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Abstract:



We review here the difference between quantum statistical treatments and semiclassical ones, using as the main concomitant tool a semiclassical, shift-invariant Fisher information measure built up with Husimi distributions. Its semiclassical character notwithstanding, this measure also contains abundant information of a purely quantal nature. Such a tool allows us to refine the celebrated Lieb bound for Wehrl entropies and to discover thermodynamic-like relations that involve the degree of delocalization. Fisher-related thermal uncertainty relations are developed and the degree of purity of canonical distributions, regarded as mixed states, is connected to this Fisher measure as well.
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1. Introduction


A quarter of century before Shannon, R.A. Fisher advanced a method to measure the information content of continuous (rather than digital) inputs using not the binary computer codes but the statistical distribution of classical probability theory [1]. Already in 1980 Wootters pointed out that Fisher’s information measure (FIM) and quantum mechanics share a common formalism and both relate probabilities to the squares of continuous functions [2].



The present review draws materials from much interesting work that is reported recently and devoted to the physical applications of Fisher’s information measure (see, for instance, [1,3,4,5,6]). Frieden and Soffer [3] have shown that Fisher’s information measure provides one with a powerful variational principle—the extreme physical information—that yields most of the canonical Lagrangians of theoretical physics [1,3]. Additionally, FIM has been shown to provide an interesting characterization of the “arrow of time”, alternative to the one associated with Boltzmann’s entropy [7,8]. Thus, unravelling the multiple FIM facets and their links to physics should be of general interest. The Legendre transform structure of thermodynamics can be replicated as well, without any change, if one replaces the Boltzmann–Gibbs–Shannon entropy S by Fisher’s information measure I. In particular, I possesses the all important concavity property [5], and use of the Fisher’s measure allows for the development of a thermodynamics that seems to be able to treat equilibrium and non-equilibrium situations in a manner entirely similar to the conventional one [5]. Here, the focus of our attention will be, following [9], the thermal description of harmonic oscillator (HO).



The semiclassical approximation (SC) has had a long and distinguished history and remains today a very important weapon in the physics armory. It is indeed indispensable in many areas of scientific endeavor. Also, it facilitates, in many circumstances, an intuitive understanding of the underlying physics that may remain hidden in extensive numerical solutions of Schrödinger’s equation. Although the SC-approach is as old as quantum mechanics itself, it remains active, as reported, for example, in [10] and [11].



Our emphasis in this review will be placed on the study of the differences between (i) statistical treatments of a purely quantal nature, on the one hand, and (ii) semiclassical ones, on the other. We will show that these differences can be neatly expressed entirely in terms of a special version, to be called [image: there is no content], of Fisher’s information measure: the so-called shift-invariant Fisher one [1], associated to phase space. Additionally [image: there is no content] is a functional of a semiclassical distribution function, namely, the Husimi function [image: there is no content]. The phase space measure [image: there is no content] will be shown to help to (1) refine the so-called Lieb-bound [12] and (2) connect this refinement with the delocalization in phase space. The latter can, of course, be visualized as information loss. [image: there is no content] will also be related to an interesting semiclassical measure that was early introduced to characterize the same phenomenon: the Wehrl entropy W [12],


W=−[image: there is no content]⟨lnμ⟩μ



(1)




for which Lieb established the above cited lower bound [image: there is no content], which is a manifestation of the uncertainty principle [13]. [image: there is no content] is the Boltzmann’s constant. Henceforth we will set [image: there is no content]=1, for the sake of simplicity.



For the convenience of the reader, in the following section we describe some fundamental aspects of the HO canonical-ensemble description from a coherent states’ viewpoint [9], the Husimi probability distribution function, and the Wehrl information measure.




2. Background Notions


2.1. HO’s coherent states


In [9] the authors discuss quantum-mechanical phase space distributions expressed in terms of the celebrated coherent states [image: there is no content] of the harmonic oscillator, eigenstates of the annihilation operator [image: there is no content] [14,15], i.e.,


[image: there is no content][image: there is no content]=z|z⟩



(2)




with z a complex combination of the phase space coordinates x, p


[image: there is no content]



(3)




where [image: there is no content], [image: there is no content], and [image: there is no content].



Coherent states span Hilbert’s space, constitute an over-complete basis and obey resolution of unity [15]


∫d2zπ|z⟩⟨z|=∫dxdp2πℏ|x,p⟩⟨x,p|=1



(4)




where the differential element of area in the [image: there is no content]plane is [image: there is no content] and the integration is carried out over the whole complex plane.



The coherent state [image: there is no content] can be expanded in terms of the states of the HO as follows


[image: there is no content]=∑n=0∞[image: there is no content][image: there is no content]



(5)




where [image: there is no content] are eigenstates of the HO Hamiltonian whose form is H^=ℏω[[image: there is no content]†[image: there is no content]+1/2] and we have


[image: there is no content]



(6)








2.2. HO-expressions


We write down now, for future reference, well-known quantal HO-expressions for, respectively, the partition function Z, the entropy S, the mean energy U, the mean excitation energy E, the free energy [image: there is no content], and the specific heat C [16]


[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)






[image: there is no content]



(11)






C=βℏωeβℏω−12eβℏω



(12)








2.3. Husimi probability distribution


In the wake of a discussion advanced in [17], we will be mainly concerned with building “Husimi–Fisher” bridges. It is well-known that the oldest and most elaborate phase space (PS) formulation of quantum mechanics is that of Wigner [18,19]. To every quantum state a PS function (the Wigner one) can be assigned. This PS function can, regrettably enough, assume negative values so that a probabilistic interpretation becomes questionable. Such limitation was overcome, among others, by Husimi [20]. In terms of the concomitant Husimi probability distributions, quantum mechanics can be completely reformulated [21,22,23,24]. This phase space distribution has the form of


[image: there is no content]



(13)




where [image: there is no content] is the density operator of the system and [image: there is no content] are the coherent states (see, for instance, [25] and references therein). The function [image: there is no content] is normalized in the fashion


∫dxdp2πℏμ[image: there is no content]=1



(14)







For a thermal equilibrium case [image: there is no content]=Z−1e−βH^, [image: there is no content] is the partition function, [image: there is no content], with T being the temperature. Specializing things for the HO of frequency ω, with eigenstates [image: there is no content] associated to the eigenenergies [image: there is no content], one has


⟨z|[image: there is no content][image: there is no content]=1Z∑ne−βH^[image: there is no content]



(15)




with [image: there is no content] given by Equation (6), and the normalized Husimi probability distribution is


μ(z)=(1−e−βℏω)e−(1−e−βℏω)[image: there is no content]2



(16)








2.4. Wehrl entropy


The Wehrl entropy is defined as [12]


W=−∫dxdp2πℏμ[image: there is no content]lnμ[image: there is no content]



(17)




where [image: there is no content] is the “classical” distribution function (13) associated to the density operator [image: there is no content] of the system. The uncertainty principle manifests itself through the inequality [image: there is no content], which was first conjectured by Wehrl [12] and later proved by Lieb [13]. Equality holds if [image: there is no content] is a coherent state. After integration over all phase space, turns out to be [9]


[image: there is no content]



(18)









3. Fisher’s Information Measure


Let us consider a system that is specified by a physical parameter θ, while x is a real stochastic variable and [image: there is no content], which in turn depends on the parameter θ, is the probability density for [image: there is no content]. An observer makes a measurement of [image: there is no content] and estimates θ from this measurement, represented by θ˜=θ˜([image: there is no content]). One wonders how well θ can be determined. Estimation theory [26] asserts that the best possible estimator θ˜([image: there is no content]), after a very large number of [image: there is no content]-samples is examined, suffers a mean-square error [image: there is no content] from θ that obeys a relationship involving Fisher’s I, namely, I[image: there is no content]=1, where the Fisher information measure I is of the form


I(θ)=∫d[image: there is no content]fθ([image: there is no content])∂lnfθ([image: there is no content])∂θ2



(19)







This “best” estimator is called the efficient estimator. Any other estimator must have a larger mean-square error. The only proviso to the above result is that all estimators be unbiased, i.e., satisfy ⟨θ˜([image: there is no content])⟩=θ. Thus, Fisher’s information measure has a lower bound, in the sense that, no matter what parameter of the system we choose to measure, I has to be larger or equal than the inverse of the mean-square error associated with the concomitant experiment. This result, I[image: there is no content]≥1, is referred to as the Cramer–Rao bound [1,27]. A particular I-case is of great importance: that of translation families [1,4], i.e., distribution functions (DF) whose form does not change under θ-displacements. These DF are shift-invariant (à la Mach, no absolute origin for θ), and for them Fisher’s information measure adopts the somewhat simpler appearance [1]


I=∫d[image: there is no content]f([image: there is no content])∂lnf([image: there is no content])∂[image: there is no content]2



(20)







Fisher’s measure is additive [1]: If xandp are independent, variables, [image: there is no content]. Notice that, for [image: there is no content] (a point in phase-space), we face a shift-invariance situation. Since in defining z in terms of the variables x and p, these are scaled by their respective variances, the Fisher measure associated to the probability distribution [image: there is no content] will be of the form [4]


[image: there is no content]=∫dxdp2πℏμ[image: there is no content]A



(21)




with


[image: there is no content]



(22)







Given the μ-expression (16), [image: there is no content] becomes


[image: there is no content]=1−e−βℏω



(23)




which, immediately yields


[image: there is no content]e[image: there is no content]2(β,ω)=1;(CRboundreached)



(24)







We realize at this point that the Fisher measure built up with Husimi distributions is to be best employed to estimate “phase space position” [image: there is no content]. Further, efficient estimation is possible for all temperatures, a rather significant result. Comparison with Equation (18) allows one now to write


W=1−ln([image: there is no content])⇒W+ln([image: there is no content])=1



(25)







Since both W and [image: there is no content] are positive-definite quantities, (25) tells us that they are complementary informational quantities, thus if one of them gains, the other loses. Following Anderson et al. [9] let us now analyze the high and low temperatures limits. Given the form (23), when the temperature goes to zero [image: there is no content], [image: there is no content]≈1, its maximum possible value, since we know that the ground state will be the only one to be populated. If, on the other hand, the temperature tends to infinity [image: there is no content], then [image: there is no content]≈βℏω and tends to zero, because we know beforehand that, in the limit, all energy levels will be populated in uniform. The uniform distribution is that of maximum ignorance [28,29,30,31]. The range of [image: there is no content] is 0≤[image: there is no content]≤1, that of W is [image: there is no content], as we can see in Figure 1. Using [image: there is no content] together with Equation (7) we notice that


[image: there is no content]=e−βℏω/2Z



(26)




so that it coincides with the canonical ensemble probability for finding the system in its ground state.


Figure 1. Fisher ([image: there is no content]) and Wehrl (W) information measures vs. T (in [image: there is no content] units) for HO-Husimi distribution.



[image: Entropy 11 00972 g001]









4. Fisher, Thermodynamics’ Third Law, and Thermodynamic Quantities


Consider now the general definition (19) of Fisher’s information measure in terms of the DF [image: there is no content]


[image: there is no content]=∫dxdp2πℏμ[image: there is no content]∂lnμ(x,p)∂β2



(27)




with [image: there is no content] is the parameter to be estimated. Since


∂lnμ(x,p)∂β=[image: there is no content]eβℏω−1[1−(1−e−βℏω)|z|2]



(28)




one readily ascertains that (i) the μ-mean value of (28) vanishes and (ii)


[image: there is no content]=[image: there is no content]eβℏω−12T=[image: there is no content]→[image: there is no content]=[image: there is no content]



(29)




which, in view of (12), entails


[image: there is no content]=e−βℏωβ2C



(30)







Reflection upon the [image: there is no content]-range (29) might led one to conclude that it constitutes a Fisher manifestation of thermodynamics’ third law. Not only Shannon’s measure but also Fisher’s (for the HO, at least) vanishes at zero temperature. Replacing now (23) and (29) into the entropy expression (8) we immediately arrive at the relation


S=β[image: there is no content]−ln[image: there is no content]



(31)







The HO entropy can be expressed as the sum of two terms: one associated with the Fisher information [image: there is no content] and the other with the Fisher information for translation families [image: there is no content] corresponding to the phase space variables [image: there is no content]. Using Equation (7) we also have


ln[image: there is no content]=−β[image: there is no content]2−lnZ=−(β[image: there is no content]+lnZ)



(32)




with [image: there is no content] denoting the ground state energy. Thus,


S=β[image: there is no content]2+[image: there is no content]+lnZ



(33)




which is to be compared to the well known canonical ensemble general expression connecting S and the mean energy U [16]


[image: there is no content]



(34)




we see that [image: there is no content] is related to the excited spectrum contribution to U while [image: there is no content] is to be linked to the partition function. We will look now for a new connection between Fisher’s measures [image: there is no content] and [image: there is no content]. From (29) it is possible to rewrite [image: there is no content] in the form


[image: there is no content]≡ℏωe−βℏω1−e−βℏω2



(35)




and therefore


[image: there is no content][image: there is no content]=ℏωe−βℏω=−∂∂β(e−βℏω)



(36)




i.e., the product on the left hand side is the β-derivative of the Boltzmann factor (constant energy-wise) at the inverse temperature β. In other words, [image: there is no content][image: there is no content] measures the β-gradient of the Boltzmann factor.



Equation (23) implies, via Equations (7) to (12), that the quantal HO expressions for the most important thermodynamic quantities can be expressed in terms of the semiclassical measure [image: there is no content]. For this end we define the semiclassical free energy


Fsc=Tln[image: there is no content]



(37)




which is the semiclassical contribution to the HO free-energy [image: there is no content]. Therefore, the thermodynamic quantities can be expressed as follows


Z=e−βℏω/2[image: there is no content]



(38)






E=ℏω1−[image: there is no content][image: there is no content]



(39)






S=βℏω1−[image: there is no content][image: there is no content]−FscT



(40)






C=(βℏω)21−[image: there is no content]Iτ2



(41)




which shows that the semiclassical, Husimi-based [image: there is no content]−information measure does contain purely quantum statistical information. Furthermore, since from Helmholtz’ free energy F, we can derive all of the HO quantal thermodynamics [16], we see that the the HO-quantum thermostatistics is, as far as information is considered, entirely of semiclassical nature, as it is completely expressed in terms of a semiclassical measure. We emphasize thus the fact that the semiclassical quantity [image: there is no content] contains all the relevant HO-statistical quantum information.




5. HO-Semiclassical Fisher’s Measure


5.1. MaxEnt approach


All the previous results are exact. No reference whatsoever needs to be made to Jaynes’ Maximum Entropy Principle (MaxEnt) [31] up to this point. We wish now to consider a MaxEnt viewpoint. It is shown in [14] that the HO-energy can be cast as the sum of the ground-state energy [image: there is no content] plus the expectation value of the HO-Hamiltonian with respect to the coherent state [image: there is no content], which is the sum of the ground-state energy plus a semiclassical excitation energy [image: there is no content]. One has for the semiclassical excitation HO-energy [image: there is no content] at z [14]


e(z)=⟨z|[image: there is no content]|z⟩−ℏω/2=ℏω|z|2,i.e.,[image: there is no content]ν=ℏω⟨|z|2⟩ν



(42)




where the last expectation value is computed using the distribution [image: there is no content]. This semiclassical excitation energy [image: there is no content]μ is given, for a Husimi distribution μ, by [25]


[image: there is no content]μ=⟨e(z)⟩μ=[image: there is no content][image: there is no content]



(43)







Note now that, from Equation (16), we can conveniently recast the HO-expression for μ into the Gaussian fashion


μ(z)=[image: there is no content]e−[image: there is no content][image: there is no content]2



(44)




peaked at the origin. The probability density μ of Equation (44) is clearly of the maximum entropy [31].



As a consequence, it proves convenient, at this stage, to view [image: there is no content] in the following light. The semiclassical form of the entropy S has exhaustively been studied by Wehrl. It is the (cf. 1) Shannon’s information measure evaluated with Husimi distributions [12]. Assume we know a priori the value [image: there is no content]ν=ℏω⟨|z|2⟩ν. We wish to determine the distribution [image: there is no content] that maximizes the Wehrl entropy under this [image: there is no content]ν−value constraint. Accordingly, the MaxEnt distribution will be [31]


ν(z)=e−[image: there is no content]e−ηE(z)



(45)




with [image: there is no content] the normalization Lagrange multiplier and η the one associated to [image: there is no content]ν. According to MaxEnt tenets we have [31]


[image: there is no content]=[image: there is no content](η)=ln∫d2zπe−ηℏω|z|2=−ln(ηℏω)



(46)







Now, the [image: there is no content]multiplier is determined by the relation [31]


−[image: there is no content]ν=∂[image: there is no content]∂η=−1η



(47)







If we choose the Fisher-Husimi constraint given by Equation (43), this results in η=[image: there is no content]/ℏω and from Equation (46) we get [image: there is no content]=−ln[image: there is no content], i.e., e−[image: there is no content]=[image: there is no content], and we consequently arrive to the desired outcome


ν(z)=[image: there is no content]e−[image: there is no content][image: there is no content]2≡μ(z)



(48)







We have thus shown that the HO-Husimi distributions are MaxEnt-ones with the semiclassical excitation energy (43) as a constraint. It is clear from Equation (48) that [image: there is no content] plays there the role of an “inverse temperature”.



The preceding argument suggests that we are tacitly envisioning the existence of a quantity [image: there is no content] (the inverse of η) associated to the Wehrl measure that we here extend to extreme. This Wehrl temperature [image: there is no content] governs the width of our Gaussian Husimi distribution. On account of


μ(z)=[image: there is no content]e−([image: there is no content]/ℏω)ℏω[image: there is no content]2=[image: there is no content]e−[image: there is no content]μ/[image: there is no content]



(49)




which entails


[image: there is no content]=[image: there is no content][image: there is no content]



(50)




and it is easy to see from the range of [image: there is no content] that the range of values of [image: there is no content] is then ℏω≤[image: there is no content]≤∞. Due to the semiclassical nature of both W and μ, [image: there is no content] has a lower bound greater than zero.




5.2. Delocalization


The two quantities W and [image: there is no content] have been shown to be related, for the HO, according to Equation (25). Since the Wehrl temperature [image: there is no content] yields the width of our Gaussian Husimi distribution, we can conceive of introducing a “delocalization factor” D


D=[image: there is no content][image: there is no content]



(51)




The above definition leads to the relation


W=1+ln[image: there is no content]−ln[image: there is no content]=1+lnD



(52)







As stressed above, W has been constructed as a delocalization measure [12]. The preceding considerations clearly motivate one to regard the Fisher measure built up with Husimi distributions as a “localization estimator" in phase space. The HO-Gaussian expression for μ (44) illuminates the fact that the Fisher measure controls both the height and the spread (which is ∼[2[image: there is no content]]−1). Obviously, spread is here a “phase-space delocalization indicator”. This fact is reflected by the quantity D introduced above.



Thus, an original physical interpretation of Fisher’s measure emerges: localization control. The inverse of the Fisher measure, D, turns out to be a delocalization-indicator. Differentiating Fisher’s measure (23) with respect T, notice also that


d[image: there is no content]dT=−[image: there is no content]T2e−βℏω



(53)




so that Fisher’s information decreases exponentially as the temperature grows. Our Gaussian distribution loses phase-space “localization” as energy and/or temperature are injected into our system, as reflected via [image: there is no content] or D. Notice that (52) complements the Lieb bound [image: there is no content]. It tells us by just how much W exceeds unity. We see that it does it by virtue of delocalization effects. Moreover, this fact can be expressed using the shift-invariant Fisher measure. We will now show that D is proportional to the system’s energy fluctuations.




5.3. Second moment of the Husimi distribution


The second moment of the Husimi distribution [image: there is no content] is an important measure to ascertain the “degree of complexity” of a quantum state (see below). It is a measure of the delocalization-degree of the Husimi distribution in phase space (see Reference [32] for details and discussions). It is defined as


[image: there is no content]=∫d2zπμ2(z)



(54)




that, after explicit evaluation of [image: there is no content] from Equation (44) reads


[image: there is no content]=[image: there is no content]2



(55)







Using now (52) we conclude that


[image: there is no content](D)=12D



(56)







Thus, our energy-fluctuations turn out to be


Δμe=[image: there is no content][image: there is no content]=ℏωD



(57)




with (Δμe)2=([image: there is no content]2)μ−[image: there is no content]μ2. As a consequence, we get


D=Δμe[image: there is no content]



(58)







An important result is thus obtained: the delocalization factor D represents energy-fluctuations expressed in [image: there is no content]terms. Delocalization is clearly seen to be the counterpart of energy fluctuations.





6. Thermodynamics-Like Relations


Let us now go back to Equation (37) and revisit the entropic expression. It is immediately realized that we can recast the entropy S in terms of the quantal mean excitation energy E and the delocalization factor D as


[image: there is no content]



(59)




i.e., if one injects into the system some excitation energy E, expressed in “natural” T units, it is apportioned partly as heat dissipation via S and partly via delocalization. More precisely, the part of this energy not dissipated is that employed to delocalize the system in phase space. Now, since W=1−ln[image: there is no content]=1+lnD, the above equation can be recast in alternative forms, as


S=ET+lnD=ET−ln[image: there is no content];or



(60)






[image: there is no content]



(61)




implying


W−S↦0forT↦∞



(62)




which is a physically sensible result and


W−S↦1forT↦0



(63)




as it should, since [image: there is no content] at [image: there is no content] (third law of thermodynamics), while W attains there its Lieb’s lower bound of unity.



One finds in Equation (60) some degree of resemblance to thermodynamics’s first law. To reassure ourselves on this respect, we slightly changed our underlying canonical probabilities μ, multiplying it by a factor δF=randomnumber/100. Specifically, we generated random numbers according to the normal distribution and divided them by 100 to obtain the above factors [image: there is no content]. This process leads to new “perturbed” probabilities [image: there is no content], conveniently normalized. With them we evaluate the concomitant changes [image: there is no content], [image: there is no content] (we do this 50 times, with different random numbers in each instance). We were then able to numerically verify that the difference [image: there is no content]. The concomitant results are plotted in Figure 2) Since, as stated, numerically dS=(1/T)dE, this entails, from Equation (60), d[image: there is no content]/[image: there is no content]≃0. The physical connotations are as follows: if the only modification effected is that of a change [image: there is no content] [16] in the canonical distribution μ, this implies that the system undergoes a heat transfer process [16] for which thermodynamics’ first law implies [image: there is no content]. This is numerically confirmed in the plots of Figure 2. The null contribution of ln[image: there is no content] to this process suggests that delocalization (not a thermodynamic effect, but a dynamic one) can be regarded as behaving (thermodynamically) like a kind of “work”.


Figure 2. Numerical computation results for the HO: changes [image: there is no content] and d[image: there is no content] vs. [image: there is no content] that ensue after randomly generating variations [image: there is no content] in the underlying microscopic canonical probabilities [image: there is no content].



[image: Entropy 11 00972 g002]








Now, since (a) [image: there is no content]=1−e−βℏω, and (b) the mean energy of excitation is [image: there is no content], one also finds, for the quantum-semiclassical difference (QsCD) [image: there is no content] the result


W−S=1−[image: there is no content]−1[image: there is no content]ln(1−[image: there is no content])=F1([image: there is no content])



(64)




Moreover, since 0≤F1([image: there is no content])≤1, we see that, always, [image: there is no content], as expected, since the semiclassical treatment contains less information than the quantal one. Note that the QsCD can be expressed exclusively in Fisher’s information terms. This is, the quantum-semiclassical entropic difference [image: there is no content] may be given in [image: there is no content]−terms only. Figure (3) depicts S, [image: there is no content], and [image: there is no content]vs. the dimensionless quantity [image: there is no content]. Accordingly, entropy is apportioned in such a way that

	
part of it originates from excitation energy and



	
the remaining is accounted for by phase space delocalization.





A bit of algebra allows one now to express the rate of entropic change per unit temperature increase as


[image: there is no content]dT=β[image: there is no content]dT=βC=ℏω1TdDdT,



(65)




entailing


C=ℏωdDdT



(66)






Figure 3. S, [image: there is no content], and [image: there is no content] as a function of [image: there is no content].



[image: Entropy 11 00972 g003]








In the case of the one dimensional HO we see that the specific heat measures delocalization change per unit temperature increase. Also, [image: there is no content], providing us with a very simple relationship between mean excitation energy changes and delocalization ones.


[image: there is no content]dD=ℏω



(67)








7. On Thermal Uncertainties


Additional considerations are in order with regards to thermal uncertainties, that express the effect of temperature on Heisenberg’s celebrated relations (see, for instance [6,33,34,35]). We use now a result obtained in [9] (Equation (3.12)), where the authors cast Wehrl’s information measure in terms of the coordinates’ variances [image: there is no content] and [image: there is no content], obtaining


W=lneℏΔμxΔμp



(68)







In the present context, the relation W=1−ln[image: there is no content] allows us to conclude that [17]


[image: there is no content]ΔμxΔμp=ℏ



(69)




which can be regarded as a “Fisher uncertainty principle” and adds still another meaning to [image: there is no content]: since, necessarily, ΔμxΔμp≥ℏ/2, it is clear that [image: there is no content]/2 is the “correcting factor” that permits one to reach the uncertainty’s lower bound [image: there is no content], a rather interesting result.



Phase space “localization” is possible, with Husimi distributions, only up to ℏ [14]. This is to be compared to the uncertainties evaluated in a purely quantal fashion, without using Husimi distributions, and in particular with a previous result in [17]. With the virial theorem [16] one can easily ascertain in [17] that


ΔxΔp=ℏ2eβℏω+1eβℏω−1



(70)




together with (69) yields


ΔμxΔμp=2ΔxΔp1+e−βℏω



(71)







Thus We see that, as [image: there is no content], Δμ≡ΔμxΔμp is twice the minimum quantum value for [image: there is no content], and [image: there is no content], the “minimal” phase-space cell. The quantum and semiclassical results do coincide at very high temperature though. Indeed, one readily verifies [17] that Heisenberg’s uncertainty relation, as a function of both frequency and temperature, is governed by a thermal “uncertainty function” F that acquires the aspect


F(β,ω)=ΔxΔp=12Δμ+Eω



(72)







Coming back to results derivable within the present context, we realize here that F can be recast as


F(β,ω)=12ℏD+Eω



(73)




so that, for T varying in [image: there is no content], the range of possible ΔxΔp-values is [image: there is no content]Equation (73) is a “Heisenberg–Fisher” thermal uncertainty relation (for a discussion of this concept see, for instance, [6,33,34]).



[image: there is no content] grows with both E and D. The usual result [image: there is no content] is attained for minimum D and zero excitation energy. As for [image: there is no content], one is able to set [image: there is no content], since [image: there is no content]. Remarkably enough, the two contributions to [image: there is no content] are easily seen to be equal and dF/dT→(1/ω)forT→∞. One can also write


∂F∂DE=ℏ2;∂F∂ED=12ω



(74)




providing us with a thermodynamic “costume” for the uncertainty function F that sheds some new light onto the meaning of both ℏ and ω. In particular, we see that [image: there is no content] is the derivative of the uncertainty function F with respect to the delocalization factor D. Increases [image: there is no content] of the thermal uncertainty function F are of two types

	
from the excitation energy, that supplies a [image: there is no content] contribution and



	
from the delocalization factor D.









8. Degrees of Purity Relations


8.1. Semiclassical purity


The quantal concept of degree of purity of a general density operator [image: there is no content] is expressed via Tr[image: there is no content]2 [36,37]. Its inverse, the so-called participation ratio


R=1Tr[image: there is no content]2



(75)




is particularly convenient for calculations [38]. It varies from unity for pure states to N for totally mixed states [38]. It may be interpreted as the effective number of pure states that enter a quantum mixture. Here we will consider the “degree of purity” [image: there is no content] of a semiclassical distribution, given by


[image: there is no content]=∫d2zπμ2(z)≤1



(76)







Clearly, [image: there is no content] coincides with the second moment of the Husimi distribution (44) given by Equation (54), i.e.,


[image: there is no content]=[image: there is no content]=[image: there is no content]2



(77)







Using now (52) we relate the semiclassical degree of purity to the delocalization factor and to the Wehrl temperature [image: there is no content]


[image: there is no content]=12D=[image: there is no content]2ℏω



(78)




and also to our semiclassical energy-fluctuations (57)


[image: there is no content]=[image: there is no content]2Δμe



(79)







Since ℏω≤[image: there is no content]≤∞, the “best” purity attainable at the semiclassical level equals one-half.




8.2. Quantal purity


For the quantum mixed HO-state [image: there is no content]=e−β[image: there is no content]/Z, where [image: there is no content] is the Hamiltonian of the harmonic oscillator and the partition function Z is given by Equation (7) [16], we have a degree of purity d[image: there is no content] given by (see the detailed study by Dodonov [35])


d[image: there is no content]=e−βℏωZ2∑n=0∞e−2βℏωn



(80)




leading to


d[image: there is no content]=tanh(βℏω/2)



(81)




where 0≤d[image: there is no content]≤1. Thus, Heisenberg’ uncertainty relation can be cast in the fashion


ΔxΔp=ℏ2coth(βℏω/2)



(82)




where [image: there is no content] and [image: there is no content] are the quantum variances for the canonically conjugated observables x and p [35]


ΔxΔp=ℏ21d[image: there is no content]



(83)




which is to be compared to the semiclassical result that was derived above (cf. 71).



We relate now the degree of purity of our thermal state with various physical quantities both in its quantal and semiclassical versions. Using Equations (71) and (77) we get


[image: there is no content]=[image: there is no content]2=(1−[image: there is no content])d[image: there is no content]



(84)




which leads to


d[image: there is no content]=[image: there is no content]1−[image: there is no content]=[image: there is no content]2−[image: there is no content]










[image: there is no content]=d[image: there is no content]1+d[image: there is no content]



(85)




such as clearly shows that (i) [image: there is no content]≤d[image: there is no content], and (ii) for a pure state, again, its semiclassical counterpart has a degree of purity equal [image: there is no content].



Additionally, on account of Equation (69), on the one hand, and since the semiclassical degree of purity reads [image: there is no content]=[image: there is no content]/2, on the other one, we are led to an uncertainty relation for mixed states in terms of [image: there is no content], namely,


ΔμxΔμp=ℏ21[image: there is no content]



(86)




that tells us just how uncertainty grows as participation ratio R=1/[image: there is no content] augments. Equation (86) is of semiclassical origin, which makes it a bit different from the one that results form a purely quantal treatment (see [35], Equation (4)). Moreover, notice how information concerning the purely quantal notion of purity d[image: there is no content] is already contained in the semiclassical measure [image: there is no content].





We appreciate the fact that R increases as delocalization grows, a quite sensible result. Figure (4) depicts [image: there is no content](T), a monotonously decreasing function, which tells us that degree of purity of a mixed state acts here as a thermometer, and allows then to assign a [image: there is no content]value to any of our mixed states.


Figure 4. Semiclassical purity [image: there is no content] vs. [image: there is no content].
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Also, using once again the result [image: there is no content]=[image: there is no content]/2 together with the uncertainties just derived we see that βℏω=−ln(1−[image: there is no content]). Thus, we can rewrite Equation (64) in the following form


W−S=1+βℏω2[image: there is no content]−12[image: there is no content]=1+βℏωd[image: there is no content]−12d[image: there is no content]



(87)




which casts the difference between the quantal and semiclassical entropies in terms of the degrees of purity. From Equation (87) we can also give the quantal mean excitation energy E in terms of [image: there is no content] using (38)


E=[image: there is no content]21−2[image: there is no content][image: there is no content]=[image: there is no content]21−d[image: there is no content]d[image: there is no content]



(88)









9. Conclusions


We have explored in this review connections between canonical ensemble quantities and two Fisher information measures, associated to the estimation of phase-space location ([image: there is no content]) and temperature ([image: there is no content]). Our most important result is, perhaps, to have shown that there exists a “Fisher-associated” third law of thermodynamics (at least for the HO). From a pure information-theoretic viewpoint, we have, obtained significant results, namely,

	
a connection between Wehrl’s entropy and [image: there is no content] (cf. Equation (25)),



	
an interpretation of [image: there is no content] as the HO’s ground state occupation probability (cf. Equation (26)),



	
an interpretation of [image: there is no content] proportional to the HO’s specific heat (cf. Equation (30)),



	
the possibility of expressing the HO’s entropy as a sum of two terms, one for each of the above FIM realizations (cf. Equation (31)),



	
a new form of Heisenberg’s uncertainty relations in Fisher terms (cf. Equation (73)),



	
that efficient [image: there is no content]-estimation can be achieved with [image: there is no content] at all temperatures, as the minimum Cramer–Rao value is always reached (cf. Equation (24)).








Our statistical semiclassical treatment yielded, we believe, some new interesting physics that we proceed to summarize. We have, for the HO,

	
established that the semiclassical Fisher measure [image: there is no content] contains all relevant statistical quantum information,



	
shown that the Husimi distributions are MaxEnt ones, with the semiclassical excitation energy [image: there is no content] as the only constraint,



	
complemented the Lieb bound on the Wehrl entropy using [image: there is no content],



	
observed in detailed fashion how delocalization becomes the counterpart of energy fluctuations,



	
written down the difference [image: there is no content] between the semiclassical and quantal entropy also in [image: there is no content]−terms,



	
provided a relation between energy excitation and degree of delocalization,



	
shown that the derivative of twice the uncertainty function [image: there is no content] with respect to [image: there is no content] is the Planck constant ℏ,



	
established a semiclassical uncertainty relation in terms of the semiclassical purity [image: there is no content], and



	
expressed both [image: there is no content] and the quantal degree of purity in terms of [image: there is no content].








These results are, of course, restricted to the harmonic oscillator. However, this is such an important system that HO insights usually have a wide impact, as the HO constitutes much more than a mere example. Nowadays it is of particular interest for the dynamics of bosonic or fermionic atoms contained in magnetic traps [39,40,41] as well as for any system that exhibits an equidistant level spacing in the vicinity of the ground state, like nuclei or Luttinger liquids. The treatment of Hamiltonians including anharmonic terms is the next logical step. We are currently undertaking such a task. To this end analytical considerations do not suffice, and numerical methods are required. The ensuing results will be published elsewhere.
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