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Abstract: All real processes generate entropy and the power/exergy loss is usually 

determined by means of the Gouy-Stodola law. If the system only exchanges heat at the 

environmental temperature, the Gouy-Stodola law gives the correct loss of power. 

However, most industrial processes exchange heat at higher or lower temperatures than the 

actual environmental temperature. When calculating the real loss of power in these cases, 

the Gouy-Stodola law does not give the correct loss if the actual environmental temperature 

is used. The first aim of this paper is to show through simple steam turbine examples that 

the previous statement is true. The second aim of the paper is to define the effective 

temperature to calculate the real power loss of the system with the Gouy-Stodola law, and 

to apply it to turbine examples. Example calculations also show that the correct power loss 

can be defined if the effective temperature is used instead of the real  

environmental temperature.  

Keywords: Gouy-Stodola law; entropy generation rate; exergy; effective temperature  

 

1. Introduction  

Exergy is usually defined as the maximum work output attainable in the natural environment, or the 

minimum work input necessary to realize the reverse process [1]. All real processes generate entropy, 

and loss of exergy is determined by means of the Gouy-Stodola law:  
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Eloss = To (1)  

where To is the real environmental temperature outside the system boundaries and  the entropy 

generation rate. Equation (1) also expresses the improvement potential of the system.  

If the system only exchanges heat at the real environmental temperature To, Equation (1) gives the 

exact improvement potential of the system. However, most industrial processes emit or absorb heat at a 

temperature level other than the real environmental temperature. It is easy to show that in these cases, 

Equation (1) does not give the real improvement potential of the system if the real environmental 

temperature To is used.  

The first aim of this paper is to show through simple steam turbine example cases that the previous 

statement is true. The second aim of the paper is to define a so-called effective temperature Teff to 

calculate the real power loss of the system in all cases from Equation (1). From now on, the loss term in 

Equation (1) is always called power loss (Ploss) to distinguish it from exergy loss (Eloss), which is usually 

calculated using the real environmental temperature.  

One of the simplest processes in which entropy generation occurs is steam or gas expansion in a 

turbine. Calculation of the power loss in a turbine using the Gouy-Stodola law has been studied in [1-7]. 

With the exception of Bejan [7], all of the authors have used the real environmental temperature To to 

calculate the power loss. Bejan states that the temperature in Equation (1) falls somewhere between 

Tout,rev and Tout,real when the power loss is calculated in steam expansion. However, Bejan does not state 

what the exact temperature in Equation (1) should then be. Lampinen and Wiksten have presented in 

Reference [8] an in-depth analysis of the determination of the correct temperature in Equation (1) to 

calculate the real power loss.  

In this paper, we will apply the ideas of Lampinen and Wiksten to calculate the real power loss from 

Equation (1) for the following example systems; i) steam expansion in a turbine, ii) steam expansion in a 

condensing turbine + condenser, and iii) steam expansion in a backpressure turbine + heat exchanger. 

The condensing turbine + condenser represents a condensing power plant in which the main goal is to 

maximize power generation. The backpressure turbine + heat exchanger represents an industrial CHP 

plant (combined heat and power plant) in which the primary goal is usually to produce heat, with 

electricity being obtained as a by-product. The paper also discusses the contradiction which arises when 

the real environmental temperature To is applied to industrial processes in the exergy analysis.  

2. Calculation of the Loss of Power 

2.1. General theory  

According to the theory presented by Lampinen and Wiksten, the correlation between the maximum 

power production, real power production and the Gouy-Stodola law is defined as follows [8]:  

Pmax – P = Teff (2)  

where Pmax is the maximum power production, P the real power production, Teff the effective 

temperature and  the entropy generation rate. Instead of the real environmental temperature To, the  

so-called effective temperature Teff is used in Equation (2). Next, we will define the effective 

temperature in Equation (2). 
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If mechanical energy terms are ignored, the energy balance for a stationary flow becomes: 

  QhhmP 21    (3)  

where P is the mechanical power, h1 the specific enthalpy of the flow at the inlet, h2 the specific enthalpy 

of the flow at the outlet, and Q the net heat input to the system. In Equation (3) the work done by the 

system and the heat flow into the system have a positive sign.  

The Second Law of Thermodynamics can be written as follows [8]: 

   
2

1

12
T

dQ
ssm  (4)  

where s1 is the specific entropy at the inlet, s2 the specific entropy at the outlet, and  the entropy 

generation rate. The temperature T in the integral represents the temperature of the boundary over 

which the heat dQ flows to or from the system.  

It is obvious that the best-known process is a reversible process. By neglecting mechanical energy 

terms, the energy balance and the entropy equation for a reversible process may be written as follows: 

  QhhmP R21  
max  (5a)  

 

  

2

1

1R2
T

dQ
ssm  (5b)  

where h2R and s2R represent states of the enthalpy and entropy after a reversible process, respectively. 

Term Q represents the net heat input to the system. The sign of Q is negative if the system emits more 

heat into the environment than it absorbs. In Equation (5b), the heat integral is defined by applying the 

definition presented by Lampinen and Wiksten in [8]. The heat integral is defined as follows:  


2

1eff T

dQ

T

Q
 (6)  

where Teff represents the effective temperature. Substituting Equation (6) first in Equations (4) and (5b), 

and then Equation (4) in Equation (3) and Equation (5b) in Equation (5a), the power loss  

Pmax – P becomes: 

      effR22effR22 TssThhmPP 
max  (7)  

The correlation between the entropy generation rate and the loss of power is expressed using 

Equation (2), and on the basis of this definition the effective temperature from Equation (7) becomes: 

 
 R22

R22
eff

ss

hh
T




  (8)  

If the specific heat capacity and pressure remain constant, the change of enthalpy and entropy 

depends only on the temperature, and Equation (11) can be written as follows:  
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where T2R is the theoretical outlet temperature after a reversible process and T2 the real outlet 

temperature.  

2.2. Calculation of power loss for steam turbine systems  

Figure 1 shows three turbine systems for which the power loss will be calculated. The turbine 

systems in Figure 1 are stationary and can be treated as adiabatic, in which case the entropy generation 

rate becomes:  





m

1j

injj

n

1i

outii smsm ,,
  (10)  

where m  is the mass flow and s the specific entropy of the flow. For steam flows the entropy values are 

taken from the steam table.  

 

Figure 1. Calculation of losses of power for three different steam turbine systems. 
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In this case, the outlet temperature of

the cooling water (T5 ) must have a value

which gives the value zero for the 

entropy generation rate.When the average 

heat capacity is used for cooling water the

entropy generation rate can be re-written as

follows: 

T2R is the steam temperature after

isentropic expansion (s1= s2R)
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In this case, the outlet temperature of

the condensate (T3) must have a value

which gives the value zero for the 

entropy generation rate. The temperature 

(T3R) is obtained from the steam tables. 
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where cp is the specific heat capacity, T the temperature, v the specific volume and p the pressure. In the 

case of cooling water, the pressure remains the same (dp = 0) and the change of entropy can be 

calculated from Equation (11) by integration: 

1

2
p12

T

T
lncss   (12)  

where T2 is the temperature of the final state and T1 the temperature of the initial state.  

Figure 1 also shows how to define the entropy generation rate and the effective temperature for each 

system. In the case of the steam turbine, temperatures T2 and T2R may be the same if the steam is a 

mixture of saturated vapor and water after the expansion. Applying the l’Hospital’s rule, the effective 

temperature becomes [9]: 
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 ln
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(13)  

3. Results and Discussion 

Figure 2 shows an example of the calculation of the power loss for steam expansion in a condensing 

and a backpressure turbine. It is obvious that the power loss for steam expansion in a turbine must be 

the enthalpy difference h2–h2R, which is 59.45 kJ/kg and 87.94 kJ/kg for the condensing and the 

backpressure turbine in the example case, respectively.  

 

Figure 2. Example of the calculation of the power loss for steam expansion in a condensing 

and a backpressure turbine. 
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Figure 2. Cont. 
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Figure 3. Example of the calculation of the power loss for a steam turbine + condenser system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In theory, the maximum power production would be achieved if the system only exchanged heat at 

the environmental temperature and the process was reversible. It is obvious that this is not possible, but  
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backpressure turbine in Figure 2). Figure 4 shows the calculation of the power loss for a backpressure 

turbine/CHP plant. Example calculations show that the sum of Pout + Ploss is not the same if the 

isentropic efficiency of the turbine changes (0.88 and 1 in Figure 4). The result is different compared 

with the condensing turbine, where the isentropic efficiency has no influence on the sum of Pout + Ploss.  

 

Figure 4. Example of the calculation of the power loss for a backpressure steam turbine + 

heat exchanger system. 
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side winter. The only difference between summer and winter is the temperature of the cooling water 

used in the condenser. In the summer the temperature of the water is 20 °C and in the winter 4 °C. The 

operation and steam use of the industrial process remains unchanged throughout the year. Because of 

the cooler cooling water in winter, the pressure after the condensing turbine becomes lower and the 

power production of the turbine increases. Therefore the actual power loss caused by the steam demand 

of the process is greater in the winter than in the summer, 3,216 kW and 3,038 kW respectively. 

 

Figure 5. An industrial process with CHP plant. Summer on the left, winter on the right. 
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processes operate at temperatures higher or lower than the real environmental temperature. In this 

paper, the maximum power production is achieved when the system is reversible, but it does not have to 

exchange heat at the real environmental temperature. In these cases, the example calculations show that 

the sum of the power loss and real power production does not give the correct maximum power 

production for a reversible system if the real environmental temperature is used with the Gouy-Stodola 

p1 95bar

t1 545oC

h1 3493.52kJ/kg

s1 6.769 kJ/kgK

m1 10kg/s

p3 0.05bar

t3 32.9oC

h3 137.7kJ/kg

s3 0.476 kJ/kgK

m3 5kg/s

t4 20oC

m4 353.4kg/s

t5 27oC

m5 353.4kg/s

Pout

9787kW

is 0.88

p2 0.05bar

t2 32.9oC

h2 2211.03kJ/kg

s2 7.251 kJ/kgK

m2 5kg/s

is 0.88

p6 5,0bar

t6 183.1oC

h6 2818.55kJ/kg

s6 6.980 kJ/kgK

m6 5kg/s

p7 5,0bar

t7 151.8oC

h7 640.38kJ/kg

s7 1.861 kJ/kgK

m7 5kg/s

p1 95bar

t1 545oC

h1 3493.52kJ/kg

s1 6.769 kJ/kgK

m1 10kg/s

p3 0.035bar

t3 26.7oC

h3 111.8kJ/kg

s3 0.390 kJ/kgK

m3 5kg/s

Pout

9966kW

is 0.88

p2 0.035bar

t2 26.7oC

h2 2175.28kJ/kg

s2 7.273 kJ/kgK

m2 5kg/s

is 0.88

p6 5,0bar

t6 183.1oC

h6 2818.55kJ/kg

s6 6.980 kJ/kgK

m6 5kg/s

p7 5,0bar

t7 151.8oC

h7 640.38kJ/kg

s7 1.861 kJ/kgK

m7 5kg/s

Summer Winter

t4 50oC

m4 172.3kg/s

t4 65oC

m4 172.3kg/s

t4 50oC

m4 172.3kg/s

t4 65oC

m4 172.3kg/s
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law (Figures 2 and 3). Especially in the case of CHP plant, the errors become significant if the real 

environmental temperature is used. The paper also shows through turbine examples that the correct 

power loss can be calculated if the effective temperature defined using Equation (3) is used instead of 

the real environmental temperature.  

In addition, the example calculations reveal that calculation of the effective temperature depends on 

the system. In the case of adiabatic systems, one must know what flow temperature can be changed to 

define a reversible system and then the effective temperature (see condensing turbine vs.  

backpressure turbine).  

In this paper, the Gouy-Stodola law has been used by multiplying the entropy generation rate by the 

effective temperature to calculate the real loss of power caused by the irreversibility of the system. It is 

obvious that the loss of power is zero if no entropy generation occurs and therefore the design of 

engineering systems should be based on minimisation of entropy generation, as Bejan states. The 

minimisation of entropy generation is equivalent to the minimisation of exergy/power losses and is an 

adequate tool to analyse thermodynamic systems from the viewpoint of the Second Law [7]. In many 

cases, it is more convenient to calculate the improvement potential in energy units such as Watts or 

Joules, and therefore the entropy generation rate must be multiplied by an appropriate temperature. The 

concept of exergy is a useful tool if the theoretical maximum work available from the machine is to  

be analysed.  

Nomenclature 

cp Specific heat capacity [J/kgK] 

E  Exergy [W] 

h Specific enthalpy [J/kg] 

m  Mass flow [kg/s] 

p Pressure [Pa] 

P Power [W] 

Q Heat input/output [W] 

s specific entropy [J/kgK] 

T Temperature [K] 

v Specific volume [m
3
/kg] 

 

Greeks 

 Entropy generation rate [W/K] 

 

Subscripts 

1/in Inlet 

2/out Outlet 

eff Effective 

o Environmental 

R Reversible 
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