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Abstract: To forecast a complex and non-linear system, such as a stock market, advanced 

artificial intelligence algorithms, like neural networks (NNs) and genetic algorithms (GAs) 

have been proposed as new approaches. However, for the average stock investor, two major 

disadvantages are argued against these advanced algorithms: (1) the rules generated by NNs 

and GAs are difficult to apply in investment decisions; and (2) the time complexity of the 

algorithms to produce forecasting outcomes is very high. Therefore, to provide 

understandable rules for investors and to reduce the time complexity of forecasting 

algorithms, this paper proposes a novel model for the forecasting process, which combines 

two granulating methods (the minimize entropy principle approach and the cumulative 

probability distribution approach) and a rough set algorithm. The model verification 

demonstrates that the proposed model surpasses the three listed conventional fuzzy 

time-series models and a multiple regression model (MLR) in forecast accuracy. 

Keywords: minimize entropy principle approach; cumulative probability distribution 
approach; rough set theory; stock market forecasting 
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1. Introduction 

Individual stock investors never stop dreaming of becoming wealthy by trading stocks. However, 

only a very few people can make huge profits because it is enormously difficult to accurately predict 

stock prices on a daily basis. In the stock market, there are too many factors influencing prices, such as 

stock news, company financial reports and government economic policies. Therefore, since the first 

stock market opened, many analytical methods and forecasting models have been advanced in an 

attempt to land the big fish in the stock market sea. Two major stock market analysis approaches, 

fundamental and technical analysis [1–4], are commonly used by both stock analysts and artificial 

intelligence (AI) methods proposed by the researchers who are interested in stock markets [5–10]. 

Technical analysis is a subjective way to predict stock market fluctuations, although, more hidden 

information for future prices is given from technical indicators, which are transformed from basic 

indexes by specific mathematic equations [2,11], than is given by daily basic indexes (time, open index, 

high index, low index, close index and volume). Two analysts can come up with two completely 

different forecasts from the same analytical charts and technical indicators. Much of technical analysis is 

truly “in the eye of the beholder [4]”. Therefore, viewed from the investor’s point of view, empirical 

rules or investment experience are necessary in order to predict stock prices accurately.  

However, with the emergence of data mining techniques, more and more AI tools have been applied 

in predicting stock markets, such as choosing an optimal portfolio by genetic algorithms [5], selecting 

real-world stocks by neural networks [12], and predicting the S&P 100 index by rough sets [13]. In this 

paper, in order to avoid any possible intrusions of the model designer’s subjective predictions, based on 

technical analytical methods, one objective, automatic, artificial intelligence model is proposed, which 

combines three data mining techniques into forecasting processes: (1) MEPA (minimize entropy 

principle approach), which subdivides data into membership functions [14–18]; (2) CPDA (cumulative 

probability distribution approach), which fuzzifies the observations into linguistic values based on the 

cumulative probability of the observations [17,19,20]; and (3) rough set theory [17,19,21–24], which 

mines rules from the linguistic dataset. Using these techniques, objective and effective rules can be 

produced as the basis for forecasting. 

2. Related Works 

This section briefly reviews the related literature, including the minimize entropy principle approach 

(MEPA), the cumulative probability distribution approach (CPDA), rough set theory, and 

defuzzification methods. 

2.1. The Minimize Entropy Principle Approach (MEPA) 

A key goal of entropy minimization analysis is to determine the quantity of information in a given 

dataset. The entropy of a probability distribution is a measure of the uncertainty of the distribution [15]. 

To subdivide the data into membership functions, establishing the threshold between classes of data is 

needed. A threshold line can be determined with an entropy minimization screening method, after 

which the segmentation process may begin, with the initial segmentation divided into two classes. 
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Therefore, a repeated partitioning with threshold value calculations will allow us to partition the data 

set into a number of fuzzy sets [25]. 

Assume that a threshold value is being sought for a sample in the range between x1 and x2. An 

entropy equation is written for the regions [x1, x] and [x, x2], with the first region denoted p and the 

second region denoted q. An entropy [14,16] with each value of x is expressed by following equations 

(1) through (3): 

)()()()()( xSxqxSxpxS qp +=
 (1)

where: 
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where pk(x) and qk(x) = conditional probabilities (see equation (4)) that the class k sample is in the 

region [x1, x1+x] and [x1+x, x2], respectively; p(x) and q(x) = probabilities that all samples are in the 

region [x1, x1+x] and [x1+x, x2], respectively: 
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A value of x that gives the minimum entropy is the optimum threshold value. The entropy [14,16] 

estimates of pk(x) and qk(x), p(x) and q(x), are calculated by following equation (5) to equation (8): 
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where: 

nk(x) = number of class k samples located in [x1, x1+x]; 

n(x) = the total number of samples located in [x1, x1+x]; 

Nk(x) = number of class k samples located in [x1+x, x2]; 

N(x) = the total number of samples located in [x1+x, x2]; 

n = total number of samples in [x1, x2]. 

Figure 1 shows partitioning processes for MEPA. While moving x in the region [x1, x2], we 

calculate the values of entropy for each position of x. The value of x in the region that holds the 

minimum entropy is called the primary threshold (PRI) value. 
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Figure 1. Partitioning process of minimize entropy principle approach. 

 
 

2.3. The Cumulative Probability Distribution Approach (CPDA) 

The cumulative probability of normal distribution can be used to define intervals of linguistic  

value [17,19,26]. The procedures of cumulative probability distribution approach are described in four 

steps, as follows: 

Step 1: Test normal distribution. In this step, CDPA is used to ascertain whether the target dataset 

follows normal distribution. The Lilliefors test [27] is used to identify the distribution characteristic of 

the observations contained in the dataset. 

Step 2: Define the universe of discourse U. Define the universe of discourse, U, as  
[Dmin − σ, Dmax + σ] for the target dataset, where Dmin denotes the minimum value; Dmax denotes 

the maximum value; and σ denotes the standard deviation for the observations contained in the 

target dataset. 

Step 3: Determine interval length and build membership function. There are three sub-steps in this 

process: (1) define the lower bound of cumulative probability (PLB), and the upper bound of 

cumulative probability (PUB); (2) invert the normal cumulative distribution function (CDF) for defined 

linguistic values; and (3) define fuzzy sets and build membership functions. 

Step 3–1: Define lower bound and upper bound of cumulative probability. For each given linguistic 

value, the lower bound of cumulative probability (PLB) and the upper bound of cumulative probability 

(PUB) are defined by equations (9) through (10) [28]: 
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PUB = i / n, (1 ≦ i ≦ n) (10)

where i denotes the order of the linguistic value and n denotes the amount for defined linguistic values.  

Based on equation (9) to (10), the lower and upper bounds with cumulative probability for five 

linguistic values are listed in Table 1. 

Table 1. Lower and upper bound of cumulative probability for linguistic value.  

Linguistic Value 
Cumulative Probability 

PLB PUB 
L1 0 0.2 
L2 0.2 0.4 
L3 0.4 0.6 
L4 0.6 0.8 
L5 0.8 1 

 
Step 3–2: Inverting the normal cumulative distribution function for defined linguistic values. To 

produce linguistic intervals for each linguistic value, the normal cumulative distribution function 

(CDF), defined by equation (11) [29], is given: 
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where P denotes the probability that a single observation from a normal distribution with parameters µ 

and σ will fall in the interval (−∞ x].  

From an algorithm for computing the inverse normal cumulative distribution function [30], the lower 

and upper bound for five linguistic values can be produced. Table 2 demonstrates the five sets of 

linguistic intervals (lower and upper bound values) for five linguistic values of price fluctuation in  

the 2001 TAIEX, based on the lower bound (PLB) and upper bound (PUB) of cumulative probability 

from Table 1. 

Table 2. Linguistic intervals for five linguistic values of price fluctuation. 

Linguistic Value 
Linguistic Interval 

PLB PUB 
L1 −560.2145 −86.3797 
L2 −126.9697 −32.1029 
L3 −57.1115 14.647 
L4 −8.728 68.9238 
L5 39.6556 658.5045 

 
Step 3–3: Define fuzzy sets and build membership functions. The triangle fuzzy number (TFN) [31] is 

used to present the fuzzy sets for the linguistic variables of the price fluctuations (A1 to A5) based on the 

linguistic intervals from Table 4. The membership function of the TFN is defined as equation (12). 
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where )(~ x
iA

μ denotes the membership value of crisp data x belonging to fuzzy set iA
~

; the lower bound, 

midpoint and upper bound of iA
~

 are defined by a, b and c, respectively.  

If an observation meets two or more membership functions, the linguistic value with the maximum 

membership value is chosen and labeled on the observation. Table 3 demonstrates the parameterized 

triangle fuzzy numbers for linguistic variables of the price fluctuations (L1 to L5) from Table 2. 

Table 3. Parameterized fuzzy numbers for price fluctuations of the 2001 TAIEX. 

Linguistic 
Value 

Triangular Fuzzy Number(a, b, c) 
a(lower bound) b(midpoint) c(upper bound) 

L1 −560.2145 −323.297 −86.3797 

L2 −126.9697 −79.5363 −32.1029 
L3 −57.1115 −21.2323 14.647 
L4 −8.728 30.0979 68.9238 
L5 39.6556 349.08 658.5045 

Standard Derivation = 92.26; Mean = −8.73 

 

Step 4: Fuzzify the historical data. With the inverse of normal CDF and parameterized triangle fuzzy 

numbers for linguistic variables of price fluctuations, all observations contained in the target set can be 

fuzzifed as linguistic values.  

2.4. Rough Set Theory 

Rough set theory was proposed by Pawlak [21] in order to distill the rules that determine the safety 

performance of construction firms. Since the development of the original exposition of the rough  

set theory (RST) as a method of set approximation, it has continued to flourish as a tool for data  

mining [17,22–24]. 

Rough set theory is also a mathematical framework that deals with vagueness and uncertainty, and 

can be situated within the fields of artificial intelligence (AI), knowledge discovery in databases and 

data mining (DM). The rough set philosophy is founded on the assumption that with every object of 

the universe of discourse associated with it, some informational objects, characterized by the same 

information, are indiscernible in view of the available information about them. Any set composed of 

all indiscernible objects is called an elementary set and forms a basic granule of knowledge about the 

universe. Any union of elementary sets is referred to as a precise set, otherwise the set is rough. 

A pair of precise sets, called the lower and the upper approximation of the rough set, is  

associated [21,32] with any rough set. The lower approximation consists of all objects which surely 

belong to the set, and the upper approximation contains all objects which possibly belong to the set. 
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The difference between the upper and the lower approximation constitutes the boundary region of the 

rough sets. Approximations are two basic operations in the rough set theory. The basic notions in 

rough sets are shown in Figure 2 [19,33]. 

Figure 2. Basic notions for rough sets. 

 

 

The rough set method is a series of logical reasoning procedures, used for analyzing an information 
system. An information system can be seen as a decision table, denoted by ( , , , )S U A C D= , where U is 

universe of discourse, A is a set of primitive features, and ,C D A⊂ are two subsets of features, assuming 

that A C D=  andC D = ∅ , where C is called condition attribute, and D, as decision attribute. 

An example of an accident occurrence decision table [34] is illustrated in Table 4. In it, five cases 

are characterized with three condition attributes: driver’s age, vehicle type and climate; and one 
decision attribute: accident type. The three condition attributes form four elementary sets }3,1{ , 

}2{ , }4{  and }5{ . This means that cases, 1 and 3, are indiscernible, while the other cases are 

characterized uniquely with all available information. Therefore, the off-road accident type is 
described with the lower approximation set as }2{ , and the upper approximation set as }3,2,1{ . 

Similarly, the concept of the rollover accident type is characterized by its lower approximation set as 
}5,4{  and upper approximation set as }5,4,3,1{  [34], which generates rule and weight for better 

forecasting results. 

Table 4. Accident cases with describing features. 

Case Driver’s Age Vehicle Type Climate Accident Type 
1 Young motorcycle sunny Off-road 
2 Old automobile sunny Off-road 
3 young motorcycle sunny rollover 
4 Middle-aged motorcycle sunny rollover 
5 Middle-aged automobile rainy rollover 

 

2.5. Defuzzification 

Defuzzification is the conversion of a practice quantity to a fuzzy quantity. Many defuzzification 

methods have been proposed and have become popular in defuzzifying fuzzy output functions. Four of 

these methods are summarized, as follows [25]: 
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Max-membership principle: this scheme is limited to the peak output function; it is given as the 

algebraic expression (13): 

Zzallforzuzu cc ∈≥ )()( *
 (13)

Centroid method: this procedure (also called center of area, center of gravity) is the most popular 

defuzzification method; it is given as the algebraic expression (14): 
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Weighted average method: this method is only valid for symmetrical output membership functions; 

it is given as the algebraic expression (15): 
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Mean-max membership: this method (also called middle-of maxima) is closely related to the first 

method, except that the locations of the maximum membership can be non-unique; it is given as the 

algebraic expression (16): 

2
* ba

z
+= (16)

3. The Proposed Model 

In stock market forecasting, we argue that two issues for statistical time-series models are 

considered imperfect in forecasting algorithms: (1) some mathematic distribution assumptions are 

made for stock market data, but sometimes the observations do not follow these assumptions; and  

(2) basic indexes (time, open index, high index, low index, close index and volume) cannot provide 

enough of the stock information hidden in history for statistical time-series models to predict stock 

market movements accurately because the basic indexes can only exhibit the daily static conditions of 

the past, which cannot express the dynamic trends of a stock market. 

In recent research, many advanced forecasting systems have utilized neural networks [7–10] and 

genetic algorithms [35] to predict stock prices. However, we argue that there are some disadvantages 

to these advanced systems.  

For the systems based on neural networks, three drawbacks are addressed: (1) there is little 

perceived reliability for neural-fuzzy systems because it is hard to determine whether the number of 

observations in a training dataset is adequate for forecasting; (2) the forecasting algorithms employing 

neural networks or genetic algorithms are not easily understood by the average stock investor;  

and (3) the neural-fuzzy technique is strictly quantitative and generalized to the point where human 

qualitative judgments are completely removed from the system [36].  

For the systems based on genetic algorithms, two disadvantages are found: (1) computing costs, 

such as time consumption and computer resources, is higher than other statistical forecasting systems; 

and (2) the optimal forecast is not easily certifiable. 
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3.1. Proposed Concepts 

To overcome the problems mentioned above, a novel forecasting model (the framework of the 

proposed model is illustrated in Figure 3), which integrates two advanced data granulating approaches 

(CDPA and MEPA) and a data mining method (rough set theory) in forecasting processes, is proposed 

in this paper. The three main procedures of the proposed model are described, as follows: 

(1) Data preprocess. Convert six basic indexes of the stock database (time, open index, high index, 

low index, close index, and volume) into nine useful technical indicators (RSI, MA, DIS, STOD, ROC, 

OBV, VR, PSY and AR, defined in Table 5), which are highly related to stock price fluctuation [2], in 

order to compose the attributes of experimental datasets. 

(2) Granulate observations and produce rules. Utilize two advanced data granulating approaches, 

CPDA and MEPA, to granulate the observations of the nine technical indicators (defined in Table 5), 

and stock price fluctuation (defined in equation (17)) into linguistic values. The technical indicators 

are defined as conditional attributes and price fluctuation is defined as a decision attribute. Use a rough 

set algorithm (LEM2, Learning from Examples Module, version 2 [37]) to extract a training dataset to 

produce forecasting rules of linguistic values. 

(3) Forecast and evaluate performance. Produce linguistic forecasts for testing a dataset with the 

extracted rules from a training dataset, and defuzzify the linguistic forecasts into numeric forecasts. 

Use root mean square error (RMSE) as a forecasting performance indicator for the proposed model. 

We argue that the proposed model can produce effective rules for forecasting stock market prices, 

based on three reasons, as follows: 

Firstly, we employ technical indicators as forecasting factors instead of daily basic indexes; they are 

practical tools for stock analysts and fund managers to use in forecasting stock market prices Also, it 

has been proven that some technical indicators are highly related to future stock prices [2]. 

Secondly, from past literature related to rough set theory, three advantages have been found: (1) the 

rough set algorithms can process data without making any assumptions about the dataset; (2) rough set 

theory has powerful algorithms which can deal with a dataset that contains both quantitative and 

qualitative attributes; and (3) rough set algorithms can discover non-linear relations between 

observations hidden in multi-dimensional datasets, and produce understandable rules in an If-Then 

format that are meaningful to the average stock investor.  

Lastly, the advantages to using data granulating methods to preprocess raw data are that the data 

dimension of a database can be reduced and simplified, and the use of discrete features is usually more 

compact and shorter than the use of continuous ones [38]. We argue that data granulating approaches 

can use linguistic values to represent observations in order to reduce the data complexity when using a 

high-dimension of a numeric dataset as an experimental dataset. Therefore, the proposed model can 

promote efficiency in data preprocess by employing CPDA and MEPA. 
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Figure 3. Framework of the proposed model. 
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Table 5. Defined equations for popular technical indicators. 

Technical Indicator Mathematical Formula and Economical Meaning 

MA 





6

 periodday -6 afor  prices closing of sum  

 MA is a popular way of defining where recent price trend line 

RSI 








× 100

 periodday -25 afor  prices closing of sum 

 periodday -25 afor  prices closing positive of sum  

 RSI, moving on a scale from 0–100, highlights overbought (70 and 
above) and oversold (30 and below) conditions 

PSY 



 ×100

 12

 up closed price periodday -12 aover  days ofnumber    

 PSY measures psychological stability of investors 

STOD 


















× 100
 low priceday -6  high priceday -6 

  low priceday -6  price closingrecent most  
 

 STOD gives buy (30 and below) or sell (70 and above) signals 

VR 

























×100
days 6over   volumeof sum the

 periodday -6 afor down  closed price when sum  volume

periodday -6 afor  up closed price when sum   volume

 

 VR measures trend stability 

OBV 















periodday -6 afor down  closed price when sum volume

 periodday -6 afor  up closed price when sum volume  

 OBV is a running cumulative total which should confirm the price 
trend 

DIS 








×100

MAday  -6

 price closingrecent most   

 DIS shows the stability of the most recent closing prices 

AR 


















price low price opening

 price closing  pricehigh    
 

 AR shows stock momentum 

ROC 







price6day  previous 

 price closingrecent most    

 ROC gives buy (130 and above) and sell (70 and below) signals 
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3.2. The Proposed Algorithm 

The proposed algorithm consists of six forecasting processes. Using the 2001 TAIEX (Taiwan 

Stock Exchange Capitalization Weighted Stock Index) as demonstration data, each process is 

introduced, step by step, in the following manner: 

Step 1: Transfer basic indexes into popular technical indicators. In this step, the stock database, which 

contains six basic indexes (time, open index, high index, low index, close index and volume) is 

selected as an experimental dataset. Each experimental dataset record (see Table 6) is transformed into 

a record of nine technical indicators (RSI, MA, DIS, STOD, ROC, OBV, VR, PSY and AR, see  

Table 7) by using the formulas in Table 5. 

Table 6. Basic indexes of the TAIEX dataset. 

Time Open High Low Close Volume 

2001/01/02 4,717.49 4,945.09 4,678.00 4,935.28 2,292,485 

2001/01/03 4,843.54 4,970.45 4,831.12 4,20004.79 2,542,050 

2001/01/04 5,028.32 5,169.13 5,028.32 5,136.13 3,146,064 

 
2001/12/27 5,464.52 5,505.19 5,293.54 5,332.98 4,951,334 

2001/12/28 5,372.85 5,408.15 5,307.38 5,398.28 4,035,088 

2001/12/31 5,481.07 5,583.82 5,477.53 5,551.24 4,396,515 

 

Table 7. Original data of conditional attributes and decision attribute. 

Time RSI MA DIS STOD ROC OBV VR PSY AR 

2001/1/2 55.71 4737.20 100.03 −0.45 0.05 2335735.00 0.26 0.50 1.12 

2001/1/3 55.89 4758.57 103.71 1.27 0.06 5941448.00 0.56 0.58 1.13 

2001/1/4 60.40 4787.48 102.24 4.62 0.07 9906469.00 0.77 0.67 1.29 

2001/12/27 49.82 5261.71 102.48 0.90 0.00 −2794502.00 −0.12 0.50 0.96 

2001/12/28 51.92 5280.22 101.00 0.14 0.06 −2324048.00 −0.10 0.50 0.98 

2001/12/31 52.29 5295.08 101.95 1.67 0.07 5669238.00 0.23 0.58 1.01 

 

Step 2: Granulate conditional and decision attributes by MEPA and CPDA. In the experimental 

dataset, nine technical indicators are used as conditional attributes, and stock price fluctuations, 

defined in equation (17), is employed as a decision attribute: 
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price fluctuation(t) = P(t) − P(t − 1) (17)

where price fluctuation (t) denotes the price change from time t − 1 to time t; P (t) denotes closing 

price at time t; and P(t − 1) denotes closing price at time t − 1. 

This step granulates the numeric experimental dataset, which consists of two types of attributes 

(conditional and decision) into a granulated dataset of linguistic values for rule mining. The 

experimental dataset is preprocessed by two different approaches: CPDA is used to granulate the 

records of the decision attribute (stock price fluctuation), and MEPA is employed to granulate the 

records of the conditional attributes (nine technical indicators). The appropriate number of categories, 

based on human short-term memory function, is seven, and seven, plus or minus two [39]. Therefore, 

from the researchers’ perspective, the decision attribute is granulated with five linguistic values and 

the conditional attribute is granulated with seven linguistic values. The five linguistic values used to 

present stock price fluctuations are introduced, as follows: L1 denotes going up sharply; L2 denotes 

going up; L3 denotes remaining flat; L4 denotes going down; and L5 denotes down sharply. Because a 

technical indicator value cannot be defined in meaningful terms, the seven linguistic values to 

represent a technical indicator are defined as seven labeled numbers (L1 through L7). Table 8 

demonstrates five parameterized triangle fuzzy numbers for five linguistic values of stock price 

fluctuations. Table 9 demonstrates the seven linguistic values (fuzzy numbers) and their corresponding 

numeric ranges for the conditional attribute of MA. Table 10 lists some observations for conditional 

and decision attributes for the experimental datasets. 

Table 8. Parameterized fuzzy numbers for decision attributes (price fluctuation). 

Linguistic 
Value 

Fuzzy Number(a, b, c) 
a b c 

L1 −560.2145 −323.297 −86.3797 
L2 −126.9697 −79.5363 −32.1029 
L3 −57.1115 −21.2323 14.647 
L4 −8.728 30.0979 68.9238 
L5 39.6556 349.08 658.5045 

Standard Derivation = 92.26; Mean = −8.73 

 

Table 9. Parameterized fuzzy numbers for conditional attributes (MA). 

Linguistic 
Value 

Fuzzy Number(a,b,c) 
a b c 

L1 8706.911 6617.774 4528.637 
L2 4003.256 4597.310 5191.364 
L3 4893.189 5297.220 5701.251 
L4 5455.389 5816.147 6176.905 
L5 5939.078 6312.935 6686.792 
L6 6422.766 6886.143 7349.519 
L7 6984.966 9151.448 11317.93 

Standard Derivation =1321.17; Mean = 5939.08 
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Table 10. Observations for conditional and decision attributes (TAIEX). 

Time RSI MA DIS STOD ROC OBV VR PSY AR 
Price 

Fluctuation
2001/01/02 L4 L1 L5 L7 L6 L7 L7 L5 L2 L1 

2001/01/03 L4 L1 L6 L7 L7 L7 L7 L5 L3 L3 

2001/01/04 L4 L1 L6 L7 L7 L7 L7 L5 L4 L5 

 

2001/12/27 L3 L2 L6 L7 L5 L7 L3 L5 L1 L3 

2001/12/28 L3 L2 L6 L7 L7 L7 L3 L5 L1 L3 

2001/12/31 L3 L2 L6 L7 L7 L7 L7 L5 L1 L3 

 

Step 3: Extracted fuzzy rules from training datasets by Rough Set Theory. In this step, the experimental 

dataset of linguistic values is split into two datasets, training and testing. The training dataset is 

extracted by a rough set algorithm (LEM2, Learning from Examples Module, version 2 [37]) to 

produce rules for forecasting the future price. Table 11 lists some raw rules extracted from the training 

dataset. The rules can be expressed in the format of “If-Then” (Table 12 demonstrates three rules). 

Table 11. Examples of rules extracted from training dataset using rough set algorithm. 

Conditional Attribute 
Decision 
Attribute 

Rule 1 (OBV=L7) (PSY=L5) (MA=L1) (STOD=L7) (DIS=L6) (ROC=L6) (AR=L1) (RSI=L2) (VR=L4) (decision=L3) 

Rule 2 (OBV=L7) (PSY=L5) (MA=L1) (DIS=L5) (AR=L1) (RSI=L1) (STOD=L1) N.A N.A (decision=L3) 

Rule 3 (OBV=L7) (PSY=L5) (STOD=L7) (MA=L1) (RSI=L4) (VR=L7) (DIS=L6) (ROC=L7) (AR=L3) (decision=L3) 

Rule n-2 (OBV=L7) (STOD=L7) (PSY=L5) (MA=L1) (RSI=L4) (VR=L7) (DIS=L6) (ROC=L6) (AR=L6) (decision=L4) 

Rule n-1 (OBV=L7) (AR=L1) (MA=L1) (PSY=L5) (DIS=L5) (ROC=L5) (RSI=L2) (STOD=L2) (VR=L3) (decision=L2) 

Rule n (OBV=L7) (AR=L1) (MA=L1) (PSY=L5) (DIS=L5) (ROC=L5) (RSI=L2) (VR=L4) (STOD=L2) (decision=L2) 

 

Step 4: Forecast based on the extracted rules. This step maps the conditional attributes of every record 

in the testing dataset with the extracted rules from the training dataset (see Table 11) in order to 

generate a linguistic forecast for future price trends. If the conditional attributes of a record satisfy the 

“If” criteria of a specific rule, the linguistic forecast for this instance is defined as the “Then” part  

of the rule. Whenever no rule can be found for the conditional attributes of a record, the naïve  

forecast [40] is employed as the forecast for the future price trend. Table 13 demonstrates the linguistic 

conditional attributes of some records and their corresponding linguistic forecasts for a testing dataset. 
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Table 12. IF-THEN rules. 

Rules No. If-Then Rules 
Rule 1. If (OBV=L7)& (PSY=L5) & (MA=L1) & (STOD=L7)& (DIS=L6) 

& (ROC=L6) & (AR=L1) & (RSI=L2)&(VR=L4) 
Then (Decision=L3)  

Rule 2. If (OBV=L7)& (PSY=L5) & (MA=L1) & (DIS=L5) & (AR=L1) &
(RSI=L1)& (STOD=L1) 

Then (Decision=L3)  
Rule 3. If (OBV=L7)& (PSY=L5)&(STOD=L7)&(MA=L1)&(RSI=L4) 

&(VR=L7) & (DIS=L6) & (ROC=L7) & (AR=L3) 
Then (Decision=L3)  

 

Table 13. Linguistic forecasts for testing dataset. 

Time RSI MA DIS STOD ROC OBV VR PSY AR 
Linguistic 
Forecast 

2001/11/01 L3 L1 L5 L7 L5 L7 L4 L5 L1 L3 
2001/11/02 L4 L1 L5 L7 L5 L7 L2 L5 L3 L3 
2001/11/05 L4 L1 L6 L7 L5 L7 L2 L5 L3 L3 

2000/12/28 L3 L2 L6 L7 L7 L7 L3 L5 L3 L3 
2000/12/31 L3 L2 L6 L7 L7 L7 L7 L5 L3 L3 

 

Step 5: Defuzzify and forecast testing datasets. Max membership principle [25] (see equation (16)) is 

employed to defuzzify the linguistic forecast from Step 4. After a linguistic forecast has been 

defuzzified to a numeric value, a numeric forecast (see Table 14) for a future stock price is generated 

by equation (18):  

)()1()( tftPtF +−=  (18)

where P(t − 1) denotes the stock price at time t − 1; f (t) denotes the numeric value defuzzified from 

the linguistic forecast for the future price trend at time t; and F(t) denotes the numeric forecast for the 

future stock price at time t.  

Step 6: Evaluate performance with RMSE. In this step, RMSE (defined in equation (19)) is used as a 

performance indicator for the proposed model. Table 15 demonstrates some forecasts produced from 

the proposed model and how to compute RMSE as a performance datum: 

( )
n

tPtF − 2)()(
(19)

where P(t) denotes the actual stock price at time t; F(t) denotes the forecast at time t; and n is the total 

amount of forecasts.  
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Table 14. Numeric forecasting value for testing dataset. 

Date RSI MA DIS STOD ROC OBV VR PSY AR 
Linguistic 
Forecast 

Numeric 
Forecast 

2001/11/01 L3 L1 L5 L7 L5 L7 L4 L5 L1 L3 3,882.49 
2001/11/02 L4 L1 L5 L7 L5 L7 L2 L5 L3 L3 3,882.00 
2001/11/05 L4 L1 L6 L7 L5 L7 L2 L5 L3 L3 3,908.69 

2001/12/28 L3 L2 L6 L7 L7 L7 L3 L5 L1 L3 5,371.43 
2001/12/31 L3 L2 L6 L7 L7 L7 L7 L5 L1 L3 5,311.98 

 

Table 15. Forecasting value and performance with RMSE. 

Time Actual Stock Index Forecast Value SE(square error) 
2001/11/01 3,929.69 3,882.00 2227.84 
2001/11/02 3,998.48 3,908.69 8062.24 
2001/11/05 4,080.51 3,977.48 10615.18 

2001/12/28 5,398.28 5,311.98 7447.69 
2001/12/31 5,551.24 5,377.28 30262.08 

Mean of SE 14884 
RMSE  122 

 

4. Experiment and Comparisons 

4.1. Experiment Dataset and Performance Indicator 

In the evaluation experiments for the proposed model, a five-year period (2001–2005) of the 

TAIEX database was selected as the experimental dataset. Each year of the stock data is used as a unit 

of experimental dataset, where a ten-month period of stock data, from January to October, is used for 

training, and the rest, from November to December, for testing. To compare the performance of the 

proposed model with fuzzy time-series models, a common formula of forecasting error, root mean 

square error (RMSE) [6,19,41], is used as a performance indicator in this paper.  

4.2. Model Verification 

In order to evaluate the efficacy of the proposed model, vis-à-vis different types of time-series 

models, a two-part model comparison is provided: (1) performance comparisons with fuzzy time-series 

models, using one forecasting factor; and (2) performance comparisons with time-series models, using 

multiple forecasting factors. In the first part, the purpose is to examine whether there is more 

information hidden in the selected technical indicators (RSI, MA, DIS, STOD, ROC, OBV, VR, PSY 

and AR) than basic indexes (time and close index). Therefore, two past fuzzy time-series models, 

based on stock price time-series, Chen’s (1996) [11], Huarng et al.’s (2006) [6], are employed as 
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comparison models. In the second part, the purpose is to verify the superiority of the proposed model. 

Therefore, two forecasting models using multiple forecasting factors, Cheng et al.’s model [41] and a 

multiple regression model (MLR) [42], are employed for purposes of comparison. 

Figure 4. Performance comparisons with single-factor forecasting models. 
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Table 16. Performance comparisons with single-factor forecasting models. 

Year 
Models 

2001 2002 2003 2004 2005 Average Variance 

Chen’s Model (1996) [11] 148 101 74 83 66 94 854 
Huarng et al.’s Model (2006) [6] 130 *84 56 79 69 84 630 

Proposed Model *122 94 *55 *69 *65 *81 *580 

* denotes the minimum value among three models. 

 

From the experimental results for the first part of the performance comparisons, listed in Table 16 

and illustrated in Figure 4, it is clear that the proposed model outperforms Chen’s (1996) [11] and 

Huarng et al.’s (2006) [6] models. Among the three models, the proposed model bears the smallest 

RMSE for four of the five experimental datasets (2001, 2003, 2004 and 2005). The proposed model 

also holds the smallest value of average RMSE (81) among the comparison models (94 for Chen’s 

model [11] and 84 for Huarng et al.’s model [6]). Further, the variance of RMSE for the proposed 

model is the smallest (580 for the proposed model, 854 for Chen’s model and 630 for Huarng et al.’s 

model [6]). The smallest variance implies that the proposed model performs with more stability than 

the other two models.  
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Figure 5. Performance comparisons with multiple-factor forecasting models. 
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Table 17. Performance comparisons with multiple-factor forecasting models. 

Year 

Models 
2001 2002 2003 2004 2005 Average Variance 

Multiple Regression Model [42] 630 *66 804 820 144 493 105310

Cheng et al.’s Model (2008) [41] 531 606 800 146 229 462 58777

Proposed Model *122 94 *55 *69 *65 *81 *585

* denotes minimum value among three models. 

 

From the experimental results for the first part of the performance comparisons, listed in Table 17 

and illustrated in Figure 5, we may note that the proposed model still performs with the smallest 

RMSE in four testing datasets (2001, 2003, 2004 and 2005) and the smallest average RMSE (81 for 

the proposed model, 493 for multiple regression model, and 462 for Cheng et al’s model [41]). 

Additionally, in the stability analysis, the proposed model has better forecasting stability than the other 

two multiple-factor forecasting models, based on the variance of RMSE (585 for the proposed model, 

105310 for Multiple Regression Model [42], and 58777 for Cheng et al’s model [41]). 

As the performance datum above adduces, the proposed model demonstrates outstanding 

performance and stability in forecasting Taiwan’s stock market trends. 

5. Conclusions and Future Research  

In this paper, one novel forecasting model, based on two advanced granulating methods (MEPA and 

CDPA), and rough set theory, is proposed to provide understandable rules for the average stock 

investor and to improve forecasting accuracy of Taiwan’s stock market. Based on the model 
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verification, we argue that the proposed model has reached the research objectives. After 

implementing the experiment for evaluating the proposed model, three findings are noted, as follows:  

Firstly, technical indicators can provide more information for forecasting future stock prices. In 

practical stock market analysis, multiple-technical indicators can posit more meaningful stock 

information, such as stock price trends, fluctuations and momentums, and many stock analysts do 

employ technical indicators to analyze market trends. However, past fuzzy time-series models such as 

Chen’s (1996) [11], and Huarng et al.’s (2006) [6] employed only one forecasting factor, past stock 

price, to predict the future stock price. The single forecasting factor is absolutely insufficient to reveal 

the complex relationships within a stock market. Regarding the forecasting model using basic indexes 

(time, open index, high index, low index, close index and volume) as multiple forecasting factors, such 

as Cheng et al.’s model [41] and multiple regression model (MLR) [42], we argue that the basic 

indexes cannot provide useful stock information for forecasting stock markets because they can only 

display static statistics of stock markets not dynamic market trends and fluctuations. From 

performance comparisons (see Table 16–17), it is clear that the proposed model outperforms the four 

listed models, Chen’s (1996) [11], Huarng et al.’s (2006) [6] models, Cheng et al.’s [41] and  

MLR [42]. The evidence has proven this finding.  

Secondly, granulating methods can reduce the complexity of experiments using high-dimension 

datasets. The proposed model employs MEPA and CPDA to produce linguistic values for conditional 

and decision attributes, which can make the rule-extracting process of rough set algorithm simpler  

and faster. 

Lastly, rough set algorithm can find useful rules from historical stock data for investment 

decision-making. From Table 11–12, the rules extracted by rough set algorithm can be used as 

investment decision suggestions for average investors. Although a linguistic forecast, generated by the 

rules, cannot be employed as a forecasting value, the proposed model has provided a valid 

defuzzifying method to produce an accurate forecasting value, based on the linguistic forecast, to 

predict future stock prices. 

For future research, two suggestions are offered: (1) other financial markets, such as commodity 

futures and mutual funds can be used as forecasting targets to evaluate the proposed model;  

and (2) other modifying models, such as adaptive expectation models and neural networks can be used 

to modify the forecasts, produced from the proposed model, enabling more accurate forecasts. 
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