VPMV = ∫∫∫{1−gUS(x, y, z)}dxdydz (3) 

where gUS(x, y, z) represents the microstructure of the solvent near the protein surface and is referred to 

as the reduced density profile (hereafter, the subscripts, “S” and “U”, respectively, represent “solvent” 

and “solute”). It has the physical meaning that the number of solvent molecules within the volume 

element dxdydz is given by ρSgUS(x, y, z)dxdydz. gUS(x, y, z) is calculated using the 3D integral equation 

theory combined with the hard-body model. The values of the PMV obtained are in accord with the 

experimentally measured values. For example, the PMV of lysozyme (PDB code: 1HEL) calculated is 

11,600 cm3/mol that is in good agreement with the average of the experimentally measured value, 

10,100 cm3/mol [40]. 

Figure 2. Reduced density profiles of hard-sphere solvent near a hard-sphere solute gUS(r) 

at ρSdS
3 = 0.2 (dotted line), ρSdS

3 = 0.5 (2-dot dashed line), and ρSdS
3 = 0.7 (solid line).  
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This result has been interpreted as follows [27]. We divide the term in the right hand of Equation (3) 

into the integrations inside and outside the core region. Inside the core region, due to the overlap of the 

protein and solvent, the protein-solvent potential is infinitely large and gUS = 0. It follows that the 

integration inside the core region equals the EV, Vex, which the centers of solvent molecules cannot 

enter. The integration outside the core region takes a negative value because a layer within which the 

solvent density is higher than in the bulk is formed near the protein surface due to the packing force 

arising from the translational displacement of solvent molecules [40] (gUS of hard-sphere solvent near a 

hard-sphere solute is shown in Figure 2 as an example). Since the higher density is almost limited to 

the first layer (i.e., the thickness of the denser layer reaches only about half of the solvent diameter), the 

integration outside the core region is roughly in proportion to the solvent-accessible surface area (ASA) 

denoted by A. Thus, we can write: 

VPMV ∼ Vex − ξA (4)  
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(in a strict sense, VPMV is affected not only by these two terms but also by the curvature terms as 

described in Section 3.2) The parameter ξ is related to the average solvent density within the dense 

layer. A hydrophilic group in the protein makes a large, positive contribution to ξ because gUS >>1 on 

an average near it [49]. By contrast, near a group which is hydrophobic enough to overcome the 

packing force, gUS ∼1 or gUS <1 [49], with the result that the group makes a small, negative 

contribution to ξ. Since hydrophilic and hydrophobic groups are almost irregularly distributed on the 

protein surface, the overall value of ξ becomes positive, and VPMV is smaller than Vex. When the protein 

is modeled as a fused hard spheres and water is taken to be hard spheres, the water density near a 

hydrophilic group is underestimated while that near a hydrophobic group is overestimated, leading to a 

fortuitous cancellation of errors and a better result. 

3.2. Morphometric Approach 

In the morphometric approach [53,54], the solvation thermodynamic quantities Z (S/kB and VPMV) 

are expressed using only four geometric measures of a complex (polyatomic) solute with a fixed 

structure and corresponding coefficients. The resultant expression is: 

Z = C1Vex+C2A+C3X+C4Y (5)  

The four measures are the EV (Vex), the ASA (A), and the integrated mean and Gaussian curvatures 

of the accessible surface (X and Y) respectively. The water-accessible surface is the surface that is 

accessible to the centers of water molecules [22]. A, X, and Y are the surface area and the integrated 

curvatures of the water-accessible surface. The EV is the volume that is enclosed by the water-

accessible surface area. 

In this approach, the solute shape enters Z only via the four geometric measures. Therefore, the four 

coefficients (C1 - C4) can be determined in a simple geometry. They are determined from the solvation 

thermodynamic quantities calculated for hard-sphere solutes with various diameters immersed in the 

hard-sphere solvent. The morphometric form applied to hard-sphere solutes reduces to: 

Z = C1{(4π/3)dUS
3}+C2(4πdUS

2)+ 4πC3dUS+4πC4 (6)  

where dUS = (dU+dS)/2 and dU is the solute diameter. The four coefficients are determined using the 

least squares fitting to Equation (6). Once the four coefficients are determined, solvation 

thermodynamic quantities for a solute with a fixed structure are obtained by calculating only the four  

geometric measures. 

The solvation free energy µ of hard-sphere solute immersed in the hard-sphere solvent is obtained in 

accordance with the Morita-Hiroike formula [55,56]: 

µ  = 4πρS ∫{hUS(r)2/2− hUS(r)cUS(r)/2− cUS(r)}r
2dr (7)  

where hUS(r) and cUS(r) are the total and direct correlation functions between the hard-sphere solute 

and hard-sphere solvent, respectively (gUS(r) is hUS(r)+1).  The integration range is from 0 to ∞. In the 

hard-body model, µ is equal to −TS. The PMV is obtained using Equation (3). The correlation 

functions are calculated using the integral equation theory, elaborated statistical thermodynamics 

theory [38,43].  
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It has been shown that S and VPMV calculated by the 3D integral equation theory [29,31,47] applied 

to the hard-body model can be reproduced with sufficiently high accuracy by the morphometric 

approach applied to the same hard-body model [41,54]. For example, the deviation of the SE by the 

morphometric approach from that obtained by the 3D integral equation theory is less than ±2% [54]. 

VPMV of the complete α-helix structure composed of 20 alanines at ρSdS
3 = 0.7 is 94dS

3 when the 

morphometric approach is applied, and it is 90dS
3 when the 3D integral equation theory is 

employed [41]. The high accuracy also indicates that the SE obtained using the all-atom potential and 

the PMV experimentally observed can well be reproduced by the morphometric approach applied to 

the hard-body model (in Section 3.3 we also show that the experimentally measured change in 

thermodynamic quantity upon apoplastocyanin folding is quantitatively reproduced using the 

morphometric approach). 

Computation time required in the morphometric approach is over four orders of magnitude shorter 

than that required in the 3D integral equation theory: The calculation for one structure of protein G is 

finished in less than 1 sec on a small personal computer [54]. In principle the coefficients can be 

determined via any route: for example, the angle-dependent integral equation theory [48,49] combined 

with the multipolar water model [50,51] and a computer simulation using the SPC/E model [57] for 

water. However, the approach is applicable only when the solute-solvent interaction potential includes 

no electrostatic part [26]. There is no problem in the present case where a protein can be modeled as a 

set of fused hard spheres. 

3.3. Quantitative Comparison between Experimental and Theoretical Results for Apoplastocyanin 

Folding 

Terazima et al. developed a novel experimental technique which enables us to directly measure the 

enthalpic change and the system-volume change upon protein folding at 298K [33]. They showed that 

during apoplastocyanin (apoPC) folding, the system-volume change is almost 0 and that folding 

accompanies an enthalpic loss of 870 kJ/mol that is very large. It follows from the former result that 

the change in the hydration thermodynamic quantities of apoPC folding under the isobaric (constant-

pressure) condition can be considered to be the same as those under the isochoric (constant-volume) 

condition. Thus, the change in the enthalpy change and the entropic change upon folding under the 

isobaric condition can be treated as the energy and entropy change upon folding under the isochoric 

condition. The latter result indicates that the folding leads to a great gain of the water entropy which 

surpasses the enthalpic loss and the conformational-entropy loss.  

The water-entropy gain upon folding can be estimated as follows [25]: the free-energy gain upon the 

folding is given by “∆H−T(∆S+∆SC)” where ∆H is the enthalpy loss and ∆SC is the conformational-

entropy (CE) loss. We estimate ∆SC via following two different routes.  

One of the routes has been employed by Harano and Kinoshita [24]: The CE of the unfolded state is 

roughly estimated as follows. For the backbone, per residue there are two dihedral angles which can 

rotate and each angle has three stable values.  Therefore, the number of possible combinations is 32 = 9 

and the contribution to the CE is kBln9. Based on the study by Doig and Sternberg [58], we regard the 

contribution from the side chain to the CE as 1.7kB per residue.  It is assumed that the CE of the native 

structure is essentially zero. The CE loss ∆SC upon folding with Nr residues is expressed as: 
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∆SC/kB = −Nr(ln9+1.7) (8)  

However, the above route gives rise to a considerable overestimation of the CE loss. This is 

because many of the conformations counted undergo unrealistic overlaps of protein atoms, as is 

frequently encountered when the generation of unfolded structures is undertaken. The other route is 

based on the result from the experimental studies of Fitter using the neutron spectroscopy [59]. He 

estimated the temperature dependence of the radius parameter r which represents a length scale within 

which each residue can freely move. The CE loss is given by:  

∆SC/kB = −3Nrln(ru/ rf) (9)  

where ru and rf are the radius parameters for the unfolded state and for the folded state, respectively. 

The estimation of the radius parameters was made at three temperatures, 303K, 323K, and 343K. In 

order to estimate the CE loss at 298K, we first perform the linear fitting of the temperature dependence 

of ru and rf, and then obtain their values at 298K. The neutron scattering experiments cover mainly the 

picosecond time regime though the fluctuations in other time scales also affect the CE. For this reason, 

the use of Equation (9) results in a considerable underestimation of the CE loss. The actual CE loss 

should lie between the two values calculated from Equation (8) and Equation (9), respectively.  

Since Nr of apoPC is 99, ∆SC can be estimated to be in the range, 305 kJ/mol < −T∆SC < 

956 kJ/mol  [25]. It is assumed that the free-energy gain takes the most probable value shared by a 

number of proteins, −50 kJ/mol [60]. Using ∆H = 870 kJ/mol, the water-entropy gain is estimated to be 

in the range, −1876 kJ/mol<−T∆S<−1225 kJ/mol. 

We calculated the water-entropy gain upon folding of apoPC under isochoric condition using the 

morphometric approach [25]. The protein is modeled as a set of fused hard spheres. The four 

coefficients of S are determined from S calculated for hard-sphere solutes with various diameters 

immersed in the multipolar water model [50,51]. The values of S of hard-sphere solute are obtained 

using the angle-dependent version of integral equation theory [48,49] combined with multipolar water 

model [50,51]. It follows that the water-entropy gain upon folding of apoPC, −T∆S, is −1658kJ/mol, 

which is certainly in the range estimated (we assume that the unfolded state is random-coil state [25]). 

Therefore, we succeeded in reproducing quantitatively the change in the thermodynamic quantity upon 

apoPC folding by our theoretical method.  

By decomposing the water-entropy gain into several components, it is found that the translational-

entropy gain is about 20 times larger than the rotational-entropy gain [25]. Thus, the translational-

entropy gain of water is the major driving factor of folding of apoPC. According to the usual view [21], 

the water adjacent to a nonpolar group is entropically unstable (especially the rotation-entropy loss of 

water), and protein folding is driven by the release of such unfavorable water to the bulk through the 

burial of nonpolar groups. However, the entropic gain originating from this view is too small to 

elucidate the water-entropy gain manifesting the apoPC-folding data [25]. 

4. General Framework of Pressure Effects on Structures Formed by Self-assembly 

We first discuss the pressure effects on the first and second coefficients in morphometric form for 

the SE and the PMV of hard-body system [C3 and C4 are not discussed here because in Equation (5) 

C3X+C4Y is much smaller than C1Vex+C2A.]. Figure 3(a) shows the density dependence (corresponding 
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to the pressure dependence) of the first and second coefficients, C1 and C2, in the morphometric form 

applied to the SE, −S/kB. It is found that C1 and C2 take positive and negative values, respectively, at 

any density. C1 and |C2| increase remarkably with rising density, but the increase in the latter is larger: 

|C2| is much smaller than C1 at low pressures, but they are comparable in magnitude at high pressures.  

The positive value of C1 can easily be interpreted as the solvent-entropy loss caused by the solute 

insertion. The basic physics to give an interpretation of the negative value of C2 is in the phenomenon 

that when a large hard-sphere solute is immersed in small hard spheres forming the solvent, the small 

hard spheres are enriched near the solute despite that there are no direct attractive interactions between 

the solute and solvent particles and this enrichment becomes greater as the pressure increases (see 

Figure 2). We note that the presence of a solvent molecule generates an EV for the other solvent 

molecules in the system [39,40]. Due to this solvent crowding, part of the solvent particles is driven to 

contact the solute surface. The contact brings the overlap of the EVs generated by the solute and the 

solvent particles in contact with the solute. As a consequence, the total volume available to the 

translational displacement of the other solvent particles (i.e., the solvent particles well outside the 

enriched layer in the vicinity of the solute) increases, leading to an entropic gain. Such an entropic gain 

becomes large when the solute takes the structure with large ASA. Therefore, C2 takes  

negative value.  

Figure 3. (a) C1 (Å
−3), C2 (Å

−2), and C2/C1 (Å) of solvation entropy, −S/kB, plotted against 

solvent density corresponding to the pressure. (b) C1 and C2 (Å) of partial molar volume 

plotted against solvent density. 
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As for the density dependence of VPMV [Figure 3(b)], C1 is constant at the value corresponding to 1. 

The density dependence of |C2| is similar to that of −S/kB–it increases as the density is raised. The 

positive value of C1 represents the increment of the volume of the system by the EV of the solute. The 

negative value of C2 arises from the reduction of the EVs by the contact of the solute and the solvent 

particles. VPMV is decreased as the ASA is increased. 

Since C3X+C4Y is much smaller than C1Vex+C2A, the difference in the solvation thermodynamic 

quantity Z between the structures stabilized at high and low pressures can approximately be described 

as follows: 

Z
High− ZLow ∼ C1(Vex

High− Vex
Low)+C2(A

High− A
Low) (10)  
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where the superscripts “High” and “Low” denote the structures stabilized at high and low pressures, 

respectively and Z is −S/kB or VPMV. At high pressures, the structure formed by the entropically driven 

self-assembly is usually dissolved: the protein is unfolded and the amyloid fibrils are dissolved. 

Vex
High−Vex

Low and AHigh−A
Low are, respectively, changes in the EV and the ASA upon the destruction, 

and they are both positive. We consider −S/kB for Z. For the pressure-induced destruction to occur, 

C2(A
High−A

Low) (negative) must surpass C1(Vex
High−Vex

Low) (positive) at sufficiently high pressures. In 

other words, only the structure making the former larger can be stabilized at elevated pressures. Such 

structure should have a largest possible ASA together with sufficiently small EV (hereafter, we refer to 

these as “pressure-induced structures”). The pressure dependence of the structural stability is 

determined by a subtle balance between these two terms. In the case of the PMV, Vex
High−Vex

Low and 

C2(A
High−A

Low are positive and negative, respectively, and these signs are same as those of −S/kB. 

VPMV
High−VPMV

Low becomes negative when solute takes pressure-induced structure.  

We can thus obtain the following general feature of the solute structure at the low and high 

pressures: at low pressures, the structures almost minimizing the EV are stable. On the other hand, at 

sufficiently high pressures, the stabilized structures, pressure-induced structures, are compact and 

characterized by the largest possible ASA together with the EV kept sufficiently small. The change in 

VPMV upon the transition to the pressure-induced structures is negative. 

In the following subsections, two examples–pressure denaturation of proteins and coil-helix 

transition of polypeptide at high pressures–are discussed to show the validity of the present picture. We 

also give a comment on the pressure-induced dissociation of amyloid fibrils. It should be emphasized 

here that C3X+C4Y is fully incorporated in −S/kB and VPMV in Sections 4.1 and 4.2. 

4.1. Microscopic Mechanism of Pressure Denaturation of Proteins 

We consider −∆S/kB = (−S/kB)Unfold−{(−S/kB)Native} where the superscripts “Native” and “Unfold” 

represent the values for the native structure and for an unfolded structure of protein G, respectively 

(C3X+C4Y is fully incorporated here). All structures are the same as those shown in Table 1. In the 

present hard-sphere model, −∆S/kB corresponds to the change in µ upon the transition from the native 

structure to an unfolded one. Figure 4(a) shows −∆S/kB upon the structural transition to the swelling 

structure. As the density corresponding to the pressure increases, the swelling structure becomes more 

destabilized than the native structure in the low-pressure region. This is because C1 is much larger than 

|C2|, with the result that any structure with larger EV is more destabilized. However, as the density 

increases further, it begins to decrease rather rapidly and they eventually turn more stable than the 

native structure. The change in the PMV upon the structural transition is 117 Å3 at ρSdS
3 = 0.2 and 

−195 Å3 at ρSdS
3 = 0.8, respectively. According to the experimental results [61], the volume change 

upon protein unfolding is positive at low pressures and negative at high pressures. Therefore, the 

present results are consistent with the experimental ones. The swelling structure can be regarded as the 

pressure-induced structure.  

We also show −∆S/kB upon the structural transition to the random-coil structures in Figure 4(b). The 

SE of the random-coil structures is taken to be the average value calculated for the 32 random coils 

[62]. It follows that −∆S/kB continues to increase upon raising density and thus the random-coil 

structures are unstable even for the high densities. The change in the PMV upon the structural 
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transition to the random-coil structures is 464 Å3 at ρSdS
3 = 0.8 and is positive value. Therefore, the 

random-coil structure is not a pressure-induced one.  

We now discuss the physical origin of the structural transition from the native structure to the 

swelling structure occurring at high pressures. The decomposition of −∆S/kB into C1∆Vex, C2∆A, and 

C3∆X + C4∆Y in the case of Figure 4(a) is shown in Figure 4(c). The term C1∆Vex is positive and 

increases as the solvent density becomes higher. The term C3∆X+C4∆Y is also positive and is much 

smaller than the other two terms. Therefore, these terms prevent the transition. The structural transition 

comes primarily from the ASA term (C2∆A) which is negative and decreases further as the density 

becomes higher. In the case of the random-coil structures where both of the EV and the ASA are much 

larger than those of the native structure (see Table 1), although their ASA term takes a very large 

negative value, −∆S/kB is still positive due to the even larger positive value of the EV term (C1∆Vex). 

Therefore, inversion of the relative stability occurs for the swelling structure because its ASA is 

considerably larger and its EV is only moderately larger than the native structure (see Table 1). 

Figure 4. Negative of the entropy change of solvent scaled by kB upon the transition from 

the native structure to (a) the swelling structure and (b) the random-coil structures of 

protein G plotted against the bulk solvent density corresponding to the pressure P. −∆S/kB 

= (−S/kB)Unfold−{(−S/kB)Native} where the superscripts “Native” and “Unfold” represent the 

values for the native structure and for the unfolded structure, respectively. (c) 
Decomposition of −∆S/kB for swelling structure of protein G [Figure 4(a)] into C1∆Vex, 

C2∆A, and C3∆X+C4∆Y at each bulk solvent density. 
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4.2. Pressure-induced Helix-coil Transition of a Polypeptide 

We have recently proposed a physical picture to explain the pressure-induced helix-coil transition 

obtained experimentally by Kato et al. [41]. We first discuss the changes in the solvent entropy and the 

conformational entropy of the polypeptide upon the transition from the coil state to the helix state. 

Hereafter ∆S = SHelix − SCoil and ∆SC = SC
Helix − SC

Coil denote the changes in the solvent entropy and in 

the conformational entropy upon the transition from the coil state to the helix state, respectively. The 

superscripts “Helix” and “Coil” represent the values for the helix state and for the coil  

state, respectively.  
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As explained in Section 2, the loss of the conformational entropy, |∆SC|, is expected to be 

independent of the pressure or decreasing function of the pressure. We assume that ∆SC is independent 

of the pressure hereafter. The pressure-induced helix-coil transition of a polypeptide [17,18] can be 

understood by the structural stability described by the competition between the solvent-entropy gain 

and the conformational-entropy loss of the polypeptide upon the transition [41]. At low pressures, ∆S is 

smaller than |∆SC| and the coil state is stabilized. However, since ∆S is a monotonically increasing 

function of the pressure [see Figure 4(b)], the inversion occurs at a sufficiently high pressure, leading 

to the transition from the coil state to the helix state. 

We calculate ∆S/kB and ∆VPMV = VPMV
Helix − VPMV

Coil using the morphometric approach to show the 

validity of this physical picture [41] (C3X+C4Y is fully incorporated here). The polypeptide we consider 

is composed of 20 alanine residues. The hard-body model described in Section 3.1 is employed. We 

assume that the helix state is represented by a complete α-helix structure and that the coil state is an 

ensemble of random coils. Random coil structures are generated by assigning a random number to the 

dihedral angles for the main chain [62]. The SE and the PMV of the coil state are taken to be the 

average value of those for the nine random coils generated. We estimate the range of ∆SC/kB using the 

method described in Section 3.3. Since Nr is 20, the actual CE loss should lie in the range, 24.9 < 

|∆SC/kB| < 78.0.  

Figure 5 shows the solvent-density dependence (corresponding to the pressure dependence) of the 

solvent-entropy gain, ∆S/kB, and the conformational-entropy loss, |∆SC/kB|, upon the transition from the 

coil state to the helix state. At low densities ∆S/kB is smaller than the lower limit of |∆SC/kB| and thus 

the polypeptide is in the coil state. On the other hand, ∆S/kB prevails over the upper limit of |∆SC/kB| at 

sufficiently high densities. Therefore, the transition from the coil state to the complete α-helix structure 

occurs. The change in the PMV upon the transition, ∆VPMV, is −134 Å3 at ρSdS
3 = 0.7 and is negative 

value. The experimental results by Kato et al. [17,18] have thus been reproduced qualitatively. Even 

when the conformational-entropy loss is assumed to be a decreasing function of the pressure, our 

conclusions are not altered: The transition occurs simply at a slightly lower  

solvent density. 

Figure 5. ∆S and |∆SC| plotted against the bulk solvent density corresponding to the 

pressure. |∆SC| lies between the two dashed lines.  The SE gain and the CE loss upon the 

transition from the coil state (an ensemble of random coils) to the complete α-helix 

structure are compared. 
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Though the pressure-induced transition from the coil state to the helix state for the polypeptide 

appears to be inconsistent with pressure denaturation of a protein and the dissociation of the protein 

complex caused at high pressures, they can be elucidated in terms of the translational entropy of water. 

The apparent inconsistency arises partly from the difference in a number of residues, Nr. For the 

polypeptide whose Nr is very small, as shown by Harano and Kinoshita [24], at low pressures the 

solvent entropy gain cannot prevail the conformational-entropy loss and the peptide takes the coil state. 

On the other hand, a protein with large Nr folds into the native structure even at low pressures because 

the solvent-entropy gain dominates [24]. As shown in Figure 4(b), the native structure becomes more 

stable than the random coil structure at high pressures.  

Here we discuss why the polypeptide adopts the helix structure at high pressures, although there are 

many compact structures. The recent analyses of a protein have shown that the complete helix structure 

also possesses the characteristics of the pressure-induced structure [63]. The complete helix structure 

can be the most stable at high pressures as in the case of the alanine-based peptide, too. Therefore, we 

can conclude that both of protein and polypeptide take the pressure-induced structure at high pressures. 

We consider only the entropic component with the neglect of the energetic component. Here we 

discuss the pressure dependence of energy change upon the helix-coil transition. When the transition 

occurs, a very large gain of the polypeptide intramolecular energy occurs due to the formation of 

intramolecular hydrogen bonds and van der Waals attractive interactions between polypeptide atoms. 

However, the transition accompanies serious dehydration. The dehydration means the break of 

hydrogen bonds between water oxygen and polypeptide oxygen or nitrogen (hereafter, this is referred 

to as "hydrogen bonds with water molecules") and the loss of van der Waals attractive interactions 

between polypeptide atoms and water oxygen or hydrogen (or either of the break or the loss). At least 

within a framework of classical mechanics, the intramolecular-energy change is independent of the 

pressure. We have recently analyzed the pressure dependence of the hydration energy for hydrophobic 

and hydrophilic solutes using the angle-dependent integral equation theory combined with the 

multipolar water model. It is found that the hydration energy always decreases as the pressure becomes 

higher (we are planning to report this result in a forthcoming paper.) In particular, the exposed 

hydrophilic solutes are energetically more stabilized due to enhanced hydrogen bonds or an increase in 

the number of hydrogen bonds with water molecules. The analysis indicates that the energy loss by the 

break of the interaction between polypeptide atoms and water molecule is increased with raising 

pressure. Thus, the energy change upon the coil-to-helix transition increases with raising pressures and 

it may become eventually positive at high pressures. Therefore, the energetic component prevents the 

transition. The transition is induced only by the solvent entropy in the entropic component. 

4.3. Comment on Formation/Dissociation Process of Amyloid Fibrils 

It is experimentally known that the amyloid fibrils are dissociated into monomers when a high 

pressure is applied to the system [7-9]. We discuss this experimental observation using Equation (10). 

“High” and “Low” denote monomers and fibrils, respectively. According to experimental results, there 

are lots of vacant spaces within the fibrils, which water molecules cannot enter [64] (we emphasize that 

even with such small vacant spaces, overlaps of the excluded volumes generated by protein subunits 

certainly occur, and the EV of the fibrils is smaller than that of the monomers). Due to the small 
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vacancies, Vex
Low is significantly large while ALow is fairly small. Therefore, upon the dissolution of the 

amyloid fibrils, Vex
High−Vex

Low can be kept sufficiently small, even though A
High−A

Low becomes quite 

large. The dissolution to monomers whose structures feature like pressure-induced ones can be the best 

solution. The monomers cannot be random coils because of the unacceptably large  

EV-increase despite the largest ASA-increase. The dissolution of the other protein complexes can be 

understood in a similar manner. Thus, the folding/unfolding transition of a protein and the 

formation/dissociation process of amyloid fibrils can be discussed within the same framework, pending 

theoretical verification in future studies for the latter. 

5. Conclusions 

We have reviewed the general framework of pressure effects on structures formed by entropically 

driven self-assembly. At low pressures, the structures almost minimizing the EV generated for solvent 

particles are stabilized. Such structures appear to be even more stabilized at high pressures. However, it 

is experimentally known that the native structure of a protein is unfolded and ordered aggregates such 

as amyloid fibrils and virus assemblies are dissolved by applying high pressures. A clue to the basic 

mechanism is in the phenomenon that when a large hard-sphere solute is immersed in small hard 

spheres forming the solvent, the small hard spheres are enriched near the solute and this enrichment 

becomes greater as the pressure increases. We have argued that “attraction” is entropically provided 

between the solute surface and solvent particles and the attraction becomes higher with rising pressure. 

Due to this effect, at high pressures, the structures possessing the largest possible solvent-accessible 

surface area together with sufficiently small EV turn more stable in terms of the solvent entropy. 

Two examples–pressure denaturation of proteins and pressure-induced helix-coil transition of a 

polypeptide–have been discussed to show the validity of the picture. By an analysis of the pressure 

denaturation for illustrating our framework, only a class of special structures is shown to turn more 

stabilized relative to the native structure at sufficiently high pressures. Those structures are 

characterized by only moderately larger EV and much larger ASA, which is attained by the solvent 

penetration into the protein interior. We have also shown that the pressure-induced helix-coil transition 

of a polypeptide, which appears to be inconsistent with pressure denaturation or dissociation caused at 

high pressures known for many proteins, can also be explained in terms of the solvent entropy. At 

sufficiently high pressures, the stabilized structures for both of the peptide and the protein are compact 

and characterized by the largest possible ASA together with the EV kept sufficiently small. We have 

also commented how the amyloid fibrils are dissolved at high pressures on the basis of the  

solvent entropy. 

In the present review, we have been concentrated on the translational entropy of water. The other 

terms (intramolecular and solvation energy and conformational entropy), which prevent denaturation 

and dissociation, are ignored. This is because the aim of the present study is to elucidate the 

microscopic mechanism of pressure effects on the structures formed by entropically driven  

self-assembly. The factor which prevents denaturation and dissociation is not necessary for the present 

aim. On the other hand, if we intend to predict quantitatively the pressure at which pressure 

denaturation occurs, or to perform a quantitative comparison with the experimental result, the other 

terms are needed. Namely, we need to discuss in terms of the free-energy change. 
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We have employed the hard-body model to focus on the water-entropic effect. This model is useful 

for qualitative discussions of many cases such as protein folding and pressure denaturation of proteins 

discussed here. However, even when the translational entropy of water is the key factor, modeling 

water molecules as hard spheres fails when we wish to elucidate the microscopic mechanism of cold 

denaturation of a protein [65,66] and to obtain quantitatively reliable results [25]. It is also impossible 

to analyze the hydration of ions using the hard sphere as a solvent. In these cases, multipolar water 

model [50,51] is suitable. 

It has been shown that the translational entropy of water is the key quantity for cold [65,66] and heat 

[67] denaturations of proteins and the prediction of the native structure [68-70] as well as protein 

folding and pressure denaturation of proteins discussed here. We have recently reported a new progress 

in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) 

along a filament (e.g., F-actin) [71] and the rotation mechanism of F1-ATPase [72]. Therefore, it 

should be emphasized that the water-entropy effect is imperative for a variety of self-assembling and 

aggregation processes in biological systems sustaining life. 
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