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Abstract:



We investigate the classical limit of the semiclassical evolution with reference to a well-known model that represents the interaction between matter and a given field. This is done by recourse to a special statistical quantifier called the “symbolic transfer entropy”. We encounter that the quantum-classical transition gets thereby described as the sign-reversal of the dominating direction of the information flow between classical and quantal variables.
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1. Introduction


The synchronization phenomenon is the subject of much work nowadays and attracts attention from various field of science, engineering, and social behavior [1]. In particular, the coupling between dynamical systems is of particular interest as it can be encountered in a number of manners. To investigate the associated interactions involves the detection and quantification of the strength and direction (or asymmetry) of the pertinent couplings and major effort has revolved around the task of ascertaining directional couplings. Information-theoretic approaches become of importance in such respect. One of such treatments is of paramount interest for us here, related to the quantity called “transfer entropy” (TE) [2], which can quantify statistical coherence among systems evolving in time. The corresponding approach was designed so as to overcome difficulties encountered using the standard time delayed mutual information, which exhibits problems in distinguishing between information that is actually exchanged from shared information due to common history and input signals [3]. The TE ignores these influences by appropriately conditioning associated transition probabilities [2]. One is thus able to distinguish effectively driving from responding elements and to detect asymmetry in the interaction of subsystems. Interesting progress is advanced in [3] by estimating the transfer entropy by recourse to a symbolization-technique, tantamount to a sort of coarse graining that facilitates accessible manipulation. One then speaks of symbolic TE (STE) and finds that it is a robust and computationally fast method to quantify the dominating direction of information flow between time series from coupled systems.



In this work we apply the STE to the classical limit of quantum mechanics (CLQM) that, contrary to the widespread belief, remains an open problem since the problem of the emergence of classical mechanics from quantum mechanics is by no means solved. In spite of many results on the [image: there is no content] asymptotics, it is not yet clear how to explain the classical motion of macroscopic bodies within the standard quantum mechanics. In this paper we shall analyze, via the STE, a special case of evolution from quantum to classical behavior [4] in the framework of a well-known semi-classical model that represents the interaction of matter with a given field [5,6].




2. The CLQM for a Special Semi-Classical Model


Since the introduction of the decoherence concept in the early 1980s by Zeh, Zurek, and other authors like Habib [7,8,9,10,11], the emergence of the classical world from Quantum Mechanics has been a subject of much interest. Among the associated issues one can mention the emergence of classical dynamics, specially classical chaos, in quantum systems through continuous measurement by Habib, Bhattacharya, Ghose, and Jacobs, among others [12,13] and the “decoherent histories approach” by Gisin, Brun, Halliwell, and Percival [14,15,16,17]. Additionally, authors like Everitt, who explore the quantum-classical crossover in the behavior of a quantum field mode [18] and the chaotic-like and non-chaotic-like behavior in nonlinear quantum systems [19] are of certain interest. Also deserve mention Ralph [20], Greenbaum [21] and Lifshitz [22].



Quite a bit of quantum insight is to be gained from semiclassical perspectives. Several methodologies are available (WKB, Born-Oppenheimer approach, etc.). The model of References [5,6,23] considers two interacting systems: one classical, the other quantal. This makes sense whenever the quantum effects of one of the two systems are negligible in comparison to those of the other one. Examples can be readily found. We can just mention Bloch equations [24], two-level systems interacting with an electromagnetic field within a cavity [25,26,27], collective nuclear motion [28], etc.



We have investigated the classical limit of a semiclassical model containing both classical and quantum degrees of freedom in Reference [23]. In contrast to what was done in the above mentioned papers via a master equation for the density operator [10,11,16], or by recourse to equivalent stochastic equations for pertinent expectation values [12,13], we consider a simplified scheme in which the interaction with the environment is simulated by classical variables. Here the classical limit is obtained whenever one satisfies the relation given by Equation (4) for the total energy and the invariant I (see Equation (5)), related to the uncertainty principle.



Thus, we deal with a special bipartite system that represents the zero-th mode contribution of a strong external field to the production of charged meson pairs [6,23], whose Hamiltonian reads


H^=12[image: there is no content]2[image: there is no content]+[image: there is no content]2[image: there is no content]+[image: there is no content]ω2[image: there is no content]2



(1)




where i) [image: there is no content] and [image: there is no content] are quantum operators, ii) A and [image: there is no content] classical canonical conjugate variables and iii) [image: there is no content] is an interaction term that introduces nonlinearity, [image: there is no content] being a frequency. The quantities [image: there is no content] and [image: there is no content] are masses, corresponding to the quantum and classical systems, respectively. As shown in Reference [4], in dealing with Equation (1) one faces an autonomous system of nonlinear coupled equations


d⟨[image: there is no content]2⟩dt=⟨L^⟩[image: there is no content],d⟨[image: there is no content]2⟩dt=−[image: there is no content]ω2⟨L^⟩,d⟨L^⟩dt=2([image: there is no content]2[image: there is no content]−[image: there is no content]ω2⟨[image: there is no content]2⟩),dAdt=[image: there is no content][image: there is no content],d[image: there is no content]dt=−e2[image: there is no content]A⟨[image: there is no content]2⟩,



(2)




where L^=[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]. The system of Equation (2) follows immediately from Ehrenfest’s relations [4]. To study the classical limit we also need to consider the classical counterpart of the Hamiltonian given by Equation (1)


H=12p2[image: there is no content]+[image: there is no content]2[image: there is no content]+[image: there is no content]ω2x2



(3)




where all the variables are classical. Recourse to Hamilton’s equations allows one to find the classical version of Equation (2) (see Reference [4] for further details). These equations are identical in form to Equation (2) after suitable replacement of quantum mean values by classical variables, i.e., ⟨[image: there is no content]2⟩⇒x2, ⟨[image: there is no content]2⟩⇒p2 and [image: there is no content]. The classical limit is obtained by letting the “relative energy”


[image: there is no content]=|E|I1/2[image: there is no content]→∞



(4)




where E is the total energy of the system and I is an invariant of the motion described by the system of equations previously introduced (Equation (2)), related to the Uncertainty Principle


I=⟨[image: there is no content]2⟩⟨[image: there is no content]2⟩-⟨L^⟩24≥ℏ24



(5)




A classical computation of I yields [image: there is no content]. Thus, I vanishes when it is evaluated using the classical variables A and [image: there is no content], for all t, i.e., I(A,[image: there is no content])=0, a fact that exhibits the self-consistency of our methodology. A measure of the degree of convergence between classical and quantum results in the limit of Equation (4) is given by the norm [image: there is no content] of the vector [image: there is no content] [4]


[image: there is no content]Δu=|u-ucl|



(6)




where the three components vector u=(⟨[image: there is no content]2⟩,⟨[image: there is no content]2⟩,⟨L^⟩) is the “quantum” part of the solution of the system defined by Equation (2) and [image: there is no content] its classical counterpart.



A detailed study of this model, was performed in References [4,23]. The main results of these references, pertinent for our discussion, can be succinctly detailed as follows: in plotting diverse dynamical quantities as a function of [image: there is no content] (as it grows from unity to ∞), one finds an abrupt change in the system’s dynamics for a special value of [image: there is no content], to be denoted by [image: there is no content]cl. From this value onwards, the pertinent dynamics starts converging to the classical one. It is thus possible to assert that [image: there is no content]cl provides us with an indicator of the presence of a quantum-classical “border”. The zone


[image: there is no content]<[image: there is no content]cl



(7)




corresponds to the semi-quantal regime investigated in Reference [23]. This regime, in turn, is characterized by two different sub-zones [23]. One of them is an almost purely quantal one, in which the microscopic quantal oscillator is just slightly perturbed by the classical one, and the other section exhibits a transitional nature (semi-quantal). The border between these two sub-zones can be well characterized by a “signal” value [image: there is no content]P. A significant feature of this point resides in the fact that, for [image: there is no content]≥[image: there is no content]P, chaos is always found. The relative number of chaotic orbits (with respect to the total number of orbits) grows with [image: there is no content] and tends to unity for [image: there is no content]→∞ [23].



Thus, as [image: there is no content] grows from [image: there is no content]=1 (the “pure quantum instance”) to [image: there is no content]→∞ (the classical situation), a significant series of morphology changes is detected, specially in the transition-zone ([image: there is no content]P≤[image: there is no content]≤[image: there is no content]cl). The concomitant orbits exhibit features that are not easily describable in terms of Equation (6), which is a global measure of the degree of convergence in amplitude (of the signal). What one needs instead is a statistical type of characterization, as that described in References [29,30,31], involving the notions of entropy and statistical complexity. Both quantifiers can be evaluated in various ways as, for instance, by employing the wavelet approach (see References [29,30] and references therein) or the Bandt and Pompe method (see Reference [31] and references therein). These two statistical quantifiers are able to adequately identify the properties of the three zones that enter the quantum-classical evolution (as [image: there is no content] varies). However, the intermediate-transition zone needs still more detailed analysis that will be shown below to be provided by recourse to the symbolic transfer entropy.




3. Symbolic Transfer Entropy


In order to understand the flow of information between two different time series Schreiber [2] introduced the transfer entropy concept. This quantifier allows to determine driving and responding elements and to detect asymmetry in the interaction between two systems. Let us consider [image: there is no content] and [image: there is no content], [image: there is no content], two realizations of the systems X and Y. The transfer entropy, defined as the Kullback-Leibler entropy between the conditional probabilities p(xi+1|[image: there is no content],[image: there is no content]) and p(xi+1|[image: there is no content]), measures the deviation from the generalized Markov property


p(xi+1|[image: there is no content],[image: there is no content])=p(xi+1|[image: there is no content])



(8)




This deviation quantifies the influence of the system Y on X. Observe that the transfer entropy is explicitly nonsymmetric under the changes of [image: there is no content] and [image: there is no content]. This tool has been applied for assessing causality relations in different fields like econophysics [32,33,34] and chaotic communications [35]. It was also shown that the Schreiber’s definition of TE coincides with the standard definition of the conditional mutual information [36,37].



Unfortunately, due to several drawbacks such as the high amount of data required and its sensitivity to noise contributions, this information theoretic measure is very hard to estimate in practical analyses. More recently, Staniek and Lehnertz [3] proposed a modified version of the transfer entropy, the symbolic transfer entropy, based on the Bandt and Pompe symbolization technique [38]. The new symbolic series are obtained by reordering the amplitude values of the original time series [image: there is no content] and [image: there is no content]. Consider the sequence of amplitude values associated to the time series [image: there is no content] with embedding dimension [image: there is no content] and time delay τ given by


[image: there is no content]↦xi-(D-1)τ,xi-(D-2)τ,⋯,xi-τ,[image: there is no content]



(9)




o each time i we are assigning a D-dimensional vector that results from the evaluation of the time series at times [image: there is no content]. Clearly, the greater the D value, the more information about the past is incorporated into the ensuing vectors. By the ordinal pattern of order D related to the time i we mean the permutation [image: there is no content]i=(r0,r1,⋯,rD-1) of [image: there is no content] defined by


[image: there is no content]



(10)




In this way the vector defined by Equation (9) is converted into a unique symbol [image: there is no content]i. Further details about the Bandt and Pompe method can be found in References [39,40]. For all the [image: there is no content] possible permutations [image: there is no content]i of order D, their associated relative frequencies can be naturally computed by


p([image: there is no content]i)=♯{i|1+(D-1)τ≤i≤Nandihasordinalpattern[image: there is no content]i}N-(D-1)τ



(11)




where ♯ is the cardinality of the set—roughly speaking, the number of elements in it. Thus, a permutation probability distribution Px={p([image: there is no content]i),i=1,⋯,D!} is obtained from the time series [image: there is no content] [42]. Obviously the same can be done for [image: there is no content]. Given these permutation probability distributions the symbolic transfer entropy (STE) is defined as


[image: there is no content]=∑p([image: there is no content]i+δ,[image: there is no content]i,[image: there is no content])logp([image: there is no content]i+δ|[image: there is no content]i,[image: there is no content])p([image: there is no content]i+δ|[image: there is no content]i)



(12)




where the sum runs over all possible permutations and δ denotes a time step. The joint probability p([image: there is no content]i+δ,[image: there is no content]i,[image: there is no content]) is the joint relative frequency of the three events [image: there is no content]i+δ, [image: there is no content]i and [image: there is no content]. The conditional probabilities p([image: there is no content]i+δ|[image: there is no content]i,[image: there is no content]) and p([image: there is no content]i+δ|[image: there is no content]i) are given by


p([image: there is no content]i+δ|[image: there is no content]i,[image: there is no content])=p([image: there is no content]i,[image: there is no content],[image: there is no content]i+δ)/p([image: there is no content]i,[image: there is no content])



(13)




and


p([image: there is no content]i+δ|[image: there is no content]i)=p([image: there is no content]i,[image: there is no content]i+δ)/p([image: there is no content]i)



(14)




respectively. The symbolic transfer entropy [image: there is no content] quantifies the flow of information from system Y to X. [image: there is no content] is defined in the same way. Finally, the directionality index [image: there is no content]=[image: there is no content]-[image: there is no content] allows us to determine the dominating direction of information flow between the two systems X and Y. If [image: there is no content], X will be the driving system and Y the responding one. On the other hand this quantifier will be negative for Y driving X.




4. Results


Remember that the CLQM-model we are dealing with here is represented by five non-linear coupled equations (Equation (2)). A correct reconstruction of the attractor associated with the integration of this system is achieved using an embedding dimension [image: there is no content]. We will deal with vectors with components of [image: there is no content] data-points each one, for each orbit. Notice that the condition [image: there is no content] is satisfied. We take the time delay [image: there is no content] as it is usually chosen [38]. In obtaining our numerical results we chose [image: there is no content]=[image: there is no content]=[image: there is no content]=e=1 for the system’s parameters. For the initial conditions needed to tackle our system (Equation (2)) we took [image: there is no content], i.e., we fixed E and then varied I so as to obtain our different [image: there is no content]-values. Additionally, we set [image: there is no content], [image: there is no content] (both in the quantum and the classical instances), and [image: there is no content] taking values in the interval [image: there is no content], with [image: there is no content]. The data-points used to evaluate the probability distribution p in Equation (12) are given by both, the solutions of Equation (2) and its classical counterpart. Finally, a time step [image: there is no content] was used in our calculations.



We will here choose X, in Equation (12), as representing the series of values pertaining to a quantum system’s variable, while Y does the same classically. Figure 1 and Figure 2 display the quantities [image: there is no content], [image: there is no content] and [image: there is no content] vs. [image: there is no content], taking [image: there is no content] and [image: there is no content]. Instead, in Figure 3 we have [image: there is no content] and c≡[image: there is no content]. Similar results ensue if other pairs of quantum-classical variables are selected, that are not shown on space-saving grounds.


Figure 1. a) The directionality index [image: there is no content] vs. [image: there is no content] and b) [image: there is no content] and [image: there is no content] vs. [image: there is no content], for a wide [image: there is no content]-range. We took [image: there is no content] and [image: there is no content]. The classical variable A is dominant across most of the range, except for small [image: there is no content]-values, for which Uncertainty Principle becomes important enough that the quantal variable [image: there is no content] becomes dominant. Note the absolute minimum of [image: there is no content] at [image: there is no content]cl=21.55264, beginning of the transition region.



[image: Entropy 12 00148 g001]





Figure 2. a) The directionality index [image: there is no content] vs. [image: there is no content] and b) [image: there is no content] and [image: there is no content] vs. [image: there is no content], for an [image: there is no content]-range that allows to visualize the three zones of the process, i.e., quantal, transitional, and classic, delimited, respectively, by [image: there is no content]P=3.3282, and [image: there is no content]cl=21.55264. We took [image: there is no content] and [image: there is no content] as in Figure 1. Note the absolute minimum of [image: there is no content] at [image: there is no content]cl, the local maximum at [image: there is no content]P, and the absolute maximum close by ([image: there is no content]≃2.2). Symmetric information flow obtains at [image: there is no content] (where the Statistical Complexity attains a maximum), well within the transition region. Classical variable A is the “leading” one from [image: there is no content] until this point. For smaller [image: there is no content]-values, [image: there is no content] becomes dominant.



[image: Entropy 12 00148 g002]





Figure 3. The directionality index [image: there is no content] vs. [image: there is no content] and [image: there is no content] and [image: there is no content] vs. [image: there is no content] (inset). Here we took [image: there is no content] and c≡[image: there is no content]. The three stages of the process are visible between [image: there is no content]P=3.3282 and [image: there is no content]cl=21.55264. Note the [image: there is no content]-absolute maximum at [image: there is no content]P. [image: there is no content] is here slightly off the mark (see text).



[image: Entropy 12 00148 g003]






We pass now to consider what happens when [image: there is no content] varies moving leftward from [image: there is no content]. In the fully classical case ([image: there is no content]), A-[image: there is no content] “lead” [43] the remaining variables of the system of classical equations [image: there is no content]. For large [image: there is no content]’s ([image: there is no content] but small) the classical variables A-[image: there is no content] “still dominate” and lead the quantal ([image: there is no content],⟨p2⟩,⟨L^⟩)-ones. See Figure 1 for the A-⟨x2⟩-scenario. This plot, and also Figure 2, are representative of our process. As [image: there is no content] diminishes further and reaches the particular value [image: there is no content]=[image: there is no content]=6.81 where [image: there is no content]=0 (Figure 2), the behavior changes. From then on, the quantum mean value [image: there is no content] begins to dominate. As [image: there is no content] decreases (or I grows) the influence of the Uncertainty Principle becomes stronger, thus we conclude that it is the responsible for the change. At [image: there is no content]=[image: there is no content] the Uncertainty Principle becomes important enough and the quantum variable suddenly begins to drive the process (Figure 2). It dominates until, for [image: there is no content]=1, we again get [image: there is no content]=0. This last result is to be expected, since for [image: there is no content]=1 the quantum system acquires all the energy E=I1/2[image: there is no content] and the classical one gets located at the fixed point (A=0,[image: there is no content]=0) [23]. Since [image: there is no content] the two system become decoupled and no information flows between them. Note in Figure 2b) that [image: there is no content] and [image: there is no content] practically vanish. Small biases are obtained due to finite-sample effects. If we increase the series’ size these errors diminish. Anyway, if [image: there is no content]≃1, [image: there is no content]=[image: there is no content] and no error is found in [image: there is no content] [3]. Figure 3 depicts a similar behavior, the variables now being [image: there is no content] and [image: there is no content]. Any classical-quantal pair of variables will exhibit the same behavior.



As it should be expected, in the quantum zone quantal variables predominate, and vice versa in the classical region. On the other hand, we note that at the symmetric-flow point [image: there is no content]=[image: there is no content], the Statistical Complexity attains a maximum [29,30,31]. We remind the reader the so called Statistical Complexity reflects on the systems’s architecture, being different from zero only if there exist privileged, or more likely states among the accessible ones. It quantifies not only randomness, but the presence of correlational structures as well. The opposite extremes of perfect order and maximal randomness possess no structure to speak of. In between these two special instances, a wide range of possible degrees of physical structure exist, degrees that should be reflected in the features of the underlying probability distribution [41]. In Figure 3, the value [image: there is no content]=0 does not obtain exactly at [image: there is no content] but very near it, with a relative error [image: there is no content]. Note that [image: there is no content] divides into two sections the transitional region. The information flow in the leftward subregion is from the quantal variables to the classical ones. In the rightward subregions the information flow reverses its sign. In the former sub-zone the quantum-classical mixture characterizes a phase-space with more non-chaotic than chaotic curves while in the other one things turn around [23].







The other interesting points in the [image: there is no content]-evolution are [image: there is no content]P and [image: there is no content]cl , at which the transition-zone and the classical one, respectively, begin. At [image: there is no content]cl=21.55264 one detects the presence of an absolute minimum of the directional index [image: there is no content] (Figure 1) that measures the quantum-to-classic subsystems flow. This minimum is to be read as representing maximal influence of the classical variables over the quantal ones. In the vicinity of [image: there is no content]P=3.3282 ([image: there is no content]≃2.2) we encounter an absolute maximum of [image: there is no content] and thus of the quantum-to-classic subsystems flow. There is also a local maximum at [image: there is no content]P (that becomes absolute if [image: there is no content] is evaluated for the pair [image: there is no content] - [image: there is no content] (Figure 3)). Thus the transition zone is located within both minimum and maximum values of the classic-to-quantum subsystems flow. The three quantities [image: there is no content], [image: there is no content], and [image: there is no content] correctly describe the convergence of our quantal results towards the classical ones, as depicted in Figure 1 (fluctuations disappear for large enough values of [image: there is no content]).





One can also argue that the present results shed new light on what was called the quantal zone in References [29,30,31]. Strictly speaking, the system of Equation (2) always describes a semiclassical system, for any [image: there is no content]. A trivial instance is that of [image: there is no content]=1, in which classical-quantal decoupling takes place. In the vicinity of [image: there is no content]=1 the system behaves like a slightly perturbed quantum harmonic oscillator. As [image: there is no content] grows, that associated orbits undergo a deformation process, but retain their quasi-periodic nature, as long as [image: there is no content] remains within the quantum zone, however the system of Equation (2) does represent a coupled system, entailing that the evolution of the quantal variables depends upon the classical ones. Thus, it is not a trivial fact that we can speak of a quantum zone. That we properly do is now confirmed in the light of our present results regarding the fact that the quantum variables govern the information flow in this zone.




5. Conclusions


In the present communication we have delved into the classical-quantal frontier problem using as a tool the symbolic transfer entropy for investigating the dynamics generated by a semi-classical Hamiltonian that represents the zero-th mode contribution of an strong external field to the production of charged meson pairs [6,23].



The dynamical analysis of the problem performed in Reference [23] specified the highlights of the road towards classicality of the dynamics of the semi-quantum system in question, via a description in terms of the relative energy [image: there is no content] given by Equation (4). As [image: there is no content] grows from [image: there is no content]=1 (the “pure quantum instance”) to [image: there is no content]→∞ ([image: there is no content], the classical situation), a significant series of morphology changes are detected in the solutions of the system of nonlinear coupled equations defined by Equation (2). The concomitant process takes place in three stages: quantal, transitional, and classic, delimited, respectively, by special values of [image: there is no content], namely, [image: there is no content]P and [image: there is no content]cl. This dynamical description was also reobtained later via statistical treatments in References [29,30,31].



Here we have seen that using the notion of symbolic transfer entropy with its directional index [image: there is no content] the problem tackled in these references can be expressed in a different light, namely, as an information flow between classical and quantal variables. We demonstrate that, starting from [image: there is no content]=∞ leftwards, classical variables lead the process until the effects of the Uncertainty Principle become important enough at [image: there is no content]. At this particular value the information flow becomes symmetric and for larger energy values it reverses its sign. We conclude that the Uncertainty Principle is the responsible for this change so that we can associate the flow inversion with the classical-quantal transition. At [image: there is no content] the statistical complexity becomes maximal [29,30,31] entailing that symmetry of information flow is tantamount with maximum complexity. We note that [image: there is no content]P and [image: there is no content]cl are, respectively, points of maximal quantal-classical and maximal classical-quantal information-flows. Additionally, the present results shed new light on what was called the quantal zone, as discussed at the end of the preceding section, as therein the quantum variables do govern the information flow.



Finally, we have shown the efficiency of the new information-quantifier called the symbolic transfer entropy and protagonist of the present considerations, validating its physical significance, which should encourage its application to other problems.
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