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Abstract: In molecular sciences, the estimation of entropies of molecules is important
for the understanding of many chemical and biological processes. Motivated by these
applications, we consider the problem of estimating the entropies of circular random
vectors and introduce non-parametric estimators based on circular distances between n

sample points and their k th nearest neighbors (NN), where k (≤ n − 1) is a fixed
positive integer. The proposed NN estimators are based on two different circular distances,
and are proven to be asymptotically unbiased and consistent. The performance of one
of the circular-distance estimators is investigated and compared with that of the already
established Euclidean-distance NN estimator using Monte Carlo samples from an analytic
distribution of six circular variables of an exactly known entropy and a large sample
of seven internal-rotation angles in the molecule of tartaric acid, obtained by a realistic
molecular-dynamics simulation.
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1. Introduction

Estimation of entropies of molecules is an important problem in molecular sciences. Internal
configurational entropy of a molecule is the entropy of the joint distribution of the internal molecular
coordinates (bond lengths, bond angles, and dihedral angles), and as such it is a measure of random
fluctuations in these coordinates. Most significant contribution to the internal configurational entropy of
a molecule comes from the fluctuations in dihedral angles (also called internal-rotation angles). Many
important properties of complex molecules, such as their stability and adopted conformation, depend
on random fluctuations in their internal coordinates. Estimation of the internal configurational entropy
of molecules is therefore important for understanding many chemical and biological processes, such
as the spontaneity of a chemical reaction, protein folding, intermolecular protein-protein interactions,
and protein-ligand interactions. It is also a key in the design of drugs that can stabilize the normally
folded molecular structure or correct a misfolded structure, since protein misfolding is a cause of several
diseases such as Alzheimer disease, mad cow disease, cystic fibrosis, and some types of cancer.

Estimation of the internal entropy of macromolecules, such as proteins, is a challenging problem
because of the large number of correlated internal molecular coordinates. A commonly used method of
estimating the internal entropy of a molecule, known as the quasi-harmonic approach, is based on the
assumption of a multivariate normal distribution for the internal molecular coordinates [1]. Misra et al.
[2] discussed the decision theoretic estimation of the entropy of a multivariate normal distribution and
obtained improvements over the best affine equivariant estimator under the squared error loss function.
However, the assumption of a multivariate normal distribution for the internal coordinates of a molecule
is appropriate only at low temperatures, when the fluctuations in its internal coordinates are small. At
higher temperatures, the dihedral angles of a complex molecule exhibit multimodes and skewness in
their distributions, and the multivariate normal distribution becomes inadequate.

Demchuk and Singh [3] discussed a circular probability approach for modeling the dihedral angles of
a molecule in the estimation of internal rotational entropy. As an illustration, they modeled the torsional
angle of the methanol molecule by a trimodal von Mises distribution and derived a bath-tub-shaped
distribution for the torsional potential energy of the molecule. Singh et al. [4] introduced a torus
version of a bivariate normal distribution for modeling two dihedral angles. The marginal distributions
of the model are symmetric unimodal or symmetric bimodal depending on the configurations of the
parameters. A multivariate generalization of this bivariate model has been proposed by Mardia et al.
[5]. Hnizdo et al. [6] and Darian et al. [7] used a Fourier series expansion approach for modeling
univariate and bivariate distributions of molecular dihedral angles. Complex molecules, however, have
many significantly correlated dihedral angles, whose joint distribution can take an arbitrary form. For
this reason, a non-parametric approach for estimating the entropy of a circular random vector of arbitrary
dimensions is desirable.

Several non-parametric estimators of the entropy of an m-dimensional random variable X have been
discussed in the literature. A common approach is to replace the probability density function (pdf) f(·)
in the definition of the differential entropy,

H(f) = Ef (− ln f(X)) (1)
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by its non-parametric kernel or histogram density estimator [8,9]. However, in most practical situations,
implementation of such estimates in higher dimensions becomes difficult. In one dimension (m = 1),
several authors have proposed estimates of entropy in the context of testing goodness of fit [10,11].
Singh et al. [12] proposed the following asymptotically unbiased and consistent nearest-neighbor (NN)
estimator of the entropy H(f):

Ĥk,n =
m

n

n∑
i=1

lnRi,k,n + ln
πm/2

Γ(m/2 + 1)
+ γ − Lk−1 + lnn (2)

Here,Ri,k,n is the Euclidean distance of a pointXi to its kth, k ≤ n−1 nearest (in the Euclidean-distance
sense) neighbor in a random sample X1, X2, ..., Xn from the distribution f(·); γ = 0.5772 · · · is
Euler’s constant, L0 = 0, Lj =

∑j
i=1 1/i, j = 1, 2, · · · , and Γ(·) is the usual gamma function. For

k = 1, the estimator Ĥk,n reduces to the NN estimator proposed by Kozachenko and Leonenko [13].
Results similar to those of [12] have been also reported by Goria et al. [14]. For the purpose of the
estimation of the information-theoretic quantity of mutual information, Kraskov et al. [15] generalized
the first-nearest-neighbor estimator of [13] in terms of kth nearest-neighbor distances in a general metric,
giving, however, explicit expressions only for the maximum and Euclidean metrics and without providing
formal proofs of asymptotic unbiasedness and consistency. For m = k = 1, Tsybakov and van der
Meulen [16] established the mean-square-root-n consistency of a truncated version of Ĥk,n. Earlier,
Loftsgaarden and Quesenberry [17] had used NN distances to construct non-parametric estimates of a
multivariate pdf. Recently, Mnatsakanov et al. [18] studied k-NN estimators of entropy in which the
parameter k is assumed to be a function of the sample size.

The NN entropy estimator (2) uses Euclidean distances between the sample points. However,
when the random variable X is circular, it is natural to base an NN estimate of entropy on a circular
distance rather than the Euclidean distance. A circular observation can be regarded as a point on
a circle of unit radius. Once an initial direction and an orientation of the circle have been chosen,
each circular observation can be specified by the angle from the initial direction to the point on the
circle corresponding to the observation. In this paper, we construct estimates of the entropy of an
m-dimensional circular random vector Θ ∈ (0, 2π]m based on two different definitions of circular
distances. Let φ = (φ1, . . . , φm) ∈ [0, 2π)m and ψ = (ψ1, . . . , ψm) ∈ [0, 2π)m be two observations
on an m-dimensional circular random vector Θ. We define two circular distance functions d1(·, ·) and
d2(·, ·) as follows:

d1(φ, ψ) =

√√√√ m∑
i=1

(π − |π − |φi − ψi||)2 (3)

and

d2(φ, ψ) =

√√√√2
m∑
i=1

[1− cos(φi − ψi)] (4)

Note that π − |π − |φi − ψi||, i = 1, . . . ,m, is the arc length between the points (cosφi, sinφi) and
(cosψi, sinψi) on the unit circle S1. On the other hand, [2(1−cos(φi−ψi))]1/2 is the Euclidean distance
between the points (cosφi, sinφi) and (cosψi, sinψi) on the unit circle S1.

In Section 2 and Section 3, we propose explicit expressions for NN estimators of entropy
based on the circular distance functions d1(·, ·) and d2(·, ·), respectively, and prove their asymptotic
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unbiasedness and consistency (with some mathematical details given in an Appendix). In
Section 4, we compare the performance of the estimator based on the circular distance d1 with that of the
Euclidean-distance estimator (2) using Monte Carlo simulations from an analytic 6-dimensional circular
distribution, where the exact joint entropy is known. We there also apply the d1-distance estimator
to the problem of estimating the entropy of a 7-dimensional joint distribution of the internal-rotation
angles in the molecule of tartaric acid, using a large sample of these angles obtained by a realistic
molecular-dynamics simulation.

2. Nearest Neighbor Estimates of Entropy Based on Circular Distance d1

For constructing nearest neighbor estimates of the entropy of a circular random vector based on the
distance function (3), we first derive the expression for the volume of a ball

Nr(ψ) = {θ ∈ [0, 2π)m : d1(θ, ψ) < r} (5)

centered at ψ ∈ [0, 2π)m and having a radius r ∈ [0,
√
mπ],

√
mπ being the maximum value of d1(·, ·).

Lemma 2.1. Let r ∈ [0,
√
mπ], ψ ∈ [0, 2π)m and let Vr be the volume of the ball Nr(ψ), defined

by (5). Then

Vr = (2π)mAm

(
r2

π2

)
(6)

where Am(·) denotes the cumulative distribution function of the sum of m independent and identically
distributed random variables each having a beta distribution with parameters α = 1

2
, β = 1.

Proof. Without loss of generality, we may take ψ = (0, . . . , 0). Then

Vr =

∫
R

dθ = (2π)m Pr

(
m∑
i=1

(π− | π − Ui |)2 < r2

)

where R = {θ = (θ1, . . . , θm) : θ ∈ [0, 2π)m,
∑m

i=1(π − |π − θi|)2 < r2}, dθ = dθ1 . . . dθm

and U1, . . . , Um are independent and identically distributed uniform random variables over the interval
(0, 2π). Define Ci = (π− | π − Ui |)2/π2, i = 1, · · · ,m. Then C1, · · · , Cm are independent and
identically distributed beta random variables, having parameters α = 1

2
, β = 1. Hence the result follows.

Remark 2.1. (i) For m = 1 and x ∈ [0, 1], we have A1(x) =
√
x. For m = 2 and x ∈ [0, 2], it can be

verified that

A2(x) =


πx
4
, if 0 ≤ x ≤ 1

√
x− 1 + x

2
(2 arcsin

√
1
x
− π

2
), if 1 < x ≤ 2

(ii) For m = 3 and x ∈ [0, 3], it can be verified that

A3(x) =



πx3/2

6
, if 0 ≤ x ≤ 1

π
12

(−3 + 9x− 4x3/2), if 1 ≤ x ≤ 2
√
x− 2 + 1

12

{
(1− 3x)(π − 4 arcsin 1√

x−1) + (4− 12x) arctan x−3
2
√
x−2

}
+1

3
x3/2

{
arctan

√
x(x− 2) + arctan x−

√
x−1√

x−2 − arctan x+
√
x−1√

x−2

}
, if 2 < x ≤ 3
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(iii) For a general m (≥ 1) and x ∈ [0, 1], it can be verified that

Am(x) =
(πx)

m
2

2mΓ(1 + m
2

)

(iv) For any m ≥ 2 and for 1 ≤ x ≤ m, Am(x) satisfies the following recursion relation

Am(x) =


∫ 1

0
Am−1(x− s)fC(s)ds, if 1 ≤ x ≤ m− 1

A1(x−m+ 1) +
∫ 1

x−m+1
Am−1(x− s)fC(s)ds, if m− 1 ≤ x ≤ m

where fC(·) is the pdf of a beta random variable with parameters α = 1/2 and β = 1.
The circular distance (3) becomes the Euclidean distance dE(φ, ψ) = [

∑m
i=1(φi − ψi)

2]1/2 when
|φi − ψi| ≤ π, i = 1, 2, . . . ,m. Circular-distance balls Nrq(θ), where θ ∈ (0, 2π)m and limq→∞ rq = 0,
thus tend to the corresponding Euclidean-distance balls as q →∞. We can therefore apply the Lebesgue
differentiation theorem [19] to the probability density function f(θ) of a circular random variable
Θ ∈ [0, 2π)m in the form

lim
q→∞

1

Vrq

∫
Nrq (θ)

f(µ) dµ = f(θ), at almost all θ ∈ [0, 2π)m (7)

where Vrq is given by (6). Equation (7) suggests that, given a sufficiently large random sample
Θ1, . . . ,Θn from the distribution of Θ, the probability density function f(θ) can be approximated at
almost all θ ∈ [0, 2π)m by

f̂ (1)
n (θ) =

| Nr(θ) |
nVr

=
| Nr(θ) |

n(2π)mAm( r
2

π2 )
(8)

where | Nr(θ) | denotes the cardinality of the set {i : Θi ∈ Nr(θ)} and r is sufficiently small.
Guided by this insight, we will now construct nearest neighbor estimates of entropy for an m-variate

circular random vector Θ, having a probability density function f(·). Let Θ1, . . . ,Θn be a random sample
from the distribution of Θ and let k ∈ {1, . . . , n − 1} be a given positive integer. For i ∈ {1, . . . , n},
let d1(i, k, n) denote the circular distance of Θi from its kth closest neighbor, with respect to the circular
distance d1(·, ·), i.e.,

d1(i, k, n) = kth smallest of {d1(Θj,Θi) j = 1, . . . , n, j 6= i}, i = 1, . . . , n

Assume that the sample size n is sufficiently large, so that the distances d1(i, k, n) are small, on the
average. Then, based on approximation (8), a reasonable estimator of f(Θi) is

f̂
(1)
k,n(Θi) =

k

n(2π)mAm(
d21(i,k,n)

π2 )

and thus a reasonable estimator of the entropy H(f) = E(− ln f(Θ)) is

Ĝ
(1)
k,n = − 1

n

n∑
i=1

ln f̂
(1)
k,n(Θi) =

1

n

n∑
i=1

ln

(
n

k
(2π)mAm

(d21(i, k, n)

π2

))
(9)

In the following theorem, we derive the expression for the asymptotic mean of the estimator Ĝ(1)
k,n. Apart

from the arguments for the interchange of the limit and the integral signs, the proof is similar to that of
Theorem 8 of Singh et al. [12], who in their proof interchange the limit and the integral signs without
mentioning the conditions under which it is allowed.
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Theorem 2.1. Suppose that there exists an ε > 0, such that∫
[0,2π)m

| ln f(θ) |1+ε f(θ)dθ <∞ (10)

and ∫
[0,2π)m

∫
[0,2π)m

| ln d1(θ, µ) |1+ε f(θ)f(µ)dθdµ <∞ (11)

Then, for a fixed k ∈ {1, 2, . . . , } (not depending on n)

lim
n→∞

Ef

(
Ĝ

(1)
k,n

)
= Lk−1 − γ − ln k +H(f)

where Ĝ(1)
k,n is defined by (9), L0 = 0, Lj =

∑j
i=1

1
i
, j = 1, 2, . . . and γ = −

∫∞
0

(ln t)e−tdt = 0.5772 · · ·
is Euler’s constant.

Proof. Let

Ti,k,n = ln

(
n

k
(2π)mAm

(d21(i, k, n)

π2

))
, i = 1, . . . , n

Then T1,k,n, . . . , Tn,k,n are identically distributed random variables. Therefore,

Ef

(
Ĝ

(1)
k,n

)
= Ef (T1,k,n) =

∫
[0,2π)m

Ef (Sθ,k,n) f(θ)dθ (12)

where, for a given θ ∈ [0, 2π)m, Sθ,k,n is a random variable having the same distribution as that of the
conditional distribution of T1,k,n given Θ1 = θ.

ρk,n(u) = π

√
A−1m

(
keu

n(2π)m

)
where A−1m (·) denotes the inverse function of Am(·). Using standard arguments, we get

Pf (Sθ,k,n ≤ u) = 1− Pf (d1(1, k, n) > ρk,n(u) | Θ1 = θ)

= 1−
k−1∑
j=0

(
n− 1

j

)(
Pf
(
Nρk,n(u)(θ)

))j (
1− Pf

(
Nρk,n(u)(θ)

))n−1−j
where Nr(·) is defined by (5). For a fixed u ∈ (−∞,∞), k ∈ {1, 2, . . .} and for almost all values of
θ ∈ [0, 2π)m, using Lemma 2.1, we have

lim
n→∞

(
nPf

(
Nρk,n(u)(θ)

))
= keu lim

n→∞

(
1

Vρk,n(u)

∫
Nρk,n(u)(θ)

f(µ)dµ

)
= keuf(θ)

Therefore, using the Poisson approximation to the binomial distribution, we get

lim
n→∞

Pf (Sθ,k,n ≤ u) = 1−
k−1∑
j=0

e−kf(θ)e
u (kf(θ)eu)j

j!
=

1

Γ(k)

∫ kf(θ)eu

0

e−ttk−1dt (13)

for almost all values of θ ∈ [0, 2π)m. For a fixed θ ∈ [0, 2π)m, let Sθ,k be a random variable having
the pdf

gθ,k(u) =
e−kf(θ)e

u
(kf(θ)eu)k

Γ(k)
, −∞ < u <∞
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Then, in view of (13),
Sθ,k,n

d−→ Sθ,k, as n→∞ (14)

where d−→ stands for the convergence in distribution. For each fixed θ ∈ [0, 2π)m, it can be verified that

Ef (Sθ,k) =
1

Γ(k)

∫ ∞
0

(ln t)e−ttk−1dt− ln k − ln f(θ) = Lk−1 − γ − ln k − ln f(θ)

Under the condition (10), it can be shown (for details, see the Appendix) that, for almost all values
of θ ∈ [0, 2π)m, there exists a constant C (not depending on n) such that for all sufficiently large
values of n

Ef
(
| Sθ,k,n |1+ε

)
< C (15)

Then, in view of (14) and the moment convergence theorem, it follows that

lim
n→∞

Ef (Sθ,k,n) = Ef (Sθ,k) = Lk−1 − γ − ln k − ln f(θ) (16)

for almost all values of θ ∈ [0, 2π)m Using Fatou’s lemma, we get

lim sup
n→∞

∫
[0,2π)m

| Ef (Sθ,k,n) |1+ε f(θ)dθ

≤
∫
[0,2π)m

lim sup
n→∞

| Ef (Sθ,k,n) |1+ε f(θ)dθ

=

∫
[0,2π)m

| Lk−1 − γ − ln k − ln f(θ) |1+ε f(θ)dθ

≤ 2ε−1
(
| Lk−1 − γ − ln k |1+ε +

∫
[0,2π)m

| ln f(θ) |1+ε f(θ)dθ

)
<∞

by (10). Therefore,

lim
n→∞

∫
[0,2π)m

Ef (Sθ,k,n) f(θ)dθ =

∫
[0,2π)m

lim
n→∞

Ef (Sθ,k,n) f(θ)dθ =

∫
[0,2π)m

Ef (Sθ,k) f(θ)dθ

Now the result follows from (12) and (16).
Since the estimator Ĝ(1)

k,n is not asymptotically unbiased, we propose the following (asymptotic) bias
corrected estimator for estimating the entropy H(f):

Ĥ
(1)
k,n =

1

n

n∑
i=1

ln

(
Am

(
d21(i, k, n)

π2

))
+ ln (n(2π)m)− Lk−1 + γ (17)

Thus, we have the following corollary to Theorem 2.1.
Corollary 2.1. Under the assumptions of Theorem 2.1, the estimator Ĥ(1)

k,n is asymptotically unbiased
for estimating the entropy H(f).

The following theorem provides conditions under which the estimator Ĥ(1)
k,n is consistent for estimating

the entropy H(f).

Theorem 2.2. Suppose that there exists an ε > 0, such that∫
[0,2π)m

| ln f(θ) |2+ε f(θ)dθ <∞ (18)
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and ∫
[0,2π)m

∫
[0,2π)m

| ln d1(θ, µ) |2+ε f(θ)f(µ)dθdµ <∞ (19)

Then, for a fixed k ∈ {1, 2, . . .} (not depending on n),

lim
n→∞

Varf
(
Ĥ

(1)
k,n

)
= 0

and thus Ĥ(1)
k,n is a consistent estimator of the entropy H(f).

Under conditions (18) and (19), in the proof of Theorem 2.2, the steps involved in justifying the
interchange of the limit and the integral sign are tedious but virtually identical to the arguments used in
the proof of Theorem 2.1. The remaining part of the proof is identical to the proof of Theorem 11 of
Singh et al. [12]. We therefore omit the proof of Theorem 2.2.

Remark 2.2. For small values of m ≥ 4, the function Am(·) involved in the evaluation of estimate
Ĥ

(1)
k,n can be computed using numerical integration. For moderate and large values of m, which is the

case with many molecules encountered in molecular sciences, using the central limit theorem one can
get a reasonable approximation of Am(·) by the cumulative distribution function of a normal distribution
having mean m/3 and variance 4m/45.

3. Nearest Neighbor Estimates of Entropy Based on Circular Distance d2

Let ψ ∈ [0, 2π)m. In order to construct nearest neighbor estimates of entropy based on the distance
function d2(·, ·), defined by (4), we require the volume of the ball to be

Sr(ψ) = {θ ∈ [0, 2π)m : d2(θ, ψ) < r} (20)

centered at ψ ∈ [0, 2π)m and having radius r ∈ [0, 2
√
m].

Lemma 3.1. Let r ∈ [0, 2
√
m], ψ ∈ [0, 2π)m and let Wr be the volume of the ball Sr(ψ), defined by

(20). Then

Wr = (2π)mBm

(
r2

4

)
where Bm(·) denotes the cumulative distribution function of the sum of m independent and identically
distributed random variables each having a beta distribution with parameters α = 1

2
and β = 1

2

Proof. We have

Wr =

∫
{θ∈[0,2π)m,

∑m
i=1(1−cos(θi))<

r2

2
}
dθ = (2π)mPr

(
m∑
i=1

1− cosUi
2

<
r2

4

)

where U1, . . . , Um are independent and identically distributed uniform random variables over the interval
[0, 2π).

Define Di = (1 − cosUi)/2, i = 1, . . . ,m. Then, D1, . . . , Dm are independent and identically
distributed beta random variables, having parameters α = 1

2
β = 1

2
. Hence the result follows.

Remark 3.1. (i) For m = 1 and x ∈ (0, 1),

B1(x) =
2

π
arcsin(

√
x) =

1

π
arccos(1− 2x)
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(ii) Bm(x) satisfies a similar recursion relation as that satisfied by Am(x) and given in Remark 2.1 (iv).
For i ∈ {1, . . . , n}, let d2(i, k, n) denote the circular distance of Θi from its kth closest neighbor with

respect to the circular distance d2(·, ·), defined by (4). Assume that the sample size n is sufficiently large,
so that on average the distances d2(i, k, n) are small. Then, based on approximation (7), a reasonable
estimator of f(Θi) is

f̂
(2)
k,n(Θi) =

k

n(2π)mBm

(
1
4
d22(i, k, n)

)
and thus a reasonable estimator of the entropy H(f) = E(− ln f(Θ)) is

Ĝ
(2)
k,n = − 1

n

n∑
i=1

ln f̂
(2)
k,n(Θi) =

1

n

n∑
i=1

ln

(
n(2π)m

k
Bm

(
1
4
d22(i, k, n)

))
(21)

The proof of the following theorem is identical to the proof of Theorem 2.1 and therefore it is omitted.
Theorem 3.1. Suppose that there exists an ε > 0 such that (10) holds and∫

[0,2π)m

∫
[0,2π)m

| ln d2(θ, µ) |1+ε f(θ)f(µ)dθdµ <∞ (22)

Then, for a fixed k ∈ {1, 2, . . . , } (not depending on n),

lim
n→∞

Ef

(
Ĝ

(2)
k,n

)
= Lk−1 − γ − ln k +H(f)

where Ĝ(2)
k,n is defined by (21).

Since the estimator Ĝ(2)
k,n is not asymptotically unbiased, we propose the following (asymptotic) bias

corrected estimator for estimating the entropy H(f):

Ĥ
(2)
k,n =

1

n

n∑
i=1

ln
(
Bm

(
1
4
d22(i, k, n)

))
+ ln (n(2π)m)− Lk−1 + γ (23)

Thus, we have the following corollary to Theorem 3.1.
Corollary 3.1. Under the assumptions of Theorem 3.1, the estimator Ĥ(2)

k,n is asymptotically unbiased
for estimating the entropy H(f).

The following theorem provides conditions under which the estimator Ĥ(2)
k,n is consistent for estimating

the entropy H(f). The proof of the theorem follows using the arguments similar to the one given for the
proof of Theorem 2.2.

Theorem 3.2. Suppose that there exists an ε > 0 such that (18) holds and∫
[0,2π)m

∫
[0,2π)m

| ln d2(θ, µ) |2+ε f(θ)f(µ)dθdµ <∞ (24)

Then, for a fixed k ∈ {1, 2, . . .} (not depending on n),

lim
n→∞

Varf
(
Ĥ

(2)
k,n

)
= 0

and therefore, under conditions (18) and (24), Ĥ(2)
k,n is a consistent estimator of the entropy H(f).
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Remark 3.2. (i) Using Remark 3.1 (i) and the fact that arccos(x) ∈ [0, π] is a decreasing function of
x ∈ [−1, 1], for m = 1 and i ∈ {1, . . . , n}, we have

B1

(
1
4
d22(i, k, n)

)
=

1

π
arccos

(
1− d22(i, k, n)

2

)
=

1

π
× kth smallest of {arccos (cos (Θj −Θi)) , j = 1, . . . , n, j 6= i}

=
1

π
× kth smallest of {π− | π− | Θj −Θi ||, j = 1, . . . , n, j 6= i}

since arccos (cos x) = π− | π− | x ||, x ∈ [−2π, 2π]

Therefore, for m = 1 and i ∈ {1, . . . , n}, we have

B1

(
1
4
d22(i, k, n)

)
=
d1(i, k, n)

π
⇒ Ĝ

(1)
k,n = Ĝ

(2)
k,n ⇒ Ĥ

(1)
k,n = Ĥ

(2)
k,n

Thus for m = 1, estimators Ĥ(1)
k,n and Ĥ

(2)
k,n, based on circular distance functions d1(·, ·) and d2(·, ·)

respectively, are identical.
(ii) For small values of m ≥ 2, the function Bm(·) involved in the evaluation of estimate Ĥ(2)

k,n can be
computed using numerical integration. For moderate and large values of m, which is the case with many
molecules encountered in molecular sciences, using the central limit theorem one can get a reasonable
approximation of Bm(·) by the cumulative distribution function of a normal distribution having mean
m/2 and variance m/8.

With k ∈ {1, 2, . . .}, (17) and (23) define two classes of estimators for the entropy H(f). The biases
and variances of these estimators depend on k, the sample size n, and the pdf f(·) and its dimensions
m. It would be useful to have the knowledge of the biases and variances as functions of k, n, m, and
some characteristic of f(·), such as µ = E(h(f(Θ))), where h(·) is a function such that a reliable
estimate of µ can be obtained using the available data on Θ. We have not been able to derive any
meaningful expressions for the biases and variances of the proposed estimators, and this problem is under
further investigation.

4. Monte Carlo Results and a Molecular Entropy Example

The performance of an entropy estimator can be investigated rigorously by using Monte Carlo samples
from a distribution for which the entropy is known exactly. While analytic distributions of more than
two correlated circular variables with exactly calculable entropic attributes do not seem available, one
may construct a distribution of higher dimensionality as a product of a suitable number of bivariate
distributions. To test the performance of the circular-distance estimator (17), we used an analytic
6-dimensional circular distribution given as the product of three bivariate circular distributions, each
of the form [4]

f(θ1, θ2) = Ceκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)

which, as a circular analogue of the bivariate normal distribution, can be called the bivariate von Mises
distribution. Details pertaining to the 6-dimensional distribution used and the Monte Carlo sampling
are given in [20], where the same circular distribution was used in an investigation of the combined
mutual-information-expansion and Euclidean-distance-NN method of entropy estimation.
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Table 1. Circular- and Euclidean-distance estimates Ĥ(1)
k,n and Ĥk,n, respectively, from

samples of size n of the analytic distribution of 6 circular variables; the exact entropy value
is (to 4 decimals) H = 1.8334.

n× 10−6 Ĥ
(1)
1,n/Ĥ1,n Ĥ

(1)
2,n/Ĥ2,n Ĥ

(1)
3,n/Ĥ3,n Ĥ

(1)
4,n/Ĥ4,n Ĥ

(1)
5,n/Ĥ5,n

0.05 1.86851 1.92019 1.96379 2.00395 2.03653
2.01225 2.09929 2.16540 2.22380 2.27390

0.10 1.81503 1.86968 1.90481 1.92899 1.95164
1.95640 2.01952 2.07339 2.11255 2.14865

0.20 1.80070 1.83713 1.85672 1.87498 1.89122
1.92305 1.96691 2.00110 2.03086 2.05650

0.40 1.8007 1.81582 1.82840 1.83904 1.84862
1.89363 1.92652 1.95001 1.96939 1.98668

0.60 1.80066 1.80693 1.81496 1.82296 1.83097
1.88696 1.90952 1.92764 1.94358 1.95783

0.80 1.79837 1.80297 1.81063 1.81660 1.82222
1.87936 1.89971 1.91649 1.92946 1.94125

1.00 1.79539 1.80017 1.80566 1.81030 1.81566
1.87317 1.89238 1.90694 1.91850 1.92915

2.00 1.79660 1.79533 1.79736 1.79970 1.80266
1.86471 1.87555 1.88493 1.89298 1.90073

4.00 1.79673 1.79383 1.79404 1.79480 1.79613
1.85696 1.86477 1.87136 1.87702 1.88211

6.00 1.79795 1.79491 1.79385 1.79419 1.79458
1.85403 1.86071 1.86552 1.87029 1.87414

8.00 1.79893 1.79484 1.79373 1.79322 1.79337
1.85240 1.85745 1.86197 1.86545 1.86891

10.00 1.80036 1.79562 1.79426 1.79350 1.79329
1.85170 1.85578 1.85969 1.86287 1.86583

Table 1 presents the circular-distance estimates Ĥ(1)
k,n, k = 1, . . . , 5 obtained from samples of sizes

in the range n = 5 × 104–1 × 107, together with the corresponding Euclidean-distance estimates Ĥk,n.
Figure 1 displays the estimates Ĥ(1)

k=1,n and Ĥk=1,n as functions of the sample size n. Noting that the
exact entropy value here is, to 4 decimal places, H = 1.8334, we observe that as n increases the
circular-distance estimates initially “undershoot” the exact value and then start to approach it slowly from
below. In contrast, the Euclidean-distance estimates approach the exact value monotonically from above.
Interestingly, the biases of the two kinds of estimates at sample sizes n & 1 million are approximately
equal in absolute value. The behavior of the circular-distance estimates at k = 2, . . . , 5 is similar to that
at k = 1, and the estimate values at different k’s become very close at n & 1 million.
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Figure 1. Plots of the circular- and Euclidean-distance estimates Ĥ(1)
1,n and Ĥ1,n,

respectively, as functions of the sample size n, for the analytic distribution of 6
circular variables; the exact entropy value is (to 4 decimals) H = 1.8334.
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To investigate the usefulness of circular-distance NN estimators in the problem of evaluating the
configurational entropy of internal rotations in molecules, we used the circular-distance estimator
Ĥ

(1)
k,n to estimate the entropy of the joint distribution of internal-rotation angles in the molecule of

tartaric acid, where the number of variables is m = 7. Samples of size n up to 14.4 million of the
internal-rotation angles were obtained from a molecular dynamics simulation of the (R,S) stereoisomer
of this molecule [21]. Figure 2 shows marginal histograms, smoothed using a Gaussian kernel, of the
seven internal-rotation angles of tartaric acid; note that these marginals display markedly non-Gaussian
features. The code ANN [22] (with our modification for the circular distance d1), which utilizes a k-d tree
algorithm [23], was used for finding the k-th NN distances between sample points. Figure 3 presents the
estimates Ĥ(1)

k,n, k = 1, ..., 5 as functions of the sample size n. The values of Ĥ(1)
k,n decrease as n increases,

while, at a fixed value of n . 7 million, they increase as k increases; at greater values of n, the estimates
at different k’s become quite close in value. Figure 4 compares the circular-distance estimates Ĥ(1)

1,n and
Ĥ

(1)
5,n with the corresponding Euclidean-distance estimates Ĥk,n. We note that an n → ∞ extrapolated

Euclidean-distance estimate Ĥ = 5.04±0.01 was obtained for this entropy in [21]. Again, as in the case
of the analytic circular distribution, this value approximately equals the arithmetic mean of the circular
and Euclidean distance estimates at sample sizes n & 1 million.
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Figure 2. Smoothed marginal histograms of the internal-rotation angles φi,
i = 1, . . . , 7 of the (R,S) isomer of tartaric acid obtained by molecular
dynamics simulations.
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Figure 3. Circular-distance nearest-neighbor estimates Ĥ(1)
k,n, k = 1, . . . , 5 of the

entropy of the 7-dimensional joint distribution of internal-rotation angles in the
(R,S) isomer of tartaric acid as functions of the sample size n. The estimates
Ĥ

(1)
k,n at a fixed n . 7 million increase in value as k increases.
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Figure 4. Circular-distance nearest-neighbor estimates Ĥ(1)
1,n and Ĥ

(1)
5,n of the

internal-rotation entropy of tartaric acid as functions of the sample size n

compared with the Euclidean-distance nearest-neighbor estimates Ĥ1,n and Ĥ5,n.
An n→∞ extrapolated estimate is Ĥ = 5.04± 0.01 [21].
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Ĥ1, n

(1)
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Perhaps surprisingly, the results of both the analytic-distribution and molecular-simulation studies
undertaken here indicate that only when relatively small data samples are available, the use of a
circular-distance estimator has some advantage over the Euclidean-distance estimator. On samples
of large size, needed for sufficient convergence of an NN estimate of the entropy of a multivariate
distribution, the circular-distance estimates obtained did not have a significantly smaller bias than
the Euclidean-distance estimates. In view of such findings, one may question whether the additional
computational complexity of a circular-distance estimate is worth the effort. However, we observed that
as the sample size increased, the circular NN distances in the sample became quickly so small that the
circular-distance estimator Ĥ(1)

k,n coincided in value with the simpler Euclidean-distance estimator Ĥk,n

in which the same NN-distance values were used. This is explained by the fact that when the circular NN
distances d1(i, k, n) ≤ π, the estimator Ĥ(1)

k,n can be replaced with the estimator Ĥk,n in which the NN
distances d1(i, k, n) are substituted for the Euclidean NN distances R(i, k, n); this fact follows directly
from Remark 2.1 (iii). The only extra computational effort is then expended in finding the circular,
instead of Euclidean, NN distances in a given sample.
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Appendix

Here we provide the proof of (15). For a fixed θ ∈ [0, 2π)m, let Fθ,k,n(·) be the distribution function of
the random variable Sθ,k,n. To establish (15), we will first show that, for n = 2 and k = 1,

Ef
(
| Sθ,1,2 |1+ε

)
=

∫ ∞
−∞
| u |1+ε dFθ,1,2(u) <∞ (25)

for almost all values of θ ∈ [0, 2π)m. In order to establish (25), consider

Ef
(
| Sθ,1,2 |1+ε

)
= Ef

(∣∣ln [2(2π)mAm
(
d21(1, 1, 2)/π2

)]∣∣1+ε ∣∣∣Θ1 = θ
)

= Ef

(∣∣ln [2(2π)m] + ln
[
Am
(
d21(θ,Θ2)/π

2
)]∣∣1+ε)

≤ 2ε
(
| ln [2(2π)m] |1+ε +Ef

(∣∣ln [Am (d21(θ,Θ2)/π
2
)]∣∣1+ε))

Thus, to establish (25), it is enough to show that the second term in the above expression is finite. Note
that, for x ∈ [0,m],

Am(x) = Pr

(
m∑
i=1

Ci ≤ x

)
≥

m∏
i=1

Pr
(
Ci ≤

x

m

)
=
( x
m

)m/2
and thus

Ef

(∣∣ln [Am (d21(θ,Θ2)/π
2
)]∣∣1+ε) ≤ m1+εEf

(∣∣ln[d1(θ,Θ2)/π
√
m]
∣∣1+ε)

≤ m1+ε2ε
(
Ef
(
|ln[d1(θ,Θ2)]|1+ε

)
+
∣∣ln(π

√
m)
∣∣1+ε)

= m1+ε2ε
(∫

[0,2π)m
|ln[d1(θ, µ)]|1+ε f(µ)dµ+

∣∣ln(π
√
m)
∣∣1+ε)

In view of assumption (11), it follows that∫
[0,2π)m

| ln d1(θ, µ) |1+ε f(µ)dµ <∞

for almost all values of θ ∈ [0, 2π)m. Therefore, (25) is established.
Now we will establish (15). Consider

Ef
(
| Sθ,k,n |1+ε

)
=

∫ 0

−∞
| u |1+ε dFθ,k,n(u) +

∫ ∞
0

| u |1+ε dFθ,k,n(u) (26)

We can write∫ ∞
0

| u |1+ε dFθ,k,n(u) = (1 + ε)

(∫ ln
√
n

0

uε (1− Fθ,k,n(u)) du+

∫ ∞
ln
√
n

uε (1− Fθ,k,n(u)) du

)
= (1 + ε) (I1(n) + I2(n)) , say. (27)

We have,

I2(n) =

∫ ∞
ln
√
n

uε

(
k−1∑
j=0

(
n− 1

j

)(
Pf
(
Nρk,n(u)(θ)

))j (
1− Pf

(
Nρk,n(u)(θ)

))n−1−j)
du
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For j ∈ {0, 1, . . . , k − 1}, we have
(
n−1
j

)
≤ n−1

n−k

(
n−2
j

)
Therefore,

I2(n) ≤ n− 1

n− k

∫ ∞
ln
√
n

uε
(
1− Pf

(
Nρk,n(u)(θ)

))
×

(
k−1∑
j=0

(
n− 2

j

)(
Pf
(
Nρk,n(u)(θ)

))j (
1− Pf

(
Nρk,n(u)(θ)

))n−2−j)
du

=
n− 1

n− k

∫ ∞
ln
√
n

uε
(
1− Pf

(
Nρk,n(u)(θ)

))
P
(
Bk,n−k−1 ≥ Pf

(
Nρk,n(u)(θ)

))
du (28)

where Ba,b denotes the beta random variable with parameter (a, b), a > 0, b > 0. For u > ln
√
n, we

have Pf
(
Nρk,n(u)(θ)

)
≥ Pf

(
Nρk,n(ln

√
n)(θ)

)
Therefore, (28) yields

I2(n) ≤ n− 1

n− k
P
(
Bk,n−k−1 ≥ Pf

(
Nρk,n(ln

√
n)(θ)

)) ∫ ∞
ln
√
n

uε
(
1− Pf

(
Nρk,n(u)(θ)

))
du (29)

Note that limn→∞ ρk,n(ln
√
n) = 0. Thus, on using (7), we get

lim
n→∞

(√
n

k
Pf
(
Nρk,n(ln

√
n)(θ)

))
= f(θ)

for almost all values of θ ∈ [0, 2π)m.
For a θ ∈ [0, 2π)m, for which f(θ) > 0, choose δ ∈ (0, f(θ)). Then, for sufficiently large values of n,

Pf
(
Nρk,n(ln

√
n)(θ)

)
>

k√
n

(f(θ)− δ)

and therefore, for sufficiently large values of n,

P
(
Bk,n−k−1 ≥ Pf

(
Nρk,n(ln

√
n)(θ)

))
≤ P

(
Bk,n−k−1 ≥

k√
n

(f(θ)− δ)
)
≤

E
(
B2
k,n−k−1

)(
k√
n
(f(θ)− δ)

)2
=

k + 1

(n− 1)k(f(θ)− δ)2

Therefore, for sufficiently large values of n and for almost all values of θ ∈ [0, 2π)m, (29) yields

I2(n) ≤ k + 1

k(n− k)(f(θ)− δ)2

∫ ∞
ln
√
n

uε
(
1− Pf

(
Nρk,n(u)(θ)

))
du (30)

On making the change of variable z = ln(2k/n) + u in the integral in (30), we get∫ ∞
ln
√
n

uε
(
1− Pf

(
Nρk,n(u)(θ)

))
du =

∫ ∞
ln 2k√

n

(
u+ ln

n

2k

)ε (
1− Pf

(
Nρk,n(u+ln( n

2k
))(θ)

))
du

=

∫ ∞
ln 2k√

n

(
u+ ln

n

2k

)ε (
1− Pf

(
Nρ1,2(u)(θ)

))
du =

∫ 0

ln 2k√
n

(
u+ ln

n

2k

)ε (
1− Pf

(
Nρ1,2(u)(θ)

))
du

+

∫ ∞
0

(
u+ ln

n

2k

)ε (
1− Pf

(
Nρ1,2(u)(θ)

))
du (31)
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We also have∫ 0

ln 2k√
n

(
u+ ln

n

2k

)ε (
1− Pf

(
Nρ1,2(u)(θ)

))
du ≤

(
ln

n

2k

)ε ∫ 0

ln 2k√
n

(
1− Pf

(
Nρ1,2(u)(θ)

))
du

=
(

ln
n

2k

)ε ∫ 1

2k√
n

1

u

(
1− Pf

(
Nρ1,2(lnu)(θ)

))
du ≤

√
n

2k

(
ln

n

2k

)ε ∫ 1

2k√
n

(
1− Pf

(
Nρ1,2(lnu)(θ)

))
du

≤
√
n

2k

(
ln

n

2k

)ε
(32)

and∫ ∞
0

(
u+ ln

n

2k

)ε (
1− Pf

(
Nρ1,2(u)(θ)

))
du ≤ Cε

((
ln

n

2k

)ε ∫ ∞
0

(
1− Pf

(
Nρ1,2(u)(θ)

))
du

+

∫ ∞
0

uε
(
1− Pf

(
Nρ1,2(u)(θ)

))
du

)
(33)

where Cε = max(1, 2ε−1).
Note that, for u ∈ (−∞,∞),

1− Pf
(
Nρ1,2(u)(θ)

)
= 1− Pf (Sθ,1,2 ≤ u) = 1− Fθ,1,2(u)

Therefore (33) yields∫ ∞
0

(
u+ ln

n

2k

)ε (
1− Pf

(
Nρ1,2(u)(θ)

))
du ≤ Cε

((
ln

n

2k

)ε ∫ ∞
0

(1− Fθ,1,2(u)) du

+

∫ ∞
0

uε (1− Fθ,1,2(u)) du

)
(34)

In view of (25), we have∫ ∞
0

(1− Fθ,1,2(u)) du <∞ and
∫ ∞
0

uε (1− Fθ,1,2(u)) du <∞ (35)

Therefore, using (30)-(35), we conclude that

lim
n→∞

I2(n) = 0 (36)

for almost all values of θ.
Now consider

I1(n) =

∫ ln
√
n

0

uε (1− Fθ,k,n(u)) du (37)

=

∫ ln
√
n

0

uε

(
k−1∑
j=0

(
n− 1

j

)(
Pf
(
Nρk,n(u)(θ)

))j (
1− Pf

(
Nρk,n(u)(θ)

))n−1−j)
du

=

∫ ln
√
n

0

uεP
(
Bk,n−k ≥ Pf

(
Nρk,n(u)(θ)

))
du (38)

For u < ln
√
n, we have

0 ≤ ρk,n(u) ≤ π

√
A−1m

(
k√

n(2π)m

)
−→ 0, as n→∞
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Therefore, for u ∈ (−∞,∞) and for almost all values of θ ∈ [0, 2π)m, we have

lim
n→∞

( n

keu
Pf
(
Nρk,n(u)(θ)

))
= f(θ)

uniformly in u.
For f(θ) > 0, let δ ∈ (0, f(θ)). Then, for sufficiently large n, u < ln

√
n and for almost all values of

θ ∈ [0, 2π)m, we have

Pf
(
Nρk,n(u)(θ)

)
>
k

n
(f(θ)− δ) eu

and therefore

P
(
Bk,n−k ≥ Pf

(
Nρk,n(u)(θ)

))
≤ P

(
Bk,n−k ≥

k

n
(f(θ)− δ)eu

)
≤ E (Bk,n−k)

k
n
(f(θ)− δ)eu

=
e−u

f(θ)− δ
(39)

Using (39) in (37) we conclude that, for sufficiently large values of n, and for almost all values of θ

I1(n) ≤ 1

f(θ)− δ

∫ ln
√
n

0

uεe−udu ≤ 1

f(θ)− δ

∫ ∞
0

uεe−udu < ∞ (40)

Using (36) and (40) in (27), we conclude further that there exists a constant D1 such that, for sufficiently
large values of n, ∫ ∞

0

| u |1+ε dFθ,k,n(u)du < D1 (41)

for almost all values of θ ∈ [0, 2π)m.
Now consider∫ 0

−∞
| u |1+ε dFθ,k,n(u) =

∫ 0

−∞
(−u)1+εdFθ,k,n(u) = (1 + ε)

∫ 0

−∞
(−u)εFθ,k,n(u)du (42)

Note that, for each u ∈ (−∞, 0) and for almost all values of θ ∈ [0, 2π)m,

lim
n→∞

( n

keu
Pf
(
Nρk,n(u)(θ)

))
= f(θ)

uniformly in u < 0, i.e., for almost all values of θ ∈ [0, 2π)m, u ∈ (−∞, 0) and every δ > 0

Pf
(
Nρk,n(u)(θ)

)
<
k

n
(f(θ) + δ)eu

for sufficiently large values of n. Therefore,

Fθ,k,n(u) = P
(
Bk,n−k ≤ Pf

(
Nρk,n(u)(θ)

))
≤ P

(
Bk,n−k ≤

k

n
(f(θ) + δ)eu

)
=

n−1∑
j=k

(
n− 1

j

)(
k

n
(f(θ) + δ) eu

)j (
1− k

n
(f(θ) + δ) eu

)n−1−j
≤ n− 1

n
(f(θ) + δ)eu ≤ (f(θ) + δ) eu (43)
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Using (43) in (42), we conclude that, for sufficiently large values of n and for almost all values of
θ ∈ [0, 2π)m, ∫ 0

−∞
| u |1+ε dFθ,k,n(u) = (1 + ε)

∫ 0

−∞
(−u)εFθ,k,n(u)du

≤ (1 + ε) (f(θ) + δ)

∫ 0

−∞
(−u)εeudu < ∞ (44)

Finally, on using (41) and (44) in (26), we conclude (15).
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15. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004,
69, 066138-1–066138-16.



Entropy 2010, 12 1144

16. Tsybakov, A.B.; van der Meulen, E.C. Root-n consistent estimators of entropy for densities with
unbounded support. Scan. J. Stat. 1996, 23, 75–83.

17. Loftsgaarden, D.O.; Quesenberry, C.P. A non-parametric estimate of a multivariate density
function. Ann. Math. Stat. 1965, 36, 1049–1051.

18. Mnatsakanov, R.M.; Misra, N.; Li, Sh.; Harner, E.J. kn-Nearest neighbor estimators of entropy.
Math. Meth. Stat. 2008, 17, 261–277.
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