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Abstract:



In his 1985 article (“Projection pursuit”), Huber demonstrates the interest of his method to estimate a density from a data set in a simple given case. He considers the factorization of density through a Gaussian component and some residual density. Huber’s work is based on maximizing Kullback–Leibler divergence. Our proposal leads to a new algorithm. Furthermore, we will also consider the case when the density to be factorized is estimated from an i.i.d. sample. We will then propose a test for the factorization of the estimated density. Applications include a new test of fit pertaining to the elliptical copulas.
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1. Outline of the Article


The objective of projection pursuit is to generate one or several projections providing as much information as possible about the structure of the data set regardless of its size:



Once a structure has been isolated, the corresponding data are transformed through a Gaussianization. Through a recursive approach, this process is iterated to find another structure in the remaining data, until no further structure can be evidenced in the data left at the end.



Friedman [1] and Huber [2] count among the first authors to have introduced this type of approaches for evidencing structures. They each describe, with many examples, how to evidence such a structure and consequently how to estimate the density of such data through two different methodologies each. Their work is based on maximizing Kullback–Leibler divergence.



For a very long time, the two methodologies exposed by each of the above authors were thought to be equivalent but Zhu [3] showed it was in fact not the case when the number of iterations in the algorithms exceeds the dimension of the space containing the data, i.e., in case of density estimation. In the present article, we will therefore only focus on Huber’s study while taking into account the Zhu remarks.



At present, let us briefly introduce Huber’s methodology. We will then expose our approach and objective.



1.1. Huber’s analytic approach


Let f be a density on [image: there is no content]. We define an instrumental density g with same mean and variance as f. Huber’s methodology requires us to start with performing the [image: there is no content] test—with K being the Kullback–Leibler divergence. Should this test turn out to be positive, then [image: there is no content] and the algorithm stops. If the test were not to be verified, the first step of Huber’s algorithm amounts to defining a vector [image: there is no content] and a density [image: there is no content] by


[image: there is no content]=arginfa∈[image: there is no content]K(f[image: there is no content][image: there is no content],g)and[image: there is no content]=fg[image: there is no content]f[image: there is no content]



(1.1)




where [image: there is no content] is the set of non-null vectors of [image: there is no content], where [image: there is no content] (resp. [image: there is no content]) stands for the density of [image: there is no content] (resp. [image: there is no content]) when f (resp. g) is the density of X (resp. Y). More exactly, this results from the maximisation of a↦K([image: there is no content],[image: there is no content]) since K(f,g)=K([image: there is no content],[image: there is no content])+K(f[image: there is no content][image: there is no content],g) and it is assumed that [image: there is no content] is finite. In a second step, Huber replaces f with [image: there is no content] and goes through the first step again.



By iterating this process, Huber thus obtains a sequence ([image: there is no content],[image: there is no content],...) of vectors of [image: there is no content] and a sequence of densities [image: there is no content].



[image: there is no content] 1.1. Huber stops his algorithm when the Kullback–Leibler divergence equals zero or when his algorithm reaches the [image: there is no content] iteration, he then obtains an approximation of f from g:



When there exists an integer j such that [image: there is no content] with [image: there is no content], he obtains [image: there is no content], i.e., [image: there is no content] since by induction [image: there is no content]. Similarly, when, for all j, Huber gets [image: there is no content] with [image: there is no content], he assumes [image: there is no content] in order to derive [image: there is no content].



He can also stop his algorithm when the Kullback–Leibler divergence equals zero without the condition [image: there is no content] is met. Therefore, since by induction we have [image: there is no content] with [image: there is no content], we obtain [image: there is no content]. Consequently, we derive a representation of f as [image: there is no content]



Finally, he obtains K(f(0),g)≥K([image: there is no content],g)≥.....≥0 with [image: there is no content].




1.2. Huber’s synthetic approach


Keeping the notations of the above section, we start with performing the [image: there is no content] test; should this test turn out to be positive, then [image: there is no content] and the algorithm stops, otherwise, the first step of his algorithm would consist in defining a vector [image: there is no content] and a density [image: there is no content] by


[image: there is no content]=arginfa∈[image: there is no content]K(f,g[image: there is no content][image: there is no content])and[image: there is no content]=gf[image: there is no content]g[image: there is no content]



(1.2)







More exactly, this optimisation results from the maximisation of a↦K([image: there is no content],[image: there is no content]) since K(f,g)=K([image: there is no content],[image: there is no content])+K(f,g[image: there is no content][image: there is no content]) and it is assumed that [image: there is no content] is finite. In a second step, Huber replaces g with [image: there is no content] and goes through the first step again. By iterating this process, Huber thus obtains a sequence ([image: there is no content],[image: there is no content],...) of vectors of [image: there is no content] and a sequence of densities [image: there is no content].



[image: there is no content] 1.2. First, in a similar manner to the analytic approach, this methodology enables us to approximate and even to represent f from g:



To obtain an approximation of f, Huber either stops his algorithm when the Kullback–Leibler divergence equals zero, i.e., [image: there is no content] implies [image: there is no content] with [image: there is no content], or when his algorithm reaches the [image: there is no content] iteration, i.e., he approximates f with [image: there is no content].



To obtain a representation of f, Huber stops his algorithm when the Kullback–Leibler divergence equals zero, since [image: there is no content] implies [image: there is no content]. Therefore, since by induction we have [image: there is no content] with [image: there is no content], we then obtain [image: there is no content]



Second, he gets K(f,[image: there is no content])≥K(f,[image: there is no content])≥.....≥0 with [image: there is no content].




1.3. Proposal


Let us first introduce the concept of [image: there is no content]divergence.



Let ϕ be a strictly convex function defined by [image: there is no content] and such that [image: there is no content]. We define a [image: there is no content]divergence of P from Q—where P and Q are two probability distributions over a space Ω such that Q is absolutely continuous with respect to P—by


[image: there is no content]








or [image: there is no content], if P and Q present p and q as density respectively.



Throughout this article, we will also assume that [image: there is no content], that [image: there is no content] is continuous and that this divergence is greater than the [image: there is no content] distance—see also Appendix A.1 page 1604.



Now, let us introduce our algorithm.



We start with performing the [image: there is no content] test; should this test turn out to be positive, then [image: there is no content] and the algorithm stops, otherwise, the first step of our algorithm would consist in defining a vector [image: there is no content] and a density [image: there is no content] by


[image: there is no content]=arginfa∈[image: there is no content][image: there is no content](g[image: there is no content][image: there is no content],f)and[image: there is no content]=gf[image: there is no content]g[image: there is no content]



(1.3)







Later on, we will prove that [image: there is no content] simultaneously optimises (1.1), (1.2) and (1.3).



In our second step, we will replace g with [image: there is no content], and we will repeat the first step.



And so on, by iterating this process, we will end up obtaining a sequence ([image: there is no content],[image: there is no content],...) of vectors in [image: there is no content] and a sequence of densities [image: there is no content].



We will thus prove that the underlying structures of f evidenced through this method are identical to the ones obtained through Huber’s method. We will also evidence the above structures, which will enable us to infer more information on f—see example below.



[image: there is no content] 1.3. As in the previous algorithm, we first provide an approximate and even a representation of f from g: To obtain an approximation of f, we stop our algorithm when the divergence equals zero, i.e., [image: there is no content] implies [image: there is no content] with [image: there is no content], or when our algorithm reaches the [image: there is no content] iteration, i.e., we approximate f with [image: there is no content].



To obtain a representation of f, we stop our algorithm when the divergence equals zero. Therefore, since by induction we have [image: there is no content] with [image: there is no content], we then obtain [image: there is no content]



Second, we get [image: there is no content]([image: there is no content],f)≥[image: there is no content]([image: there is no content],f)≥.....≥0 with [image: there is no content].



Finally, the specific form of relationship (1.3) establishes that we deal with M-estimation. We can therefore state that our method is more robust than Huber’s—see Yohai [4], Toma [5] as well as Huber [6].



At present, let us study two examples:



[image: there is no content] 1.1. Let f be a density defined on [image: there is no content] by [image: there is no content], with n being a bi-dimensional Gaussian density, and h being a non-Gaussian density. Let us also consider g, a Gaussian density with same mean and variance as f.



Since [image: there is no content], we then have [image: there is no content] as [image: there is no content], i.e., the function a↦[image: there is no content](g[image: there is no content][image: there is no content],f) reaches zero for [image: there is no content]—where [image: there is no content] and [image: there is no content] are the third marginal densities of f and g respectively.



We therefore obtain [image: there is no content].



[image: there is no content] 1.2. Assuming that the φ-divergence is greater than the [image: there is no content] norm. Let us consider [image: there is no content], the Markov chain with continuous state space E. Let f be the density of [image: there is no content] and let g be the normal density with same mean and variance as f.



Let us now assume that [image: there is no content]([image: there is no content],f)=0 with [image: there is no content](x)=g(x)f1g1, i.e., let us assume that our algorithm stops for [image: there is no content]=(1,0)′. Consequently, if [image: there is no content] is a random vector with g density, then the distribution law of [image: there is no content] given [image: there is no content] is Gaussian and is equal to the distribution law of [image: there is no content] given [image: there is no content].



And then, for any sequence [image: there is no content]—where [image: there is no content]—we have


[image: there is no content]Xn+1∈An+1∣[image: there is no content]∈A0,[image: there is no content]∈A1,…,Xn−1∈An−1,[image: there is no content]∈An=[image: there is no content]Xn+1∈An+1∣[image: there is no content]∈An, based on the very definition of a Markov chain,=[image: there is no content][image: there is no content]∈A1∣[image: there is no content]∈A0, through the Markov property,=[image: there is no content][image: there is no content]∈A1∣[image: there is no content]∈A0, as a consequence of the above nullity of the ϕ-divergence.











To recapitulate our method, if [image: there is no content], we derive f from the relationship [image: there is no content]; should a sequence [image: there is no content], [image: there is no content], of vectors in [image: there is no content] defining [image: there is no content] and such that [image: there is no content] exist, then [image: there is no content], i.e., f coincides with g on the complement of the vector subspace generated by the family [image: there is no content]—see also Section 2 for a more detailed explanation.



In this paper, after having clarified the choice of g, we will consider the statistical solution to the representation problem, assuming that f is unknown and [image: there is no content], [image: there is no content],... [image: there is no content] are i.i.d. with density f. We will provide asymptotic results pertaining to the family of optimizing vectors [image: there is no content]—that we will define more precisely below—as m goes to infinity. Our results also prove that the empirical representation scheme converges towards the theoretical one. As an application, Section 3.4 permits a new test of fit pertaining to the copula of an unknown density f, Section 3.5 gives us an estimate of a density deconvoluted with a Gaussian component and Section 3.6 presents some applications to regression analysis. Finally, we will present simulations and an application to real datasets.





2. The Algorithm


2.1. The model


As explained by Friedman [1] and Diaconis [7], the choice of g depends on the family of distribution one wants to find in f. Until now, the choice has only been to use the class of Gaussian distributions. This can be extended to the class of elliptic distributions with almost all [image: there is no content]divergences.



Elliptical laws 


The interest of this class lies in the fact that conditional densities with elliptical distributions are also elliptical—see Cambanis [8], Landsman [9]. This very property allows us to use this class in our algorithm.



Definition 2.1. 

X is said to abide by a multivariate elliptical distribution—noted [image: there is no content]—if X presents the following density, for any x in [image: there is no content] :


[image: there is no content]









	
with Σ, being a [image: there is no content] positive-definite matrix and with μ, being a d-column vector,



	
with [image: there is no content], being referred as the “density generator”,



	
with [image: there is no content], being a normalisation constant, such that [image: there is no content]=Γ(d/2)(2π)d/2∫0∞xd/2−1[image: there is no content](x)dx[image: there is no content], with ∫0∞xd/2−1[image: there is no content](x)dx<∞.










Property 2.1. 

1/ For any [image: there is no content], for any A, being an [image: there is no content] matrix with rank [image: there is no content] and for any b, being an m-dimensional vector, we have [image: there is no content].



Therefore, any marginal density of multivariate elliptical distribution is elliptic, i.e., X=([image: there is no content],[image: there is no content],...,Xd)∼Ed(μ,Σ,[image: there is no content])⇒[image: there is no content]∼E1(μi,σi2,ξ1),[image: there is no content][image: there is no content].



2/ Corollary 5 of Cambanis [8] states that conditional densities with elliptical distributions are also elliptic. Indeed, if X=([image: there is no content],[image: there is no content])′∼Ed(μ,Σ,[image: there is no content]), with [image: there is no content] (resp. [image: there is no content]) being a size [image: there is no content] (resp. [image: there is no content]), then [image: there is no content]/([image: there is no content]=a)∼Ed1(μ′,Σ′,ξd1) with [image: there is no content] and [image: there is no content] with [image: there is no content] and [image: there is no content].





[image: there is no content] 2.1. 

Landsman [9] shows that multivariate Gaussian distributions derive from [image: there is no content](x)=e−x. He also shows that if X=([image: there is no content],...,Xd) has an elliptical density such that its marginals verify [image: there is no content] and [image: there is no content] for [image: there is no content] then μ is the mean of X and Σ is a multiple of the covariance matrix of X. Consequently, from now on, we will assume that we are in this case.





Definition 2.2. 

Let t be an elliptical density on [image: there is no content] and let q be an elliptical density on [image: there is no content]. The elliptical densities t and q are said to belong to the same family—or class—of elliptical densities, if their generating densities are [image: there is no content] and [image: there is no content] respectively, which belong to a common given family of densities.





[image: there is no content] 2.1. 

Consider two Gaussian densities [image: there is no content] and [image: there is no content]. They are said to belong to the same elliptical families as they both present [image: there is no content] as generating density.






Choice of g 


Let us begin with studying the following case:



Let f be a density on [image: there is no content]. Let us assume there exists d non-null linearly independent vectors [image: there is no content], with [image: there is no content] of [image: there is no content], such that


[image: there is no content]



(2.1)




with [image: there is no content], with n being an elliptical density on [image: there is no content] and with h being a density on [image: there is no content], which does not belong to the same family as n. Let X=([image: there is no content],...,Xd) be a vector presenting f as density.



Define g as an elliptical distribution with same mean and variance as f.



For simplicity, let us assume that the family {[image: there is no content]}1≤j≤d is the canonical basis of [image: there is no content]:



The very definition of f implies that [image: there is no content] is independent from ([image: there is no content],...,Xj). Hence, the density of [image: there is no content] given ([image: there is no content],...,Xj) is n.



Let us assume that [image: there is no content]([image: there is no content],f)=0, for some [image: there is no content]. We then get f(x)f[image: there is no content]f[image: there is no content]...f[image: there is no content]=g(x)g[image: there is no content](1−1)g[image: there is no content](2−1)...g[image: there is no content](j−1), since, by induction, we have [image: there is no content](x)=g(x)f[image: there is no content]g[image: there is no content](1−1)f[image: there is no content]g[image: there is no content](2−1)...f[image: there is no content]g[image: there is no content](j−1).



Consequently, the fact that conditional densities with elliptical distributions are also elliptical enables us to infer that


[image: there is no content]








In other words, f coincides with g on the complement of the vector subspace generated by the family [image: there is no content].



Now, if the family {[image: there is no content]}1≤j≤d is no longer the canonical basis of [image: there is no content], then this family is again a basis of [image: there is no content]. Hence, Lemma D.1—page 1607—implies that


[image: there is no content]



(2.2)




which is equivalent to having [image: there is no content]—since by induction [image: there is no content]=gf[image: there is no content]g[image: there is no content](1−1)f[image: there is no content]g[image: there is no content](2−1)...f[image: there is no content]g[image: there is no content](j−1).



The end of our algorithm implies that f coincides with g on the complement of the vector subspace generated by the family [image: there is no content]. Therefore, the nullity of the [image: there is no content]divergence provides us with information on the density structure.



In summary, the following proposition clarifies our choice of g which depends on the family of distribution one wants to find in f:



Proposition 2.1. 

With the above notations, [image: there is no content] is equivalent to


[image: there is no content]













More generally, the above proposition leads us to defining the co-support of f as the vector space generated from vectors [image: there is no content],...,[image: there is no content].



Definition 2.3. 

Let f be a density on [image: there is no content]. We define the co-vectors of f as the sequence of vectors [image: there is no content],...,[image: there is no content] which solves the problem [image: there is no content] where g is an elliptical distribution with same mean and variance as f. We define the co-support of f as the vector space generated from vectors [image: there is no content],...,[image: there is no content].





[image: there is no content] 2.2. 

Any [image: there is no content] family defining f as in (2.1), is an orthogonal basis of [image: there is no content]—see Lemma D.2







2.2. Stochastic outline of our algorithm


Let [image: there is no content], [image: there is no content],..,[image: there is no content] (resp. [image: there is no content], [image: there is no content],..,[image: there is no content]) be a sequence of m independent random vectors with same density f (resp. g). As customary in nonparametric [image: there is no content]divergence optimizations, all estimates of f and [image: there is no content] as well as all uses of Monté Carlo’s methods are being performed using subsamples [image: there is no content], [image: there is no content],..,[image: there is no content] and [image: there is no content], [image: there is no content],..,[image: there is no content]—extracted respectively from [image: there is no content], [image: there is no content],..,[image: there is no content] and [image: there is no content], [image: there is no content],..,[image: there is no content]—since the estimates are bounded below by some positive deterministic sequence [image: there is no content]—see Appendix B.



Let [image: there is no content] be the empirical measure of the subsample [image: there is no content], [image: there is no content],.,[image: there is no content]. Let [image: there is no content] (resp. [image: there is no content] for any a in [image: there is no content]) be the kernel estimate of f (resp. [image: there is no content]), which is built from [image: there is no content], [image: there is no content],..,[image: there is no content] (resp. a⊤[image: there is no content], a⊤[image: there is no content],..,a⊤[image: there is no content]).



As defined in Section 1.3, we introduce the following sequences [image: there is no content] and [image: there is no content]:


•[image: there is no content]isanonnullvectorof[image: there is no content]suchthat[image: there is no content]=argmina∈[image: there is no content][image: there is no content]([image: there is no content][image: there is no content]ga(k−1),f)



(2.3)






•[image: there is no content]isthedensitysuchthat[image: there is no content]=[image: there is no content]f[image: there is no content]g[image: there is no content](k−1)with[image: there is no content]











The stochastic setting up of the algorithm uses [image: there is no content] and [image: there is no content] instead of f and [image: there is no content]—since g is known. Thus, at the first step, we build the vector [image: there is no content] which minimizes the [image: there is no content]divergence between [image: there is no content] and g[image: there is no content][image: there is no content] and which estimates [image: there is no content] :



Proposition B.1 page 1606 and Lemma D.3 page 1607 enable us to minimize the [image: there is no content]divergence between [image: there is no content] and g[image: there is no content][image: there is no content]. Defining [image: there is no content] as the argument of this minimization, Proposition 3.3 page 1589 shows us that this vector tends to [image: there is no content].



Finally, we define the density [image: there is no content] as [image: there is no content]=gf[image: there is no content],mg[image: there is no content] which estimates [image: there is no content] through Theorem 3.1.



Now, from the second step and as defined in Section 1.3, the density [image: there is no content] is unknown. Consequently, once again, we have to truncate the samples:



All estimates of f and [image: there is no content] (resp. [image: there is no content] and [image: there is no content]) are being performed using a subsample [image: there is no content], [image: there is no content],..,[image: there is no content] (resp. [image: there is no content], [image: there is no content],..,[image: there is no content]) extracted from [image: there is no content], [image: there is no content],..,[image: there is no content] (resp. [image: there is no content], [image: there is no content],..,[image: there is no content]—which is a sequence of m independent random vectors with same density [image: there is no content]) such that the estimates are bounded below by some positive deterministic sequence [image: there is no content]—see Appendix B.



Let [image: there is no content] be the empirical measure of the subsample [image: there is no content], [image: there is no content],..,[image: there is no content]. Let [image: there is no content] (resp. [image: there is no content], [image: there is no content], [image: there is no content] for any a in [image: there is no content]) be the kernel estimate of f (resp. [image: there is no content] and [image: there is no content] as well as [image: there is no content]) which is built from [image: there is no content], [image: there is no content],..,[image: there is no content] (resp. [image: there is no content], [image: there is no content],..,[image: there is no content] and a⊤[image: there is no content], a⊤[image: there is no content],..,a⊤[image: there is no content] as well as a⊤[image: there is no content], a⊤[image: there is no content],..,a⊤[image: there is no content]). The stochastic setting up of the algorithm uses [image: there is no content] and [image: there is no content] instead of f and [image: there is no content].



Thus, we build the vector [image: there is no content] which minimizes the [image: there is no content]divergence between [image: there is no content] and [image: there is no content][image: there is no content][image: there is no content]—since [image: there is no content] and [image: there is no content] are unknown—and which estimates [image: there is no content].



Proposition B.1 page 1606 and Lemma D.3 page 1607 enable us to minimize the [image: there is no content]divergence between [image: there is no content] and [image: there is no content][image: there is no content][image: there is no content]. Defining [image: there is no content] as the argument of this minimization, Proposition 3.3 page 1589 shows us that this vector tends to [image: there is no content] in n. Finally, we define the density [image: there is no content] as [image: there is no content]=[image: there is no content]f[image: there is no content],ng[image: there is no content],n(1) which estimates [image: there is no content] through Theorem 3.1.



And so on, we will end up obtaining a sequence ([image: there is no content],[image: there is no content],...) of vectors in [image: there is no content] estimating the co-vectors of f and a sequence of densities [image: there is no content] such that [image: there is no content] estimates [image: there is no content] through Theorem 3.1.





3. Results


3.1. Convergence results


3.1.1. Hypotheses on f


In this paragraph, we define the set of hypotheses on f which could possibly be of use in our work. Discussion on several of these hypotheses can be found in Appendix C.



In this section, to be more legible we replace g with [image: there is no content]. Let


Θ=[image: there is no content],Θ[image: there is no content]={b∈Θ|∫φ*([image: there is no content](g(x)f(x)fb(b⊤x)gb(b⊤x)))d[image: there is no content]<∞}










M(b,a,x)=∫[image: there is no content](g(x)f(x)fb(b⊤x)gb(b⊤x))g(x)[image: there is no content](a⊤x)[image: there is no content](a⊤x)dx−φ*([image: there is no content](g(x)f(x)fb(b⊤x)gb(b⊤x)))










[image: there is no content]M[image: there is no content]=∫M(b,a,x)d[image: there is no content],[image: there is no content]M(b,a)=∫M(b,a,x)d[image: there is no content]








where [image: there is no content] is the probability measure presenting f as density.



Similarly as in chapter V of Van der Vaart [10], let us define :

	(H1)

	
: Forallε>0,thereisη>0,suchthatforallc∈Θ[image: there is no content]verifying∥c−[image: there is no content]∥≥ε,wehave[image: there is no content]M(c,a)−η>[image: there is no content]M([image: there is no content],a),witha∈Θ.




	(H2)

	
: ∃Z<0,n0>0suchthat(n≥n0⇒sup[image: there is no content]supc∈{Θ[image: there is no content]}c[image: there is no content]M(c,a)<Z)




	(H3)

	
: There is a neighbourhood V of ak, and a positive function H, such that, for all c∈V,wehave|M(c,[image: there is no content],x)|≤H(x)([image: there is no content]−a.s.)with[image: there is no content]H<∞,




	(H4)

	
: There is a neighbourhood V of ak, such that for all ε, there is a η such that for all c∈Vand[image: there is no content],verifying∥a−[image: there is no content]∥≥ε,wehave[image: there is no content]M(c,[image: there is no content])<[image: there is no content]M(c,a)−η.






Putting [image: there is no content] and x→ρ(b,a,x)=[image: there is no content](g(x)fb(b⊤x)f(x)gb(b⊤x))g(x)[image: there is no content](a⊤x)[image: there is no content](a⊤x), putting:

	(H5)

	
: The function φ is [image: there is no content] in [image: there is no content]) and there is a neighbourhood [image: there is no content] of [image: there is no content] such that, for all [image: there is no content] of [image: there is no content], the gradient ∇(g(x)[image: there is no content](a⊤x)[image: there is no content](a⊤x)) and the Hessian H(g(x)[image: there is no content](a⊤x)[image: there is no content](a⊤x)) exist ([image: there is no content]), and the first order partial derivatives g(x)[image: there is no content](a⊤x)[image: there is no content](a⊤x) and the first and second order derivatives of [image: there is no content] are dominated ([image: there is no content]a.s.) by λ-integrable functions.




	(H6)

	
: The function [image: there is no content] is [image: there is no content] in a neighbourhood [image: there is no content] of [image: there is no content] for all x; and the partial derivatives of [image: there is no content] are all dominated in [image: there is no content] by a [image: there is no content]_integrable function [image: there is no content].




	(H7)

	
: [image: there is no content]∥∂∂bM[image: there is no content]∥2 and [image: there is no content]∥∂∂aM[image: there is no content]∥2 are finite and the expressions [image: there is no content]∂2∂bi∂bjM[image: there is no content] and [image: there is no content] exist and are invertible.




	(H8)

	
: There exists k such that [image: there is no content]M([image: there is no content],[image: there is no content])=0.




	(H9)

	
: (Var[image: there is no content](M[image: there is no content]))1/2 exists and is invertible.




	(H0)

	
: f and g are assumed to be positive and bounded and such that [image: there is no content].










3.1.2. Estimation of the first co-vector of f


Let [image: there is no content] be the class of all positive functions r defined on [image: there is no content] and such that [image: there is no content] is a density on [image: there is no content] for all a belonging to [image: there is no content]. The following proposition shows that there exists a vector a such that [image: there is no content][image: there is no content] minimizes [image: there is no content] in r:



Proposition 3.1. 

There exists a vector a belonging to [image: there is no content] such that


argminr∈[image: there is no content][image: there is no content](gr,f)=[image: there is no content][image: there is no content]andr(a⊤x)=[image: there is no content](a⊤x)[image: there is no content](a⊤x)













[image: there is no content] 3.1. 

This proposition proves that [image: there is no content] simultaneously optimises (1.1), (1.2) and (1.3). In other words, it proves that the underlying structures of f evidenced through our method are identical to the ones obtained through Huber’s methods.





Following Broniatowski [11], let us introduce the estimate of [image: there is no content](g[image: there is no content][image: there is no content],[image: there is no content]), through


[image: there is no content]ˇ(g[image: there is no content][image: there is no content],[image: there is no content])=∫M(a,a,x)d[image: there is no content](x)











Proposition 3.2. 

Let [image: there is no content] be such that [image: there is no content]:=arginfa∈[image: there is no content][image: there is no content]ˇ(g[image: there is no content][image: there is no content],[image: there is no content]).



Then, [image: there is no content] is a strongly convergent estimate of a, as defined in Proposition 3.1.





Let us also introduce the following sequences ([image: there is no content]k)k≥1 and ([image: there is no content])k≥1, for any given n—see Section 2.2.:

	
[image: there is no content]k is an estimate of [image: there is no content] as defined in Proposition 3.2 with [image: there is no content] instead of g,



	
[image: there is no content] is such that [image: there is no content], [image: there is no content](x)=[image: there is no content](x)f[image: there is no content]k,n([image: there is no content]k⊤x)[gˇ(k−1)][image: there is no content]k,n([image: there is no content]k⊤x), i.e., [image: there is no content](x)=g(x)Π[image: there is no content]kf[image: there is no content]j,n([image: there is no content]j⊤x)[gˇ(j−1)][image: there is no content]j,n([image: there is no content]j⊤x).





We also note that [image: there is no content] is a density.




3.1.3. Convergence study at the [image: there is no content] step of the algorithm:


In this paragraph, we will show that the sequence ([image: there is no content]k)n converges towards [image: there is no content] and that the sequence ([image: there is no content])n converges towards [image: there is no content].



Let cˇn(a)=argsupc∈Θ[image: there is no content]M(c,a), with [image: there is no content], and [image: there is no content]=arginf[image: there is no content]supc∈Θ[image: there is no content]M(c,a). We state



Proposition 3.3. 

Both sup[image: there is no content]∥cˇn(a)−[image: there is no content]∥ and [image: there is no content] converge toward [image: there is no content] a.s.





Finally, the following theorem shows that [image: there is no content] converges almost everywhere towards [image: there is no content]:

Theorem 3.1. 

It holds [image: there is no content]→n[image: there is no content]a.s.









3.2. Asymptotic Inference at the [image: there is no content] step of the algorithm


The following theorem shows that [image: there is no content] converges towards [image: there is no content] at the rate O[image: there is no content](n−22+d) in three different cases, namely for any given x, with the [image: there is no content] distance and with the Kullback–Leibler divergence:

Theorem 3.2. 

It holds |[image: there is no content](x)−[image: there is no content](x)|=O[image: there is no content](n−22+d),∫|[image: there is no content](x)−[image: there is no content](x)|dx=O[image: there is no content](n−22+d) and |K([image: there is no content],f)−K([image: there is no content],f)|=O[image: there is no content](n−22+d).







The following theorem shows that the laws of our estimators of [image: there is no content], namely cˇn([image: there is no content]) and [image: there is no content], converge towards a linear combination of Gaussian variables.



Theorem 3.3. 

It holds nA.(cˇn([image: there is no content])−[image: there is no content])→LawB.Nd(0,[image: there is no content]∥∂∂bM[image: there is no content]∥2)+C.Nd(0,[image: there is no content]∥∂∂aM[image: there is no content]∥2) and nA.([image: there is no content]−[image: there is no content])→LawC.Nd(0,[image: there is no content]∥∂∂bM[image: there is no content]∥2)+C.Nd(0,[image: there is no content]∥∂∂aM[image: there is no content]∥2) where A=[image: there is no content]∂2∂b∂bM[image: there is no content]([image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]+[image: there is no content]∂2∂[image: there is no content]∂bjM[image: there is no content]), C=[image: there is no content]∂2∂b∂bM[image: there is no content] and B=[image: there is no content]∂2∂b∂bM[image: there is no content]+[image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]+[image: there is no content]∂2∂[image: there is no content]∂bjM[image: there is no content].






3.3. A stopping rule for the procedure


In this paragraph, we will call [image: there is no content] (resp. [image: there is no content]) the kernel estimator of [image: there is no content] (resp. [image: there is no content]). We will first show that [image: there is no content] converges towards f in k and n. Then, we will provide a stopping rule for this identification procedure.



3.3.1. Estimation of f


The following proposition provides us with an estimate of f:

Theorem 3.4. 

We have limnlimk[image: there is no content]=f a.s.







Consequently, the following corollary shows that [image: there is no content](gn(k−1)f[image: there is no content],ng[image: there is no content],n(k−1),f[image: there is no content],n) converges towards zero as k and then as n go to infinity:

Corollary 3.1. 

We have limnlimk[image: there is no content]([image: there is no content]f[image: there is no content],n[[image: there is no content]][image: there is no content],n,[image: there is no content])=0 a.s.








3.3.2. Testing of the criteria


In this paragraph, through a test of our criteria, namely a↦[image: there is no content]([image: there is no content][image: there is no content][[image: there is no content]]a,n,[image: there is no content]), we will build a stopping rule for this procedure. First, the next theorem enables us to derive the law of our criteria:

Theorem 3.5. 

For a fixed k, we have


n(Var[image: there is no content](M(cˇn([image: there is no content]),[image: there is no content])))−1/2([image: there is no content]M(cˇn([image: there is no content]),[image: there is no content])−[image: there is no content]M[image: there is no content])→LawN(0,I),








where k represents the [image: there is no content] step of our algorithm and where I is the identity matrix in [image: there is no content].







Note that k is fixed in Theorem 3.5 since [image: there is no content]=arginf[image: there is no content]supc∈Θ[image: there is no content]M(c,a) where M is a known function of k—see Section 3.1. Thus, in the case when [image: there is no content]([image: there is no content]f[image: there is no content]g[image: there is no content](k−1),f)=0, we obtain

Corollary 3.2. 

We have n(Var[image: there is no content](M(cˇn([image: there is no content]),[image: there is no content])))−1/2[image: there is no content]M(cˇn([image: there is no content]),[image: there is no content])→LawN(0,I).







Hence, we propose the test of the null hypothesis



[image: there is no content]:[image: there is no content]([image: there is no content]f[image: there is no content]g[image: there is no content](k−1),f)=0versusthealternative[image: there is no content]:[image: there is no content]([image: there is no content]f[image: there is no content]g[image: there is no content](k−1),f)≠0.



Based on this result, we stop the algorithm, then, defining [image: there is no content] as the last vector generated, we derive from Corollary 3.2 a α-level confidence ellipsoid around [image: there is no content], namely


[image: there is no content]={b∈[image: there is no content];n(Var[image: there is no content](M(b,b)))−1/2[image: there is no content]M(b,b)≤qα[image: there is no content]}








where qα[image: there is no content] is the quantile of a α-level reduced centered normal distribution and where [image: there is no content] is the empirical measure arising from a realization of the sequences ([image: there is no content],…,[image: there is no content]) and ([image: there is no content],…,[image: there is no content]).



Consequently, the following corollary provides us with a confidence region for the above test:

Corollary 3.3. 

[image: there is no content] is a confidence region for the test of the null hypothesis [image: there is no content] versus [image: there is no content].









3.4. Goodness-of-fit test for copulas


Let us begin with studying the following case:



Let f be a density defined on [image: there is no content]2 and let g be an elliptical distribution with same mean and variance as f. Assuming first that our algorithm leads us to having [image: there is no content]([image: there is no content],f)=0 where family [image: there is no content] is the canonical basis of [image: there is no content]2. Hence, we have [image: there is no content](x)=g(x)f1g1f2g2(1)=g(x)f1g1f2g2—through Lemma D.4 page 1608—and [image: there is no content]=f. Therefore, [image: there is no content]i.e., [image: there is no content], and then [image: there is no content] where [image: there is no content] (resp. [image: there is no content]) is the copula of f (resp. g).



At present, let f be a density on [image: there is no content] and let g be the density defined in Section 2.1.



Let us assume that our algorithm implies that [image: there is no content]([image: there is no content],f)=0.



Hence, we have, for any x∈[image: there is no content], g(x)Π[image: there is no content]df[image: there is no content](ak⊤x)[[image: there is no content]][image: there is no content](ak⊤x)=f(x), i.e., g(x)Π[image: there is no content]dg[image: there is no content](ak⊤x)=f(x)Π[image: there is no content]df[image: there is no content](ak⊤x), since Lemma D.4 page 1608 implies that g[image: there is no content](k−1)=g[image: there is no content] if [image: there is no content].



Moreover, the family [image: there is no content]i=1...d is a basis of [image: there is no content]—see Lemma D.5 page 1608. Hence, putting A=([image: there is no content],...,ad) and defining vector y (resp. density [image: there is no content], copula [image: there is no content] of [image: there is no content], density [image: there is no content], copula [image: there is no content] of [image: there is no content]) as the expression of vector x (resp. density f, copula [image: there is no content] of f, density g, copula [image: there is no content] of g) in basis A, the above equality implies ∂d∂y1...∂yd[image: there is no content]=∂d∂y1...∂yd[image: there is no content].



Finally, we perform a statistical test of the null hypothesis [image: there is no content] : ∂d∂y1...∂yd[image: there is no content]=∂d∂y1...∂yd[image: there is no content] versus the alternative [image: there is no content] : ∂d∂y1...∂yd[image: there is no content]≠∂d∂y1...∂yd[image: there is no content]. Since, under [image: there is no content], we have [image: there is no content]([image: there is no content],f)=0, then, as explained in Section 3.3, Corollary 3.3 provides us with a confidence region for our test.



Theorem 3.6. 

Keeping the notations of Corollary 3.3, we infer that [image: there is no content] is a confidence region for the test of the null hypothesis [image: there is no content] versus the alternative hypothesis [image: there is no content].






3.5. Rewriting of the convolution product


In the present paper, we first elaborated an algorithm aiming at isolating several known structures from initial data. Our objective was to verify if for a known density on [image: there is no content], a known density n on [image: there is no content] such that, for [image: there is no content],


[image: there is no content]



(3.1)




did indeed exist, with [image: there is no content], with ([image: there is no content],…,ad) being a basis of [image: there is no content] and with h being a density on [image: there is no content].



Secondly, our next step consisted in building an estimate (resp. a representation) of f without necessarily assuming that f meets relationship (3.1)—see Theorem 3.4.



Consequently, let us consider [image: there is no content] and [image: there is no content], two random vectors with respective densities [image: there is no content] and [image: there is no content]—which is elliptical—on [image: there is no content]. Let us consider a random vector X such that X=[image: there is no content]+[image: there is no content] and let f be its density. This density can then be written as f(x)=[image: there is no content]*[image: there is no content](x)=∫[image: there is no content][image: there is no content](x)[image: there is no content](t−x)dt.



Then, the following property enables us to represent f under the form of a product and without the integral sign.



Proposition 3.4. 

Let φ be a centered elliptical density with [image: there is no content], [image: there is no content], as covariance matrix, such that it is a product density in all orthogonal coordinate systems and such that its characteristic function [image: there is no content] is integrable—see Landsman [9]. Let f be a density on [image: there is no content] which can be deconvoluted with ϕ, i.e., f=[image: there is no content]*ϕ=∫[image: there is no content][image: there is no content](x)ϕ(t−x)dt, where [image: there is no content] is some density on [image: there is no content]. Let [image: there is no content] be the elliptical density belonging to the same elliptical family as f and having same mean and variance as f.



Then, the sequence ([image: there is no content])k converges uniformly a.s. and in [image: there is no content] towards f in k, i.e.,


limk→∞supx∈[image: there is no content]|[image: there is no content](x)−f(x)|=0,andlimk→∞∫[image: there is no content]|[image: there is no content](x)−f(x)|dx=0













Finally, with the notations of Section 3.3 and of Proposition 3.4, the following theorem enables us to estimate any convolution product of a multivariate elliptical density φ with a continuous density [image: there is no content]:

Theorem 3.7. 

It holds limnlimk[image: there is no content]=[image: there is no content]*ϕ a.s.








3.6. On the regression


In this section, we will study several applications of our algorithm pertaining to the regression analysis. We define ([image: there is no content],...,Xd) (resp. ([image: there is no content],...,Yd)) as a vector with density f (resp. g—see Section 2.1).



[image: there is no content] 3.2. 

In this paragraph, we will work in the [image: there is no content] space. Then, we will first only consider the [image: there is no content]divergences which are greater than or equal to the [image: there is no content] distance—see Vajda [12]. Note also that the co-vectors of f can be obtained in the [image: there is no content] space—see Lemma D.3 and Proposition B.1.





3.6.1. The basic idea


In this paragraph, we will assume that Θ=[image: there is no content]*2 and that our algorithm stops for [image: there is no content] and [image: there is no content]=[image: there is no content]′. The following theorem provides us with the regression of [image: there is no content] on [image: there is no content] :

Theorem 3.8. 

The probability measure of [image: there is no content] given [image: there is no content] is the same as the probability measure of [image: there is no content] given [image: there is no content]. Moreover, the regression between [image: there is no content] and [image: there is no content] is [image: there is no content]=E([image: there is no content]/[image: there is no content])+ε, where ε is a centered random variable orthogonal to E([image: there is no content]/[image: there is no content]).







[image: there is no content] 3.3 

This theorem implies that E([image: there is no content]/[image: there is no content])=E([image: there is no content]/[image: there is no content]). This equation can be used in many fields of research. The Markov chain theory has been used for instance in Example 1.2.



Moreover, if g is a Gaussian density with same mean and variance as f, then Saporta [14] implies that E([image: there is no content]/[image: there is no content])=E([image: there is no content])+Cov([image: there is no content],[image: there is no content])Var([image: there is no content])([image: there is no content]−E([image: there is no content])) and then [image: there is no content]=E([image: there is no content])+Cov([image: there is no content],[image: there is no content])Var([image: there is no content])([image: there is no content]−E([image: there is no content]))+ε.






3.6.2. General case


In this paragraph, we will assume that Θ=[image: there is no content] and that our algorithm stops with j for [image: there is no content]. Lemma D.6 implies the existence of an orthogonal and free family [image: there is no content] of [image: there is no content] such that [image: there is no content]=Vect{[image: there is no content]}⊕⊥Vect{bk} and such that


[image: there is no content]



(3.2)







Hence, the following theorem provides us with the regression of [image: there is no content], [image: there is no content], on [image: there is no content]:

Theorem 3.9. 

The probability measure of [image: there is no content] given [image: there is no content] is the same as the probability measure of [image: there is no content] given [image: there is no content]. Moreover, the regression of [image: there is no content], [image: there is no content], on [image: there is no content] is bk⊤X=E(bk⊤Y/a1⊤[image: there is no content],...,aj⊤Y)+bk⊤ε, where ε is a centered random vector such that [image: there is no content] is orthogonal to [image: there is no content].







Corollary 3.4. 

If g is a Gaussian density with same mean and variance as f, and if [image: there is no content] for any [image: there is no content], then, the regression of [image: there is no content], [image: there is no content], on [image: there is no content] is [image: there is no content], where ε is a centered random vector such that [image: there is no content] is orthogonal to [image: there is no content].








4. Simulations


Let us study five simulations. The first involves a [image: there is no content]-divergence, the second a Hellinger distance, the third and the fourth a Cressie–Read divergence (still with [image: there is no content]), and the fifth a Kullback–Leibler divergence.



In each example, our program will follow our algorithm and will aim at creating a sequence of densities ([image: there is no content]), [image: there is no content], [image: there is no content], such that [image: there is no content]=g,[image: there is no content]=g(j−1)f[image: there is no content]/[g(j−1)][image: there is no content] and [image: there is no content]([image: there is no content],f)=0, with [image: there is no content] being a divergence and [image: there is no content]=arginfb[image: there is no content](g(j−1)fb/[g(j−1)]b,f), for all [image: there is no content]. Moreover, in the second example, we will study the robustness of our method with two outliers. In the third and the fourth example, defining [image: there is no content] as a vector with f as density, we will study the regression of [image: there is no content] on [image: there is no content]. And finally, in the fifth example, we will perform our goodness-of-fit test for copulas.



[image: there is no content] 4.1 

(With the [image: there is no content] divergence).



We are in dimension 3(=d), and we consider a sample of 50(=n) values of a random variable X with a density law f defined by


[image: there is no content]








where the Normal law parameters are [image: there is no content] and [image: there is no content] and where the Gumbel distribution parameters are [image: there is no content] and 4. Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting the same mean and variance as f.



We theoretically obtain [image: there is no content] and [image: there is no content]=(1,1,0). To get this result, we perform the following test:


H0:[image: there is no content]=(1,1,0)versus[image: there is no content]:[image: there is no content]≠(1,1,0).








Then, Corollary 3.3 enables us to estimate [image: there is no content] by the following 0.9(=α) level confidence ellipsoid


E1={b∈[image: there is no content];(Var[image: there is no content](M(b,b)))(−1/2)[image: there is no content]M(b,b)≤qα[image: there is no content]/n≃0,2533/7.0710678=0.03582203}








And, we obtain


Therefore, we conclude that f = g(1).





[image: there is no content] 4.2 

(With the Hellinger distance H).



We are in dimension 20(=d). We first generate a sample with 100(=n) observations, namely two outliers [image: there is no content] and 98 values of a random variable X with a density f defined by


[image: there is no content]








where the Gumbel law parameters are -5 and 1 and where the normal distribution is reduced and centered. Our reasoning is the same as in Simulation 4.1.



In the first part of the program, we theoretically obtain [image: there is no content] and [image: there is no content]=(1,0,…,0). To get this result, we perform the following test


[image: there is no content]:[image: there is no content]=(1,0,…,0)versus[image: there is no content]:[image: there is no content]≠(1,0,…,0)








We estimate [image: there is no content] by the following 0.9(=α) level confidence ellipsoid


Ei={b∈[image: there is no content]2;(Var[image: there is no content](M(b,b)))−1/2[image: there is no content]M(b,b)≤qα[image: there is no content]/n≃0.02533}








And, we obtain








Table 2. Simulation 2: Numerical results of the optimisation.







	
Our Algorithm

	




	
Projection Study 0

	
minimum : 0.002692




	
at point : (1.01326, 0.0657, 0.0628, 0.1011, 0.0509, 0.1083,




	
0.1261, 0.0573, 0.0377, 0.0794, 0.0906, 0.0356, 0.0012,




	
0.0292, 0.0737, 0.0934, 0.0286, 0.1057, 0.0697, 0.0771)




	
P-Value : 0.80554




	
Test :

	
[image: there is no content] : [image: there is no content]∈E1 : True




	
H(Est. of [image: there is no content], [image: there is no content])

	
3.042174









Therefore, we conclude that f = g(1).



[image: there is no content] 4.3 

(With the Cressie-Read divergence ([image: there is no content])).



We are in dimension 2(=d), and we consider a sample of 50(=n) values of a random variable X=([image: there is no content],[image: there is no content]) with a density law f defined by


[image: there is no content]








where the Gumbel law parameters are -5 and 1 and where the normal distribution parameters are [image: there is no content]. Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting the same mean and variance as f.



We theoretically obtain [image: there is no content] and [image: there is no content]=(1,0). To get this result, we perform the following test


H0:[image: there is no content]=(1,0)versus[image: there is no content]:[image: there is no content]≠(1,0)








Then, Corollary 3.3 enables us to estimate [image: there is no content] by the following 0.9(=α) level confidence ellipsoid


E1={b∈[image: there is no content]2;(Var[image: there is no content](M(b,b)))(−1/2)[image: there is no content]M(b,b)≤qα[image: there is no content]/n}, with qα[image: there is no content]/n≃0.03582203.








And, we obtain







Therefore, we conclude that f = g(1).
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Figure 1. Graph of the distribution to estimate (red) and of our own estimate (green). 
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Figure 2. Graph of the distribution to estimate (red) and of Huber’s estimate (green). 
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[image: Entropy 12 01581 g002]





At present, keeping the notations of this simulation, let us study the regression of [image: there is no content] on [image: there is no content].



Our algorithm leads us to infer that the density of [image: there is no content] given [image: there is no content] is the same as the density of [image: there is no content] given [image: there is no content]. Moreover, Property A.1 implies that the co-factors of f are the same for any divergence. Consequently, applying Theorem 3.8 implies that [image: there is no content]=E([image: there is no content]/[image: there is no content])+ε, where ε is a centered random variable orthogonal to E([image: there is no content]/[image: there is no content]).



Thus, since g is a Gaussian density, Remark 3.3 implies that


[image: there is no content]=E([image: there is no content])+Cov([image: there is no content],[image: there is no content])Var([image: there is no content])([image: there is no content]−E([image: there is no content]))+ε








Now, using the least squares method, we estimate [image: there is no content] and [image: there is no content] such that [image: there is no content]=[image: there is no content]+[image: there is no content].[image: there is no content]+ε.



Thus, the following table presents the results of our regression and of the least squares method if we assume that ε is Gaussian.






Table 4. Simulation 3: Numerical results of the regression.







	
Our Regression

	
E([image: there is no content])

	
-4.545483




	
Cov([image: there is no content],[image: there is no content])

	
0.0380534




	
Var([image: there is no content])

	
0.9190052




	
E([image: there is no content])

	
0.3103752




	
correlation ([image: there is no content],[image: there is no content])

	
0.02158213




	
Least squares method

	
[image: there is no content]

	
-4.34159227




	
Std Error of [image: there is no content]

	
0.19870




	
[image: there is no content]

	
0.06803317




	
Std Error of [image: there is no content]

	
0.21154




	
correlation ([image: there is no content],[image: there is no content])

	
0.04888484
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Figure 3. Graph of the regression of [image: there is no content] on [image: there is no content] based on the least squares method (red) and based on our theory (green). 






Figure 3. Graph of the regression of [image: there is no content] on [image: there is no content] based on the least squares method (red) and based on our theory (green).
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[image: there is no content] 4.4 

(With the Cressie-Read divergence ([image: there is no content])).



We are in dimension 2(=d), and we consider a sample of 500(=n) values of a random variable X=([image: there is no content],[image: there is no content]) with a density law f defined by


[image: there is no content]








where the Gumbel law parameters are -5 and 1 and where the normal distribution parameters are [image: there is no content]. Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting the same mean and variance as f.



We theoretically obtain [image: there is no content] and [image: there is no content]=(1,0). To get this result, we perform the following test H0:[image: there is no content]=(1,−1)versus[image: there is no content]:[image: there is no content]≠(1,−1). Then, Corollary 3.3 enables us to estimate [image: there is no content] by the following 0.9(=α) level confidence ellipsoid


E1={b∈[image: there is no content]2;(Var[image: there is no content](M(b,b)))(−1/2)[image: there is no content]M(b,b)≤qα[image: there is no content]/n≃0,2533/500=0.01132792}








And, we obtain







Therefore, we conclude that f = g(1).



At present, keeping the notations of this simulation, let us study the regression of [image: there is no content]+[image: there is no content] on [image: there is no content]−[image: there is no content]. Our algorithm leads us to infer that the density of [image: there is no content]+[image: there is no content] given [image: there is no content]−[image: there is no content] is the same as the density of [image: there is no content]+[image: there is no content] given [image: there is no content]−[image: there is no content]. Moreover, Property A.1 implies that the co-factors of f are the same for any divergence. Consequently, putting U=[image: there is no content]+[image: there is no content], V=[image: there is no content]−[image: there is no content], U′=[image: there is no content]+[image: there is no content] and V′=[image: there is no content]−[image: there is no content], and since {[image: there is no content]′,(1,−1)′} is an orthogonal basis, we can therefore infer from Theorem 3.8 that [image: there is no content] where ε is a centered random variable orthogonal to [image: there is no content].



Thus, since g is a Gaussian density, Remark 3.3 implies that


[image: there is no content]











In other words, we apply the same reasoning as the one used in the regression studies in Simulation 4.3 to [image: there is no content] instead of ([image: there is no content],[image: there is no content]). This is possible since {[image: there is no content]′,(1,−1)′} is an orthogonal basis of [image: there is no content]2, i.e., we implement a change in basis from the canonical basis of [image: there is no content]2 to {[image: there is no content]′,(1,−1)′}.



Thus, in the canonical basis [image: there is no content] becomes [image: there is no content]+[image: there is no content]=E([image: there is no content]+[image: there is no content]/[image: there is no content]−[image: there is no content])+ε, i.e., we obtain that


[image: there is no content]+[image: there is no content]=E([image: there is no content]+[image: there is no content])+Cov([image: there is no content]+[image: there is no content],[image: there is no content]−[image: there is no content])Var([image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content]−E([image: there is no content]−[image: there is no content]))+ε








where ε is a centered random variable orthogonal to E([image: there is no content]+[image: there is no content]/[image: there is no content]−[image: there is no content]).



The following table presents the results of our regression.



We simulate 10 times the regression and we obtain a and b such that [image: there is no content]=a+b[image: there is no content]+ε :






Table 6. Simulation 4: Numerical results of the regression.







	
Simulation

	
a

	
Std Error of a

	
b

	
Std Error of b




	
1

	
-4.83739

	
0.11149

	
-0.95861

	
0.04677




	
2

	
-4.56895

	
0.09989

	
-0.88577

	
0.04225




	
3

	
-4.4926

	
0.1057

	
-1.2085

	
0.0452




	
4

	
-4.70619

	
0.10350

	
-1.04549

	
0.04235




	
5

	
-4.40331

	
0.10248

	
-1.00890

	
0.0438




	
6

	
-4.61757

	
0.09813

	
-1.20890

	
0.04649




	
7

	
-4.40572

	
0.09172

	
-1.16085

	
0.04091




	
8

	
-4.39581

	
0.10174

	
-1.38696

	
0.04487




	
9

	
-4.42780

	
0.10018

	
-0.93672

	
0.04066




	
10

	
-4.55394

	
0.09923

	
-0.98065

	
0.04382











[image: Entropy 12 01581 g004 1024]





Figure 4. Graph of the regression of [image: there is no content] on [image: there is no content] based on our theory (green). 






Figure 4. Graph of the regression of [image: there is no content] on [image: there is no content] based on our theory (green).
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[image: there is no content] 4.5 

(With the Kullback-Leibler divergence K).



We are in dimension 2(=d), and we use the Kullback–Leibler divergence to perform our optimisations. Let us consider a sample of 50(=n) values of a random variable X with a density law f defined by :


[image: there is no content]








where :

	
c is the Gaussian copula with correlation coefficient [image: there is no content],



	
the Gumbel distribution parameters are [image: there is no content] and 1 and



	
the Exponential density parameter is 2.





Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting the same mean and variance as f. We theoretically obtain [image: there is no content] and ([image: there is no content],[image: there is no content])=((1,0),[image: there is no content]). To get this result, we perform the following test


[image: there is no content]:([image: there is no content],[image: there is no content])=((1,0),[image: there is no content])versus[image: there is no content]:([image: there is no content],[image: there is no content])≠((1,0),[image: there is no content])








Then, Theorem 3.6 enables us to verify [image: there is no content] by the following 0.9(=α) level confidence ellipsoid


E2={b∈[image: there is no content]2;(Var[image: there is no content](M(b,b)))(−1/2)[image: there is no content]M(b,b)≤qα[image: there is no content]/n≃0,2533/7.0710678=0.0358220}








And, we obtain






Therefore, we can conclude that H0 is verified.
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Figure 5. Graph of the estimate of [image: there is no content]. 






Figure 5. Graph of the estimate of [image: there is no content].
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Application to real datasets


Let us now apply our theory to real datasets.



Let us for instance study the moves in the stock prices of Nokia and Sanofi from January 11, 2010 to May 10, 2010. We thus gather 84(=n) data from these stock prices—see data below.



Let us also consider [image: there is no content] (resp. [image: there is no content]) the random variable defining the stock price of Nokia (resp. Sanofi). We will assume—as it is commonly done in mathematical finance—that the stock market abides by the classical hypotheses of the Black–Scholes model—see [13].



Consequently, [image: there is no content] and [image: there is no content] each present a log-normal distribution as probability distribution. Let f be the density of vector (ln([image: there is no content]),[image: there is no content]), let us now apply our algorithm to f with the Kullback–Leibler divergence as φ-divergence. Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting same mean and variance as f.



We first assume that there exists a vector a such that [image: there is no content](g[image: there is no content][image: there is no content],f)=0.



In order to verify this hypothesis, our reasoning will be the same as in Simulation 4.1. Indeed, we assume that this vector is a co-factor of f. Consequently, Corollary 3.3 enables us to estimate a by the following 0.9(=α) level confidence ellipsoid


E1={b∈[image: there is no content]2;(Var[image: there is no content](M(b,b)))(−1/2)[image: there is no content]M(b,b)≤qα[image: there is no content]/n≃0,2533/84=0.02763730}








And, we obtain




Table 8. Numerical results of the optimisation.







	
Our Algorithm

	




	
Projection Study 0 :

	
minimum : 0.017345




	
at point : (0.027,3.18)




	
P-Value : 0.890210




	
Test :

	
[image: there is no content] : [image: there is no content]∈E1 : True




	
K(Kernel Estimation of [image: there is no content], [image: there is no content])

	
2.7704005








Therefore, we conclude that f=[image: there is no content], i.e., our hypothesis is confirmed.



Consequently, as explained in Simulations 4.3 and 4.4, we can say that


log([image: there is no content])=0.027.[image: there is no content]+3.18+ε








where ε is a centered random variable orthogonal to E(log([image: there is no content])/[image: there is no content]).



Finally, using the least squares method, we estimate [image: there is no content] and [image: there is no content] such that log([image: there is no content])=[image: there is no content]+[image: there is no content].[image: there is no content]+ε. Thus, the following table presents the results of the least squares method if we assume that ε is Gaussian:
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Figure 6. Graph of the regression of log of Nokia on Sanofi based on the least squares method (red) and based on our theory (green). 
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Table 10. Stock prices of Nokia and Sanofi.







	
Date

	
Nokia

	
Log-of-Nokia

	
Sanofi

	
Date

	
Nokia

	
Log-of-Nokia

	
Sanofi




	
10/05/10

	
84.75

	
4.44

	
51.62

	
07/05/10

	
81.85

	
4.4

	
48.5




	
06/05/10

	
87.3

	
4.47

	
50.35

	
05/05/10

	
87.75

	
4.47

	
50.95




	
04/05/10

	
87.25

	
4.47

	
50.49

	
03/05/10

	
87.85

	
4.48

	
51.51




	
30/04/10

	
87.8

	
4.48

	
51.66

	
29/04/10

	
87.85

	
4.48

	
51.41




	
28/04/10

	
87.85

	
4.48

	
51.88

	
27/04/10

	
89

	
4.49

	
52.11




	
26/04/10

	
89.2

	
4.49

	
54.09

	
23/04/10

	
90.7

	
4.51

	
53.47




	
22/04/10

	
92.75

	
4.53

	
53.59

	
21/04/10

	
108.4

	
4.69

	
53.95




	
20/04/10

	
108.9

	
4.69

	
54.43

	
19/04/10

	
108.3

	
4.68

	
54.05




	
16/04/10

	
106.8

	
4.67

	
54.04

	
15/04/10

	
109.9

	
4.7

	
54.95




	
14/04/10

	
109.8

	
4.7

	
54.86

	
13/04/10

	
108.3

	
4.68

	
54.67




	
12/04/10

	
109.1

	
4.69

	
55.27

	
09/04/10

	
110.1

	
4.7

	
55.41




	
08/04/10

	
110.7

	
4.71

	
54.96

	
07/04/10

	
113.2

	
4.73

	
55.3




	
06/04/10

	
112.4

	
4.72

	
54.64

	
01/04/10

	
113.3

	
4.73

	
55.16




	
31/03/10

	
112.4

	
4.72

	
55.19

	
30/03/10

	
112.5

	
4.72

	
55.39




	
29/03/10

	
111.8

	
4.72

	
55.49

	
26/03/10

	
112.5

	
4.72

	
55.72




	
25/03/10

	
111.4

	
4.71

	
56.33

	
24/03/10

	
110.2

	
4.7

	
55.95




	
23/03/10

	
109.1

	
4.69

	
56.12

	
22/03/10

	
109.2

	
4.69

	
56.33




	
19/03/10

	
108.5

	
4.69

	
56.57

	
18/03/10

	
108.4

	
4.69

	
56.56




	
17/03/10

	
109.9

	
4.7

	
56.28

	
16/03/10

	
107

	
4.67

	
57.21












5. Critics of the Simulations


In the case where f is unknown, we will never be sure to have reached the minimum of the φ-divergence: we have indeed used the simulated annealing method to solve our optimisation problem, and therefore it is only when the number of random jumps tends in theory towards infinity that the probability to reach the minimum tends to 1. We also note that no theory on the optimal number of jumps to implement does exist, as this number depends on the specificities of each particular problem. Moreover, we choose the [image: there is no content] (resp. [image: there is no content] and [image: there is no content]) for the AMISE of Simulations 4.1, 4.2 and 4.3 (resp. Simulations 4.4 and 4.5). This choice leads us to simulate 50 (resp. 500 and 100) random variables—see Scott [15] page 151—none of which have been discarded to obtain the truncated sample. This has also been the case in our application to real datasets.



Finally, we remark that some of the key advantages of our method over Huber’s consist in the fact that—since there exist divergences smaller than the Kullback–Leibler divergence—our method requires a considerably shorter computation time and also in the superior robustness of our method.




6. Conclusions


Projection Pursuit is useful in evidencing characteristic structures as well as one-dimensional projections and their associated distributions in multivariate data. Huber [2] shows us how to achieve it through maximization of the Kullback–Leibler divergence.



The present article shows that our ϕ-divergence method constitutes a good alternative to Huber’s particularly in terms of regression and robustness as well as in terms of copula’s study. Indeed, the convergence results and simulations we carried out, convincingly fulfilled our expectations regarding our methodology.
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Appendix


A. Reminders


A.1. φ-Divergence


Let us call [image: there is no content] the density of [image: there is no content] if h is the density of Z. Let ϕ be a strictly convex function defined by [image: there is no content] and such that [image: there is no content].



Definition A.1. We define the [image: there is no content]divergence of P from Q, where P and Q are two probability distributions over a space Ω such that Q is absolutely continuous with respect to P, by


[image: there is no content]



(A.1)




The above expression (A.1) is also valid if P and Q are both dominated by the same probability.



The most used distances (Kullback, Hellinger or [image: there is no content]) belong to the Cressie–Read family (see Cressie [16], Csiszár [17] and the books of Liese [18], Pardo [19] and Zografos [20]). They are defined by a specific ϕ. Indeed,

	-

	
with the Kullback–Leibler divergence, we associate [image: there is no content]




	-

	
with the Hellinger distance, we associate [image: there is no content]




	-

	
with the [image: there is no content] distance, we associate [image: there is no content]




	-

	
more generally, with power divergences, we associate [image: there is no content], where γ∈[image: there is no content]∖[image: there is no content]




	-

	
and, finally, with the [image: there is no content] norm, which is also a divergence, we associate [image: there is no content]






Let us now present some well-known properties of divergences.



Property A.1. We have [image: there is no content][image: there is no content]=0⇔P=Q.



Property A.2. The divergence function Q↦[image: there is no content](Q,P) is convex, lower semi-continuous (l.s.c.)—for the topology that makes all the applications of the form [image: there is no content] continuous where f is bounded and continuous—as well as l.s.c. for the topology of the uniform convergence.



Property A.3. (corollary (1.29), page 19 of Liese [18]). If [image: there is no content] is measurable and if [image: there is no content][image: there is no content]<∞, then [image: there is no content][image: there is no content]≥[image: there is no content](PT[image: there is no content],QT[image: there is no content]), with equality being reached when T is surjective for [image: there is no content].



Theorem A.1. (theorem III.4 of Azé [21]). Let f:I→[image: there is no content] be a convex function. Then f is a Lipschitz function in all compact intervals [image: there is no content] In particular, f is continuous on [image: there is no content].




A.2. Miscellaneous


In the present section, all demonstrations can be found in Touboul [22].



Lemma A.1. The set [image: there is no content] is closed in [image: there is no content] for the topology of the uniform convergence.



Lemma A.2. For all [image: there is no content], we have [image: there is no content]⊂B¯[image: there is no content](f,c), where B[image: there is no content](f,c)={p∈[image: there is no content];∥f−p∥1≤c}.



Lemma A.3. G is closed in [image: there is no content] for the topology of the uniform convergence.



Lemma A.4. Let consider the sequence [image: there is no content] defined in (2.3) page 1587.



We then have limnlimkK([image: there is no content]f[image: there is no content],n[[image: there is no content]][image: there is no content],n,[image: there is no content])=0 a.s.



In the case where f is known and keeping the notations introduced in Section 3.1, we have



Proposition A.1. Assuming [image: there is no content] to [image: there is no content] hold. Both sup[image: there is no content]∥cˇn(a)−[image: there is no content]∥ and [image: there is no content] tends to [image: there is no content] a.s.



Theorem A.2. Assuming [image: there is no content] to [image: there is no content] hold, for any [image: there is no content] and any x∈[image: there is no content], we have |[image: there is no content](x)−[image: there is no content](x)|=O[image: there is no content](n−1/2) and ∫|[image: there is no content](x)−[image: there is no content](x)|dx=O[image: there is no content](n−1/2) as well as |K([image: there is no content],f)−K([image: there is no content],f)|=O[image: there is no content](n−1/2).



Theorem A.3. Assuming that [image: there is no content] to [image: there is no content], [image: there is no content] and [image: there is no content] hold. Then, n(Var[image: there is no content](M(cˇn([image: there is no content]),[image: there is no content])))−1/2([image: there is no content]M(cˇn([image: there is no content]),[image: there is no content])−[image: there is no content]M[image: there is no content])→LawN(0,I), where k represents the [image: there is no content] step of the algorithm and with I being the identity matrix in [image: there is no content].





B. Study of the sample


Let [image: there is no content], [image: there is no content],..,[image: there is no content] be a sequence of independent random vectors with same density f. Let [image: there is no content], [image: there is no content],..,[image: there is no content] be a sequence of independent random vectors with same density g. Then, the kernel estimators [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] of f, g, [image: there is no content] and [image: there is no content], for all a∈[image: there is no content], almost surely and uniformly converge since we assume that the bandwidth [image: there is no content] of these estimators meets the following conditions (see Bosq [23])—with [image: there is no content]:


(Hyp):[image: there is no content]↘m0, m[image: there is no content]↗m∞, m[image: there is no content]/L(hm[image: there is no content])→m∞ and L(hm[image: there is no content])/LLm→m∞.








Let us consider


B1(n,a)=1nΣi=1n[image: there is no content]{[image: there is no content](a⊤[image: there is no content])ga,n(a⊤[image: there is no content])gn([image: there is no content])[image: there is no content]([image: there is no content])}[image: there is no content](a⊤[image: there is no content])ga,n(a⊤[image: there is no content]) and B2(n,a)=1nΣi=1nφ*{[image: there is no content]{[image: there is no content](a⊤[image: there is no content])ga,n(a⊤[image: there is no content])gn([image: there is no content])[image: there is no content]([image: there is no content]}}.








Our goal is to estimate the minimum of [image: there is no content](g[image: there is no content][image: there is no content],f). To do this, it is necessary for us to truncate our samples:



Let us consider now a positive sequence [image: there is no content] such that [image: there is no content]→0,[image: there is no content]/θn2→0, where [image: there is no content] is the almost sure convergence rate of the kernel density estimator—[image: there is no content]=O[image: there is no content](m−24+d), see Lemma D.7—[image: there is no content] where [image: there is no content] is defined by |φ([image: there is no content](x)[image: there is no content](x)fb,m(b⊤x)[image: there is no content](b⊤x))−φ(g(x)f(x)fb(b⊤x)gb(b⊤x))|≤[image: there is no content], for all b in [image: there is no content] and all x in [image: there is no content], and finally [image: there is no content] where [image: there is no content] is defined by |[image: there is no content]([image: there is no content](x)[image: there is no content](x)fb,m(b⊤x)[image: there is no content](b⊤x))−[image: there is no content](g(x)f(x)fb(b⊤x)gb(b⊤x))|≤ym(2), for all b in [image: there is no content] and all x in [image: there is no content].



We will generate [image: there is no content], [image: there is no content] and [image: there is no content] from the starting sample and we will select the [image: there is no content] and [image: there is no content] vectors such that [image: there is no content]([image: there is no content])≥[image: there is no content] and [image: there is no content](b⊤[image: there is no content])≥[image: there is no content], for all i and for all b∈[image: there is no content].



The vectors meeting these conditions will be called [image: there is no content],[image: there is no content],...,[image: there is no content] and [image: there is no content],[image: there is no content],...,[image: there is no content].



Consequently, the next proposition provides us with the condition required for us to derive our estimations.



Proposition B.1. Using the notations introduced in Broniatowski [11] and in Section 3.1, it holds limn→∞supa∈[image: there is no content]|(B1(n,a)−B2(n,a))−[image: there is no content](g[image: there is no content][image: there is no content],f)|=0.



[image: there is no content] B.1. With the Kullback–Leibler divergence, we can take for [image: there is no content] the expression [image: there is no content], with [image: there is no content].




C. Hypotheses’ discussion


C.1. Discussion of [image: there is no content].


Let us work with the Kullback–Leibler divergence and with g and [image: there is no content].



For all b∈[image: there is no content], we have ∫φ*([image: there is no content](g(x)fb(b⊤x)f(x)gb(b⊤x)))f(x)dx=∫(g(x)fb(b⊤x)f(x)gb(b⊤x)−1)f(x)dx=0, since, for any b in [image: there is no content], the function [image: there is no content] is a density. The complement of Θ[image: there is no content] in [image: there is no content] is ∅ and then the supremum looked for in [image: there is no content]¯ is [image: there is no content]. We can therefore conclude. It is interesting to note that we obtain the same verification with f, [image: there is no content] and [image: there is no content].




C.2. Discussion of [image: there is no content].


This hypothesis consists in the following assumptions:

	
We work with the Kullback–Leibler divergence, (0)



	
We have [image: there is no content], i.e., [image: there is no content]—we could also derive the same proof with f, [image: there is no content] and [image: there is no content]—(1)





Preliminary [image: there is no content]: Shows that A={(c,x)∈[image: there is no content]∖{[image: there is no content]}×Rd;f[image: there is no content](a1⊤x)g[image: there is no content](a1⊤x)>fc(c⊤x)gc(c⊤x),g(x)fc(c⊤x)gc(c⊤x)>f(x)}=∅ through a reductio ad absurdum, i.e., if we assume [image: there is no content].



Thus, our hypothesis enables us to derive f(x)=f(./a1⊤x)f[image: there is no content](a1⊤x)=g(./a1⊤x)f[image: there is no content](a1⊤x)>g(./c⊤x)fc(c⊤x)>f since f[image: there is no content](a1⊤x)g[image: there is no content](a1⊤x)≥fc(c⊤x)gc(c⊤x) implies g(./a1⊤x)f[image: there is no content](a1⊤x)=g(x)f[image: there is no content](a1⊤x)g[image: there is no content](a1⊤x)≥g(x)fc(c⊤x)gc(c⊤x)=g(./c⊤x)fc(c⊤x), i.e., [image: there is no content]. We can therefore conclude.



Preliminary [image: there is no content]: Shows that B={(c,x)∈[image: there is no content]∖{[image: there is no content]}×Rd;f[image: there is no content](a1⊤x)g[image: there is no content](a1⊤x)<fc(c⊤x)gc(c⊤x),g(x)fc(c⊤x)gc(c⊤x)<f(x)}=∅ through a reductio ad absurdum, i.e., if we assume [image: there is no content].



Thus, our hypothesis enables us to derive f(x)=f(./a1⊤x)f[image: there is no content](a1⊤x)=g(./a1⊤x)f[image: there is no content](a1⊤x)<g(./c⊤x)fc(c⊤x)<f



We can therefore conclude as above.



Let us now verify [image: there is no content]:



We have PM(c,[image: there is no content])−PM(c,a)=∫ln(g(x)fc(c⊤x)gc(c⊤x)f(x)){f[image: there is no content](a1⊤x)g[image: there is no content](a1⊤x)−fc(c⊤x)gc(c⊤x)}g(x)dx. Moreover, the logarithm [image: there is no content] is negative on {x∈[image: there is no content];g(x)fc(c⊤x)gc(c⊤x)f(x)<1} and is positive on {x∈[image: there is no content];g(x)fc(c⊤x)gc(c⊤x)f(x)≥1}.



Thus, the preliminary studies [image: there is no content] and [image: there is no content] show that [image: there is no content] and {f[image: there is no content](a1⊤x)g[image: there is no content](a1⊤x)−fc(c⊤x)gc(c⊤x)} always present a negative product. We can therefore conclude, since (c,a)↦PM(c,[image: there is no content])−PM(c,a) is not null for all c and for all a—with a≠[image: there is no content].





D. Proofs


Preliminary remark :



Let us note that if [image: there is no content], a simple reductio ad absurdum enables us to to infer that K([image: there is no content],f)≥∫|f(x)−[image: there is no content](x)|dx. Therefore, through an induction, we immediately obtain that, for any k, K([image: there is no content],f)≥∫|f(x)−[image: there is no content](x)|dx. Thus, for any k and from a certain rank n, we derive that K([image: there is no content],f)≥∫|f(x)−[image: there is no content](x)|dx.



Proof of Lemma D.1.



Lemma D.1. We have [image: there is no content].



Putting A=([image: there is no content],..,ad), let us determine f in basis A. Let us first study the function defined by ψ:[image: there is no content]→[image: there is no content], [image: there is no content] We can immediately say that ψ is continuous and since A is a basis, its bijectivity is obvious. Moreover, let us study its Jacobian.



By definition, it is [image: there is no content] since A is a basis. We can therefore infer : ∀x∈[image: there is no content],∃!y∈[image: there is no content]suchthatf(x)=|A|[image: there is no content]Ψ(y),i.e., Ψ (resp. y) is the expression of f (resp of x) in basis A, namely [image: there is no content], with [image: there is no content] and [image: there is no content] being the expressions of n and h in basis A. Consequently, our results in the case where the family {[image: there is no content]}1≤j≤d is the canonical basis of [image: there is no content], still hold for Ψ in basis A—see Section 2.1. And then, if [image: there is no content] is the expression of g in basis A, we have [image: there is no content](./y1,...,yj)=[image: there is no content](yj+1,...,yd)=Ψ(./y1,...,yj), i.e., [image: there is no content].



Proof of Lemma D.2.



Lemma D.2. Should there exist a family [image: there is no content]i=1...d such that [image: there is no content] with [image: there is no content], with f, n and h being densities, then this family is an orthogonal basis of [image: there is no content].



Using a reductio ad absurdum, we have [image: there is no content]. We can therefore conclude.



Lemma D.3. infa∈[image: there is no content][image: there is no content]([image: there is no content],f) is reached when the ϕ-divergence is greater than the [image: there is no content] distance as well as the [image: there is no content] distance.



Indeed, let G be {g[image: there is no content][image: there is no content];a∈[image: there is no content]} and [image: there is no content] be [image: there is no content]={p;K(p,f)≤c} for all c>0. From Lemmas A.1, A.2 and A.3 (see page 1605), we get [image: there is no content]∩G is a compact for the topology of the uniform convergence, if [image: there is no content]∩G is not empty. Hence, and since property A.2 (see page 1605) implies that Q↦[image: there is no content](Q,P) is lower semi-continuous in [image: there is no content] for the topology of the uniform convergence, then the infimum is reached in [image: there is no content]. (Taking for example c=[image: there is no content](g,f), Ω is necessarily not empty because we always have [image: there is no content](g[image: there is no content][image: there is no content],f)≤[image: there is no content](g,f)). Moreover, when the [image: there is no content]divergence is greater than the [image: there is no content] distance, the very definition of the [image: there is no content] space enables us to provide the same proof as for the [image: there is no content] distance.



Proof of Lemma D.4.



Lemma D.4. For any [image: there is no content], we have [image: there is no content]—see Huber’s analytic method -, [image: there is no content]—see Huber’s synthetic method - and [image: there is no content]—see our algorithm.



As it is equivalent to prove either our algorithm or Huber’s, we will only develop here the proof for our algorithm. Assuming, without any loss of generality, that the [image: there is no content], [image: there is no content], are the vectors of the canonical basis, since [image: there is no content] we derive immediately that [image: there is no content]. We note that it is sufficient to operate a change in basis on the [image: there is no content] to obtain the general case.



Proof of Lemma D.5.



Lemma D.5. If there exits p, [image: there is no content], such that [image: there is no content]([image: there is no content],f)=0, then the family of [image: there is no content][image: there is no content]—derived from the construction of [image: there is no content]—is free and orthogonal.



Without any loss of generality, let us assume that [image: there is no content] and that the [image: there is no content] are the vectors of the canonical basis. Using a reductio ad absurdum with the hypotheses [image: there is no content]=(1,0,...,0) and [image: there is no content]=(α,0,...,0), where α∈[image: there is no content], we get [image: there is no content](x)=g(x2,..,xd/[image: there is no content])f1([image: there is no content]) and f=[image: there is no content](x)=g(x2,..,xd/[image: there is no content])f1([image: there is no content])fα[image: there is no content](α[image: there is no content])[[image: there is no content]]α[image: there is no content](α[image: there is no content]). Hence f(x2,..,xd/[image: there is no content])=g(x2,..,xd/[image: there is no content])fα[image: there is no content](α[image: there is no content])[[image: there is no content]]α[image: there is no content](α[image: there is no content]). It consequently implies that fα[image: there is no content](α[image: there is no content])=[[image: there is no content]]α[image: there is no content](α[image: there is no content]) since 1=∫f(x2,..,xd/[image: there is no content])dx2...dxd=∫g(x2,..,xd/[image: there is no content])dx2...dxdfα[image: there is no content](α[image: there is no content])[[image: there is no content]]α[image: there is no content](α[image: there is no content])=fα[image: there is no content](α[image: there is no content])[[image: there is no content]]α[image: there is no content](α[image: there is no content]). Therefore, [image: there is no content]=[image: there is no content], i.e., [image: there is no content] which leads to a contradiction. Hence, the family is free. Moreover, using a reductio ad absurdum we get the orthogonality. Indeed, we have [image: there is no content]. The use of the same argument as in the proof of Lemma D.2, enables us to infer the orthogonality of [image: there is no content][image: there is no content].



Proof of Lemma D.6.



Lemma D.6. If there exits p, [image: there is no content], such that [image: there is no content]([image: there is no content],f)=0, where [image: there is no content] is built from the free and orthogonal family [image: there is no content],...,[image: there is no content], then, there exists a free and orthogonal family [image: there is no content] of vectors of [image: there is no content], such that [image: there is no content](x)=g(bj+1⊤x,...,bd⊤x/a1⊤x,...,aj⊤x)f[image: there is no content](a1⊤x)...f[image: there is no content](aj⊤x) and such that [image: there is no content]=Vect{[image: there is no content]}⊕⊥Vect{bk}.



Through the incomplete basis theorem and similarly as in Lemma D.5, we obtain the result thanks to the Fubini’s theorem.



Proof of Lemma D.7.



Lemma D.7. For any continuous density f, we have [image: there is no content]=|[image: there is no content](x)−f(x)|=O[image: there is no content](m−24+d).



Defining [image: there is no content] as bm(x)=|E([image: there is no content](x))−f(x)|, we have [image: there is no content]≤|[image: there is no content](x)−E([image: there is no content](x))|+bm(x). Moreover, from page 150 of Scott [15], we derive that bm(x)=O[image: there is no content](Σ[image: there is no content]dhj2) where hj=O[image: there is no content](m−14+d). Then, we obtain bm(x)=O[image: there is no content](m−24+d). Finally, since the central limit theorem rate is O[image: there is no content](m−12), we infer that [image: there is no content]≤O[image: there is no content](m−12)+O[image: there is no content](m−24+d)=O[image: there is no content](m−24+d).



Proof of Proposition 3.1.



Without loss of generality, we reason with [image: there is no content] in lieu of [image: there is no content].



Let us define [image: there is no content]. We remark that g and [image: there is no content] present the same density conditionally to [image: there is no content]. Indeed, g1*([image: there is no content])=∫[image: there is no content](x)dx2...dxd=∫h([image: there is no content])g(x)dx2...dxd=h([image: there is no content])∫g(x)dx2...dxd=h([image: there is no content])g1([image: there is no content]).



We can therefore prove this proposition.



First, since f and g are known, then, for any given function h:[image: there is no content]↦h([image: there is no content]), the application T, which is defined by

	
T:g(./[image: there is no content])h([image: there is no content])f1([image: there is no content])g1([image: there is no content])↦g(./[image: there is no content])f1([image: there is no content])



	
T:f(./[image: there is no content])f1([image: there is no content])↦f(./[image: there is no content])f1([image: there is no content])





is measurable.



Second, the above remark implies that [image: there is no content]([image: there is no content],f)=[image: there is no content]([image: there is no content](./[image: there is no content])g1([image: there is no content])h([image: there is no content])f1([image: there is no content]),f(./[image: there is no content])f1([image: there is no content]))=[image: there is no content](g(./[image: there is no content])g1([image: there is no content])h([image: there is no content])f1([image: there is no content]),f(./[image: there is no content])f1([image: there is no content])).



Consequently, property A.3 page 1605 infers: [image: there is no content](g(./[image: there is no content])g1([image: there is no content])h([image: there is no content])f1([image: there is no content]),f(./[image: there is no content])f1([image: there is no content]))≥[image: there is no content](T[image: there is no content](g(./[image: there is no content])g1([image: there is no content])h([image: there is no content])f1([image: there is no content])),T[image: there is no content](f(./[image: there is no content])f1([image: there is no content])))



=[image: there is no content](g(./[image: there is no content])f1([image: there is no content]),f(./[image: there is no content])f1([image: there is no content])), by the very definition of T.



=[image: there is no content](gf1g1,f), which completes the proof of this proposition.



Proof of Proposition 3.3. Proposition 3.3 comes immediately from Proposition B.1 page 1606 and Lemma A.1 page 1605.



Proof of Theorem 3.1. First, by the very definition of the kernel estimator [image: there is no content] converges towards g. Moreover, the continuity of a↦[image: there is no content] and [image: there is no content] and Proposition 3.3 imply that gˇn(1)=gˇn(0)[image: there is no content]gˇa,n(0) converges towards [image: there is no content]. Finally, since, for any k, [image: there is no content]=[image: there is no content]f[image: there is no content]k,ngˇ[image: there is no content]k,n(k−1), we conclude by an immediate induction.



Proof of Theorem 3.2. First, from Lemma D.7, we derive that, for any x, supa∈[image: there is no content]|[image: there is no content](a⊤x)−[image: there is no content](a⊤x)|=O[image: there is no content](n−24+d). Then, let us consider Ψj=f[image: there is no content]ˇ,n([image: there is no content]ˇ⊤x)gˇ[image: there is no content]ˇ,n(j−1)([image: there is no content]ˇ⊤x)−f[image: there is no content](aj⊤x)g[image: there is no content](j−1)(aj⊤x), we have Ψj=1gˇ[image: there is no content]ˇ,n(j−1)([image: there is no content]ˇ⊤x)g[image: there is no content](j−1)(aj⊤x)((f[image: there is no content]ˇ,n([image: there is no content]ˇ⊤x)−f[image: there is no content](aj⊤x))g[image: there is no content](j−1)(aj⊤x)+f[image: there is no content](aj⊤x)(g[image: there is no content](j−1)(aj⊤x)−gˇ[image: there is no content]ˇ,n(j−1)([image: there is no content]ˇ⊤x))),i.e., |Ψj|=O[image: there is no content](n−121d=1−24+d1[image: there is no content]) since f[image: there is no content](aj⊤x)=O(1) and g[image: there is no content](j−1)(aj⊤x)=O(1). We can therefore conclude similarly as in the proof of Theorem A.2.



Proof of Theorem D.1.



Theorem D.1. In the case where f is known and under the hypotheses assumed in Section 3.1, it holds nA.(cˇn([image: there is no content])−[image: there is no content])→LawB.Nd(0,[image: there is no content]∥∂∂bM[image: there is no content]∥2)+C.Nd(0,[image: there is no content]∥∂∂aM[image: there is no content]∥2) and nA.([image: there is no content]−[image: there is no content])→LawC.Nd(0,[image: there is no content]∥∂∂bM[image: there is no content]∥2)+C.Nd(0,[image: there is no content]∥∂∂aM[image: there is no content]∥2) where A=[image: there is no content]∂2∂b∂bM[image: there is no content]([image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]+[image: there is no content]∂2∂[image: there is no content]∂bjM[image: there is no content]), C=[image: there is no content]∂2∂b∂bM[image: there is no content] and B=[image: there is no content]∂2∂b∂bM[image: there is no content]+[image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]+[image: there is no content]∂2∂[image: there is no content]∂bjM[image: there is no content].



First of all, let us remark that hypotheses [image: there is no content] to [image: there is no content] imply that [image: there is no content] and cˇn([image: there is no content]) converge towards [image: there is no content] in probability. Hypothesis [image: there is no content] enables us to derive under the integrable sign after calculation, [image: there is no content]∂∂bM[image: there is no content]=[image: there is no content]∂∂aM[image: there is no content]=0,[image: there is no content]∂2∂[image: there is no content]∂bjM[image: there is no content]=[image: there is no content]∂2∂bj∂[image: there is no content]M[image: there is no content]=∫φ"(gf[image: there is no content]fg[image: there is no content])∂∂[image: there is no content]gf[image: there is no content]fg[image: there is no content]∂∂bjgf[image: there is no content]fg[image: there is no content]fdx,[image: there is no content]∂2∂bi∂bjM[image: there is no content]=−∫φ"(gf[image: there is no content]fg[image: there is no content])∂∂bigf[image: there is no content]fg[image: there is no content]∂∂bjgf[image: there is no content]fg[image: there is no content]fdx, [image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]=∫[image: there is no content](gf[image: there is no content]fg[image: there is no content])∂2∂[image: there is no content]∂[image: there is no content]gf[image: there is no content]fg[image: there is no content]fdx, and consequently [image: there is no content]∂2∂bi∂bjM[image: there is no content]=−[image: there is no content]∂2∂[image: there is no content]∂bjM[image: there is no content]=−[image: there is no content]∂2∂bj∂[image: there is no content]M[image: there is no content], which implies, ∂2∂[image: there is no content]∂[image: there is no content]K(gf[image: there is no content]g[image: there is no content],f)=[image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]−[image: there is no content]∂2∂bi∂bjM[image: there is no content],=[image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]+[image: there is no content]∂2∂[image: there is no content]∂bjM[image: there is no content]=[image: there is no content]∂2∂[image: there is no content]∂[image: there is no content]M[image: there is no content]+[image: there is no content]∂2∂bj∂[image: there is no content]M[image: there is no content].



The very definition of the estimators [image: there is no content] and cˇn([image: there is no content]), implies that [image: there is no content]∂∂bM[image: there is no content]=0[image: there is no content]∂∂aM(b(a),a)=0i.e.[image: there is no content]∂∂bM(cˇn([image: there is no content]),[image: there is no content])=0[image: there is no content]∂∂aM(cˇn([image: there is no content]),[image: there is no content])+[image: there is no content]∂∂bM(cˇn([image: there is no content]),[image: there is no content])∂∂acˇn([image: there is no content])=0,i.e. [image: there is no content]∂∂bM(cˇn([image: there is no content]),[image: there is no content])=0[image: there is no content][image: there is no content]∂∂aM(cˇn([image: there is no content]),[image: there is no content])=0[image: there is no content]



Under [image: there is no content] and [image: there is no content], and using a Taylor development of the [image: there is no content] (resp. [image: there is no content]) equation, we infer there exists [image: there is no content] (resp. [image: there is no content]) on the interval [(cˇn([image: there is no content]),[image: there is no content]),[image: there is no content]] such that −[image: there is no content]∂∂bM[image: there is no content]=[([image: there is no content]∂2∂b∂bM[image: there is no content])⊤+o[image: there is no content](1),([image: there is no content]∂2∂a∂bM[image: there is no content])⊤+o[image: there is no content](1)]an. (resp. −[image: there is no content]∂∂aM[image: there is no content]=[([image: there is no content]∂2∂b∂aM[image: there is no content])⊤+o[image: there is no content](1),([image: there is no content]∂2∂a2M[image: there is no content])⊤+o[image: there is no content](1)]an) with an=((cˇn([image: there is no content])−[image: there is no content])⊤,([image: there is no content]−[image: there is no content])⊤). Thus we get nan=n[image: there is no content]∂2∂b2M[image: there is no content][image: there is no content]∂2∂a∂bM[image: there is no content][image: there is no content]∂2∂b∂aM[image: there is no content][image: there is no content]∂2∂a2M[image: there is no content][image: there is no content]−[image: there is no content]∂∂bM[image: there is no content]−[image: there is no content]∂∂aM[image: there is no content]+o[image: there is no content](1)=n([image: there is no content]∂2∂b∂bM[image: there is no content]∂2∂a∂aK(gf[image: there is no content]g[image: there is no content],f))[image: there is no content].[image: there is no content]∂2∂b∂bM[image: there is no content]+∂2∂a∂aK(gf[image: there is no content]g[image: there is no content],f)[image: there is no content]∂2∂b∂bM[image: there is no content][image: there is no content]∂2∂b∂bM[image: there is no content][image: there is no content]∂2∂b∂bM[image: there is no content].−[image: there is no content]∂∂bM[image: there is no content]−[image: there is no content]∂∂aM[image: there is no content]+o[image: there is no content](1) Moreover, the central limit theorem implies: [image: there is no content]∂∂bM[image: there is no content]→LawNd(0,[image: there is no content]∥∂∂bM[image: there is no content]∥2), [image: there is no content]∂∂aM[image: there is no content]→LawNd(0,[image: there is no content]∥∂∂aM[image: there is no content]∥2), since [image: there is no content]∂∂bM[image: there is no content]=[image: there is no content]∂∂aM[image: there is no content]=0, which leads us to the result.



Proof of Theorem 3.3. We derive this theorem through Proposition B.1 and Theorem D.1.



Proof of Theorem 3.4. We recall that [image: there is no content] is the kernel estimator of [image: there is no content]. Since the Kullback–Leibler divergence is greater than the [image: there is no content]-distance, we then have limnlimkK([image: there is no content],[image: there is no content])≥limnlimk∫|[image: there is no content](x)−[image: there is no content](x)|dx



Moreover, the Fatou’s lemma implies that limk∫|[image: there is no content](x)−[image: there is no content](x)|dx≥∫limk|[image: there is no content](x)−[image: there is no content](x)|dx=∫|[limk[image: there is no content](x)]−[image: there is no content](x)|dx and limn∫|[limk[image: there is no content](x)]−[image: there is no content](x)|dx≥∫limn|[limk[image: there is no content](x)]−[image: there is no content](x)|dx=∫|[limnlimk[image: there is no content](x)]−limn[image: there is no content](x)|dx Through Lemma A.4, we then obtain that 0=limnlimkK([image: there is no content],[image: there is no content])≥∫|[limnlimk[image: there is no content](x)]−limn[image: there is no content](x)|dx≥0, i.e., that ∫|[limnlimk[image: there is no content](x)]−limn[image: there is no content](x)|dx=0. Moreover, for any given k and any given n, the function [image: there is no content] is a convex combination of multivariate Gaussian distributions. As derived at Remark 2.1 of page 1585, for all k, the determinant of the covariance of the random vector—with density [image: there is no content]—is greater than or equal to the product of a positive constant times the determinant of the covariance of the random vector with density f. The form of the kernel estimate therefore implies that there exists an integrable function φ such that, for any given k and any given n, we have |[image: there is no content]|≤φ.



Finally, the dominated convergence theorem enables us to say that limnlimk[image: there is no content]=limn[image: there is no content]=f, since [image: there is no content] converges towards f and since ∫|[limnlimk[image: there is no content](x)]−limn[image: there is no content](x)|dx=0.



Proof of Corollary 3.1. Through the dominated convergence theorem and through Theorem 3.4, we get the result using a reductio ad absurdum.



Proof of Theorem 3.5. Through Proposition B.1 and Theorem A.3, we derive theorem 3.5.





© 2010 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
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