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Abstract: This paper proposes a new method for estimating seismic wavelets. Suppose a 

seismic wavelet can be modeled by a formula with three free parameters (scale, frequency 

and phase). We can transform the estimation of the wavelet into determining these three 

parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic 

signal, while the other two parameters are obtained by the Higher-order Statistics (HOS) 

(fourth-order cumulant) matching method. In order to derive the estimator of the  

Higher-order Statistics (HOS), the multivariate scale mixture of Gaussians (MSMG) model 

is applied to formulating the multivariate joint probability density function (PDF) of the 

seismic signal. By this way, we can represent HOS as a polynomial function of second-

order statistics to improve the anti-noise performance and accuracy. In addition, the 

proposed method can work well for short time series. 

Keywords: seismic wavelet; estimation; cumulant; MSMG model 

 

1. Introduction  

In seismic exploration, a seismic trace y(n) can be often represented as the convolution of a wavelet 

w(n) with the reflectivity series r(n) plus a superposed noise n(n): 

( ) ( ) ( ) ( ) ( ) ( )nnnwnrnnnsny +∗=+=  (1) 
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where * denotes the convolution, s(n) represents the clean signal. It is generally assumed that 

reflectivity is a white super-Gaussian process; the noise is a white Gaussian process, and the wavelet is 

a band-limited filter. 

In equation (1), the reflectivity series, the wavelet, and noise are unknown, except for the seismic 

trace, which can be obtained by a seismic receiver, so estimation of the wavelet and the reflectivity 

series from the seismic trace is a typical blind deconvolution problem.  

Many techniques have previously been developed for this purpose, and these have been reviewed 

and described in detail in the literature. One early technique, which assumes that the reflectivity 

sequence is a Gaussian white noise, supplies a minimum phase wavelet from the second-order 

statistical content of the trace signal [1,2]. Unfortunately, this approach is not satisfactory since the 

source wavelet is usually non-minimum phase, and the reflectivity sequence is not well described by a 

Gaussian model. 

Another way of applying the whiteness hypothesis to estimating the wavelet consists in general 

purpose information criteria [3–6]. It is related to minimizing the mutual information rate, which 

measures the independence degree of the deconvolved data sequence. Though there are some 

shortcomings to be overcome in the method, such as sensitivity to noise, finding global optimum, and 

so on, it is still a very important approach due to the absence of limitations for the wavelet phase.   

In the blind deconvolution context, the problem is ill posed, and extra assumptions about the 

reflectivity or about the wavelet are necessary. For instance, one can model the reflectivity sequence by 

using a Bernoulli-Gaussian (BG) model. In the literature, a few approaches based on spike 

detection/estimation and BG models have been proposed using a maximum-likelihood approach or in a 

Bayesian framework adding some priors [7–9]. For seismic field data, the reflectivity sequence 

changes do not appear as clearly as predicted by the BG model, therefore, the sparse nature of the input 

signal is not a sufficiently robust hypothesis for good system estimation [3]. 

The cumulant matching (CM) method has been developed for estimating a mix-phase wavelet from 

a convolutional process [10]. Matching between the trace cumulant and the wavelet moment is done in 

a minimum mean-squared error sense under the assumption of a non-Gaussian, stationary and 

statistically independent reflectivity sequence. The reliability of the Higher-order Statistics (HOS) 

matching method depends strongly on the amount of data available. Thus, in this paper, we are 

interested in the problem of how we can estimate the HOS from the field recordings accurately and 

efficiently without having a large amount of data available. A computationally efficient method is 

proposed for computing the HOS (fourth-order and sixth-order cumulants) based on the joint 

probability distribution function (PDF) of the output seismic signal, which is described by the 

multivariate scale mixture of Gaussians (MSMG) model. Using this PDF model, we can represent 

HOS as a polynomial function of Second-order Statistics (SOS); hence we work just with SOS. Since 

SOS is phaseless, we apply constant-phase rotations technique to estimating the wavelet phase. 

Simulation result is provided showing the performance of the method, and the proposed method is seen 

to work satisfactorily in a real data example. 

This paper is organized as follows. In Section 2, we describe the wavelet model and introduce the 

general CM methods for estimating the wavelet parameters. After introducing MSMG PDF model 

briefly in Section 3, and in Section 4, we derive the cumulants of the field recordings from second-
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order to sixth-order based on MSMG model, and use the one-dimensional cumulant rate (ODCR) to 

match the one-dimensional rate of the wavelet moment in order to obtain the scale and frequency 

parameters of the wavelet; we then illustrate performances of different orders ODCR for estimating the 

wavelet. In Section 5, we describe our wavelet estimation procedure. Examples illustrating the 

effectiveness of our approach are given in Section 6. Finally, we summarize our work in Section 7. 

2. Wavelet Model and the General CM Methods 

In reservoir geophysics, the seismic wavelet usually can be approximated by a formula as  

follows [11]: 

( )ϕπσ +=








−

ftetw

t

2cos)(

2

 (2) 

where the scale, σ, controls the width of the seismic wavelet, φ is its initial phase and f is its dominant 

frequency. Without loss of generality, we let the amplitude of the wavelet be a unit. 

2.1. Estimating the Phase  

The optimum phase could be estimated by applying a series of constant-phase rotations to the 

analyzed seismic trace [12]. The rotated trace yrot(n) can be obtained from the original trace y(n) by 

( ) ( ) ( )[ ]nyHnynyrot ⋅+⋅= ϕϕ sincos  (3) 

where φ denotes the phase rotation angle, and H[·] is the Hilbert transform. Since a zero-phase wavelet 

contains the majority of its energy in relatively narrow time duration, its kurtosis is larger than that of 

any non-zero-phase wavelet. So, when the kurtosis of yrot(n) reaches its maximum, the related angle, φ 

is considered as the most likely negative wavelet phase of y(n). This method for estimating the phase of 

a seismic wavelet is called the constant-phase rotation method, which is very important to the blind 

deconvolution of seismic traces.  

The constant-phase rotation method is based on the theory of entropy. The operation of rotating the 

seismic trace results in the increase of its non-Gaussianity. Negentropy is used to measure the non-

Gaussianity of a random variable, which is defined as:  

( ) ( ) ( )XHXHXH Gaussneg −=  (4) 

where H(X) denotes the entropy of random variable X, XGauss is a Gaussian variable with the same 

variance as that of X. Negentropy is nonnegative, and will become larger as a random variable goes off 

the Gaussianity. 

In practice, the negentropy of a random variable with zero mean and unit variance can 

approximately be obtained as follows [13]: 

( ) ( ) ( )XkurtXEXH neg

223

48

1
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1
+≈  (5) 

where: 

( ) ( ) 34 −= XEXkurt  
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is defined as kurtosis of X. If X has a symmetrical probability distribution function, the equation above 

reduces to:  

( ) ( )XkurtXH neg

2

48

1
≈  (6) 

Hence, the constant-phase rotation method is identical to the minimum entropy deconvolution 

proposed by R.A. Wiggins. To guarantee scale-invariance, Wiggins adopted the standardized 4th 

cumulant as a criterion to performing optimization, for a random variable with zero mean, which is: 

( ) ( )
( ) 3

22

4

−=
XE

XE
Xk  (7) 

The kurtosis is usually calculated by (7) for the constant-phase rotation method.  

2.2. Estimating the Scale and Frequency of the Seismic Wavelet 

To estimate the scale and frequency parameters, one can use various cumulants to match the wavelet 

moments based on the above models (1) and (2). 

In model (1), based on the assumption that reflectivity is a zero-mean, non-Gaussian, stationary and 

statistically independent sequence, and the wavelet represents a linear, time-invariant, causal and stable 

filter, the resulting seismic trace is thus a zero-mean discrete stationary random process, we further 

assume that {y(n)} is kth-order stationary, then, we have the following formula: 

( ) ( ) ( ) ( ) ( ) ( )3,,, 11121
)( ≥++= ∑ −− knwnwnwc

n

k

k

rk

k

y ττγτττ LL  
(8) 

where: 

( )( )121 ,,, −k

k

yc τττ L
( ) ( ) ( ) ( ) ( )( )121 ,,,, −+++= k

k nynynynycum τττ L  

denotes the joint kth-order cumulant of the random variables y(n), y(n + τ1), …, y(n + τk-1), and γr
(k) 

denotes the kth-order cumulant of reflectivity sequence. The above equation establishes the relation 

between the kth-order cumulant of {y(n)} and the wavelet, which was proposed in 1955 by  

Bartlett [14] and in 1967 by Brillinger and Rosenblatt [15]. 

Since the reflectivity sequence distribution is unknown, γr
(k) cannot be obtained, we have to match 

the wavelet by means of the ratio of cy
(k)(τ1, τ2, …, τk-1) to cy

k,  

where: 
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Hence, following from (8), we have:  
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So, the cumulant matching method can be performed in a minimum mean-squared error sense by 

defining the cost function: 
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 (10) 

where r̂ y
(k)(τ1, τ2, …, τk-1) denotes the estimate of ry

(k)(τ1, τ2, …, τk-1). 

3. MSMG (Multivariate Scale Mixture of Gaussians) Model 

In many real world data sets involving multivariate observations, the data have an empirical 

distribution which is highly peaked at zero (or the mean vector), and which asymptotically falls off 

more slowly than the Gaussian distribution as the distance from zero increases. We deal these 

distributions with sparse distributions, which can be frequently encountered in various areas, like blind 

source separation and independent component analysis (ICA), etc. Multivariate observations, which are 

mutually correlated and have higher-order dependencies, have frequently been represented using 

mixture of Gaussians models. In the above blind deconvolution context, the reflectivity sequence is 

said a white sparse distribution. As a convolution of a wavelet with the reflectivity series, the clean 

signal presents sparse and correlated nature, and can also be represented using mixture of Gaussians 

models. A random vector Y with zero mean called Multivariate scale mixture of Gaussians distribution 

can be described as follows [16–18]. 

Let X be an N-dimensional, zero mean Gaussian variable with covariance matrix equal to the 

identity matrix. And furthermore let Γ∈R
N×N (N ×  N real matrix) be a positive definite symmetric 

matrix with det(Γ) = 1, and let Z be a scalar random variable with PDF gz(z), which can attain only 

positive values. We denote variable Y a multivariate scale mixture of Gaussians according to: 

XΓY 2/1
Z=  (11) 

Given a PDF gz(z) for the scale parameter Z, the marginal PDF for Y can be obtained by averaging 

the PDF of Y|Z over the density of Z: 
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The characteristic function of Y can be written as:  
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where: 
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Using (13), we have: 
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Hence, we have: 
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where µY is mean vector of Y, RY is covariance matrix of Y. 

4. Estimating the HOS of Recorded Seismic Trace Based on MSMG Model 

4.1. Calculating the HOS of Recorded Seismic Trace 

Assuming that the clean signal s(n) is independent of additive noise n(n), using (1), we can write the 

characteristic function of  the seismic trace as: 

( ) ( ) ( )ωωω nsy ΦΦ=Φ  (16) 

where y = [y1, y2, …, yN]T is the N-dimensional vector formed by the seismic trace, Φs(ω) is the 

characteristic function of clean signal which can be given by (13), and Φn(ω) is the characteristic 

function of additive noise.  

Noting that the noise is a white Gaussian process, we have: 

( ) ( ) ( ) ( ) 
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where σn
2 is noise variance. 

The cumulant-generating function of the seismic trace is: 
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It is well known that there is a relationship between the cumulant-generating function and the 

cumulant given by [19]: 
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where j2 = −1.  

Representation (19) plays a fundamental role in calculating the cumulant, using (18) and (19), we 

can calculate the cumulant of the seismic trace. The calculated cumulants of the recorded seismic trace 

from second-order to sixth-order are shown in Table1, and the details are given in Appendix A. 
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Table 1. Calculated cumulants. 

( )( )ji yycum ,2  ( ) ijnij ZE δσ 2+Γ  

( )( )
sji yyycum ,,3  0 
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( )( )
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( ) ( ) ( ) ( )[ ]ZEZEZEZE
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where Γij denotes the ith row and the jth column element of Γ.  

Similarly, based on above result and using (9), we obtain the ratios of cy
(k)(τ1, τ2, …, τk-1) to cy

k for 

fourth-order and sixth-order, which are in Table 2, where ρs(j − i) = Rs(j − i)/Rs(0), is the correlation 

coefficient of s(n). The details are given in Appendix B. 

Table 2. Cumulant rate. 

( )( )
tsjiy yyyyr ,,,4  ( ) ( ) ( ) ( ) ( ) ( )[ ] 3itsjjtisstij ssssss −−+−−+−− ρρρρρρ  
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4.2. One-dimensional Cumulant Rate 

In practice, using one-dimensional cumulant rate (ODCR) is sufficient for us to estimate the wavelet 

parameters. To express succinctly, we denote different orders ODRC in convenient form,  

for instance:  
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The different orders ODRC and their relation to the corresponding one-dimensional rate of the 

wavelet moments, following from (10), are shown in Table 3, where m denotes time lag. 
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Table 3. ODCR and the rate of wavelet moment. 
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4.3. Estimating ODCR 

Noting that ρs(0) is equal to one, and following from Table 2, we can obtain the ODCR, which take 

the form: 

( ) ( ) ( )( )134 , mnny yyr + ( )msρ=  (20a) 
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To obtain ODCR, we need to estimate ρs(m). It follows from (1) that: 

( ) ( ) ( )mmRmR nsry δσσ 22 +=  (21a) 

( ) ( ) 22 00 nsry RR σσ +=  (21b) 

( )
( )
( )

( )
( )

( )
( )

( )0
0100 2222

2

≠
+

=
+

== m
R

m

R

mR

R

mR
m

srn

s

nsr

sr

y

y

y
σσ

ρ

σσ

σ
ρ  (21c) 



Entropy 2010, 12                            

 

 

22

where σr
2 denotes reflectivity variance, and δ(m) is Dirac function, Ry(m) and ρy(m) denote the 

autocorrelation function and the correlation coefficient of the seismic trace respectively. Hence,  

we have: 
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The term σr
2
Rs(0)/σn

2 denotes Signal-to-Noise Ratio (SNR). In practice, usually we do not possess 

the clean data; we have to estimate ρy(m) as a substitution for ρs(m). It follows from (22) that the 

estimation error increases as the SNR drops. 

Using above results, we can establish now the estimators of ODCR, which are given by: 
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5

3
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where ρ̂ y(m) is the estimation of ρy(m). 

4.4. The Behavior of ODCR with Different Orders 

To obtain a good estimation, it is necessary for us to exploit the differences between the different 

order ODCRa for matching waveleta. In this section, we thus define the different error to evaluate each 

estimated ODCR. 

It follows from (9) and Table 3, that the value of that the true ODCR, derived from seismic data, 

divided by the corresponding one-dimensional rate of the wavelet moment, is equal to one. As for the 

estimated ODCR, the above value cannot be one, thus, we use the absolute value of the deviation from 

one to define error, which is shown in Table 4, where M denotes the maximal time lag. 

We have simulated the seismic trace by convolving a super-Gaussian reflectivity with a seismic 

wavelet with zero phase, plus additive white noise, to select which one can match the wavelet best. 

Figure 1 illustrates the error behavior of ODCR with different orders, in terms of the summation of 

error, versus the number of simulation times, where the error following from correlation coefficient 

(the first row of Table 4) is compared with other errors from ODCR. We obtain the numerical results 

presented below by performing independent simulation trial 100 times. The simulation setting is shown 

in Table 5. 
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The reflectivity sequence samples are distributed according to a generalized Gaussian  

distribution (GGD). The PDF of a zero-mean generalized Gaussian random variable R with  

deviation λ is: 
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where λ > 0 and Γ
~

(·) defines the complete Gamma function given by: 

1

0
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z x e dx
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 (24c) 

A(ν, λ) is a generalized measure of the variance and defines the dispersion of the distribution, while 

the parameter ν  describes the exponential rate decay and, in general, the shape of the peak at the center 

of the distribution. Well-known special cases of the GGD function include a Laplacian distribution (ν = 

1) and a normal distribution (ν = 2). In effect, smaller values of the shape λ correspond to heavier tails 

and therefore to more peaked distributions. We perform 512 Monte-Carlo runs to obtain the reflectivity 

sequence samples; a typical reflectivity sequence is presented in Figure 4. 

Table 4. Error. 
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Table 5.  Simulation setting. 

σ  f  M  ν  λ  SNR 

s02.0  Hz3.30  15  9.0  28.0  dB2.7  
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As can be seen from Figure 1, r̂ y
(4)(yn

(2), yn+m
(2)) gains the best performance to match the wavelet, 

the next is r̂ y
(6)(yn

(4), yn+m
(2)). Moreover, in our simulation trials, the error variances of using  

r̂ y
(4)(yn

(2), yn+m
(2)) and r̂ y

(6)(yn
(4), yn+m

(2)) are very small, about 3 × 10−4 and 5 × 10−4 respectively, others 

are about 0.01, which implies the numerical robustness. 

Figure 1. The error behavior of ODCR with different orders.  
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Figure 2 shows the change of the performance of r̂ y

(4)(yn
(2), yn+m

(2)) with the wavelet frequency. We 

can see that there is no distinct change when the frequency varies. Like the other methods, the smaller 

the value of the scale of the wavelet is, the better estimation values our method can obtain. In order to 

test our method, we choose a comparatively large scale value for the wavelet in the simulation. 

Figure 2. The change of the performance in variation with wavelet frequency. 
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To complete our discussion, we finally compare the performance of r̂ y
(4)(yn

(2), yn+m
(2)) derived from 

MSMG model with that of the same one estimated directly from the recorded seismic trace.  

r̂ y
(4)(yn

(2), yn+m
(2)), estimated directly from the recorded seismic trace, is denoted as r̂ y0

(4)(yn
(2), yn+m

(2)).  
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According to: 
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we have the estimator for r̂ y0
(4)(yn

(2), yn+m
(2)) given by: 
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Similarly, we define the error and its summation in term of r̂ y0
(4)(yn

(2), yn+m
(2)), given by: 
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We also perform independent simulation trial 100 times in the same setting which is shown in  

Table 5, the result illustrated in Figure 3 shows that using r̂ y0
(4)(yn

(2), yn+m
(2)) to match the wavelet is 

very poor, the drastically different performance with that of using r̂ y
(4)(yn

(2), yn+m
(2)) consist in that the 

outliers of seismic trace pose a serious influence on the HOS estimation. 

Figure 3. The error performance of r̂ y
(4)(yn

(2), yn+m
(2)) and r̂ y0

(4)(yn
(2), yn+m

(2)). 
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5. Estimating the Wavelet 

We can solve our problem in a two-step approach. First, we estimate the wavelet phase using the 

constant-phase rotation method. Then, we use r̂ y
(4)(yn

(2), yn+m
(2)) to match the rate of the wavelet 

moment in order to obtain the scale and frequency parameters. Since the estimator of ODCR is a 

polynomial function of the correlation coefficient, and the correlation coefficient is phaseless, we can 

perform these two steps. 

As for computing the rate of the wavelet moment, since correlation coefficient is phaseless, we use 

the wavelet by simply taking the form: 

)2cos()(

2

ftetw

t

πσ








−

=  (27a) 

Its discrete moment rate corresponding to r̂ y
(4)(yn

(2), yn+m
(2)) is: 
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Minimizing cost function: 
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we can obtain the scale and frequency parameters: 

Jf
f,

minarg]ˆ,ˆ[
σ

σ =  
(28b) 

This is done by simply searching for different values of the scale and frequency among their 

reasonable scopes, which can be obtained from the spectrum of the seismic trace. Based on above 

results, we summarize the seismic wavelet estimate algorithm as follows: 

1. Use constant-phase rotation method to obtain the wavelet phase. 

2. Estimate the correlation coefficient of the recorded seismic trace, and  

compute r̂
4(yn

(2), yn+m
(2)). 

3. Compute 2,2
4,wM (m) corresponding to the different values of the scale, frequency and lags. 

4. Minimize cost function to get the scale and frequency parameters. 

6. Results 

In this section, we evaluate performance of the proposed methods for the wavelet estimation 

through simulations and real data experiments. 

6.1. Simulation Results 

We build a synthetic trace of length over 500 by convolving a super-Gaussian reflectivity with a 

wavelet defined by equation (2), plus additive white noise. Figure 4 plots the result of a simulation 

experiment. The reflectivity is simulated by a white process with GGD distribution, the true and 

estimated parameters are shown in table 6 respectively. 
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Table 6. Simulation. 

 σ  f  ϕ  M  ν  λ  SNR 

True parameter s02.0  Hz3.40  π4103.0  
15  9.0  28.0

 

dB6

 Estimated parameter s02.0  Hz875.39  π4544.0  

 

Figure 4. (a) Super-Gaussian reflectivity sequence. (b) Reflectivity histogram. (c) Noisy 

seismic trace. (d) The kurtosis value of the rotated trace versus the rotation angle (the angle 

is represented as the multiple of π). (e) Cost surface. (f) Wavelet. 
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Table 6 shows that the estimated quantities σ, f and φ are very close to their true values with small 

errors. This demonstrates that: (1) our method can work well over short time series, but the general CM 

method cannot; (2) our method has both strong anti-noise performance and high accuracy. Moreover, 

our method has low computational costs.  

6.2. Real-data Experiment 

Here, we consider real seismic trace with about 800 samples acquired from the Changqing oil field 

in China. It is noteworthy that the Wiener filter can achieve an optimum trade-off solution between 

deconvolution quality and noise amplification [6], so we find the seismic wavelet by our method and 

then improve the resolution of the seismic trace with the Wiener filter. The results are shown in  

Figure 5 where: (a) is original seismic trace, (b) denotes the deconvolved one, (c) is the estimated 

seismic wavelet, and (d) are amplitude spectrum of (a) and (b) respectively.  
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Let us compare (a) and (b). The seismic reflectors, labeled A, B in (b), are identified, but this cannot 

be done in (a) because of its poor resolution. Now let us compare them in frequency domain. Trace (d) 

shows that the amplitude spectrum of (b) is broader than (a). These show that the resolution of (b) is 

obviously high than (a).  

Figure 5. Real-data experiment. 
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7. Conclusions 

In this paper, we have proposed a new approach based on the MSMG model for estimating seismic 

wavelets. We compared the performance using HOS derived from the MSMG model with that of the 

same one estimated directly from the recorded seismic trace. The method has been applied to synthetic 

and real traces. Simulation and real-data experiment have shown the ability of our approach in the 

presence of low Signal-to-Noise Ratio and the traces without a large amount of data available. We only 

give an application of our method for enhancing the resolution of seismic trace. In fact, it can be used 

any field where seismic wavelets must be estimated from seismic data, such as seismic trace inversion, 

Q estimated with WEPIF method, etc. 
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Appendix 

A. Calculating the Cumulant 

Following from (18), let:   

( ) ( ) 







−= Γωωω

T

Z zzgzf
2

1
exp,  (A1) 

( )dzzfzI
n

n ω,
0∫
∞

=  (A2) 

We have:  

1

1

+
=









Γ−=

∂

∂
∑ n

N

k

kik

i

n I
I

ω
ω

 (A3) 

Using (19), we have: 
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where: 
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To calculate the cumulants, we need compute the following statistics:  

( )ZE
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Hence, we have: 
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(
sntmijtnsmijmnitjsmnjtismnstij ΓΓΓ+ΓΓΓ+ΓΓΓ+ΓΓΓ+ΓΓΓ=  

snjmitintmjstkimjsjntmistnjmis ΓΓΓ+ΓΓΓ+ΓΓΓ+ΓΓΓ+ΓΓΓ+  
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B. Calculating the Ratios of cy
(k)

(τ1, τ2, …, τk-1) to cy
k
 for Fourth-order and Sixth-order 

Since Γ ∈ R
N×N is a positive definite symmetric matrix, we denote the its diagonal  

element Γii = Γ0 (i = 1,2, …, N), thus, using (A6), we have: 

( ) 2

0

22 )(),( niiy zEyycumc σ+Γ==  (B1a) 
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44
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( ) )](2)()(3)([15),,,,,( 3233

0

66
zEzEzEzEyyyyyycumc iiiiiiy +−Γ==  (B1c) 

Using (9) and (A6c), we have: 
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=  (B2) 

Noting that RS is equal to E(Z)Γ, and the clean seismic data is a zero-mean discrete stationary 

random process, we have: 
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 (B3) 

Using (B2) and (B3), we have: 
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 (B4a) 

Similarly, combined with (9), (A6e), (B1c) and (B3), the following equation holds: 
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( )[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nmitsjnmjtismnstij sssssssss −−−+−−−+−−−= ρρρρρρρρρ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tnjmissnmtijtnsmij sssssssss −−−+−−−+−−−+ ρρρρρρρρρ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )intmsjtnimjsjnmtis sssssssss −−−+−−−+−−−+ ρρρρρρρρρ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )jnimstinjmtssnjmit sssssssss −−−+−−−+−−−+ ρρρρρρρρρ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] 15jnsmitsnimjtinsmjt sssssssss −−−+−−−+−−−+ ρρρρρρρρρ  

(B4b) 
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