

  The Maximum Entropy Rate Description of a Thermodynamic System in a Stationary Non-Equilibrium State




The Maximum Entropy Rate Description of a Thermodynamic System in a Stationary Non-Equilibrium State







Entropy 2009, 11(4), 675-687; doi:10.3390/e11040675




Article



The Maximum Entropy Rate Description of a Thermodynamic System in a Stationary Non-Equilibrium State



Marco Favretti





Department of Pure and Applied Mathematics, University of Padova, via Trieste 63 – 35121, Padova, Italy; Tel.: +39 049 827 1408







Received: 14 September 2009 / Accepted: 27 October 2009 / Published: 29 October 2009



Abstract:



In this paper we present a simple model to describe a rather general system in a stationary non-equilibrium state, which is an open system traversed by a stationary flux. The probabilistic description is provided by a non-homogeneous Markov chain, which is not assumed on the basis of a model of the microscopic interactions but rather derived from the knowledge of the macroscopic fluxes traversing the system through a maximum entropy rate principle.
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1. Introduction


In a recent (2006, [1]) survey on the Maximum Entropy Production principle, reference is made to an early attempt (1967, [2,3]) to extend (a pioneering paper dealing with this extension problem was written by E.T. Jaynes himself, see [4]) the celebrated Jaynes’ Maximum Entropy principle to thermodynamic systems in a stationary non-equilibrium. Informally stated, assumed that the dynamic is described by a Markov chain, the authors want to find a stochastic transition matrix such that: (i) it has a prescribed probability distribution as a stationary distribution, (ii) the associated chain evolution satisfies given constraints on the macroscopic scale (admissible microscopic evolution) and (iii) the selected transition matrix generates the maximum number of equally probable microscopic evolution paths. Motivated by their derivation, we proceed here to a self-contained independent approach to the same problem with, we think, more far–reaching consequences.



To state the main ideas, let us begin by recalling a restricted version of the ergodic theorem for Markov chains ([5]). Let us suppose that the system has a finite state space [image: there is no content] and that its statistical description is given by a stationary, time-homogeneous Markov chain.



Theorem 1 Let [image: there is no content] be a stochastic matrix with positive entries and denote with [image: there is no content] the [image: there is no content] power of P. Then there exists a unique distribution π which is stationary for P, i.e., [image: there is no content] where [image: there is no content] denotes the transposed matrix of P. Moreover,


limN→+∞PijN=πj>0∀i,j=1,…,n








and, for every probability distribution ν we have, setting [image: there is no content],


limN→+∞||([image: there is no content])*ν-π||=0











It is immediate to realize from the above Theorem that the stochastic matrix P determines its stationary distribution, while the contrary is false. In this paper we put forth a selection criterion to choose among all stochastic matrices admitting a fixed distribution π as stationary. In a sense, we want to select a preferred dynamics for the approach to equilibrium π. To this, recall that if we take the stationary distribution π as the initial distribution, then the Markov chain [image: there is no content] defines a discrete-time, finite-states stationary stochastic process. Let [image: there is no content] be the χ-valued random variable which describe the state of the system at time i. For a stationary process, we can define its entropy rate (see [6]) as


[image: there is no content]








where [image: there is no content] and


[image: there is no content]








In a sense, the entropy rate [image: there is no content] is the thermodynamic N-limit of the entropy of the system formed by all realizations of length N of the process. Therefore, we will call it the system entropy rate in the sequel. Moreover, for the stationary process associated to [image: there is no content] it holds that (see [5],[6])


[image: there is no content]=[image: there is no content](P)=-∑i,jπiPijlnPij











Furthermore, in agreement with (ii) above, we assume that the knowledge of the macroscopic fluxes acting on the system in a stationary non-equilibrium state will force constraints on the two-dimensional probability distribution


[image: there is no content]








in the form of constraints [image: there is no content] on the associated stochastic matrix (see Section 2 below). We can now state our selection criterion, which we call the Maximum Entropy Rate principle and amounts to the following constrained extremum problem:


M.E.R.P. Given a positive probability distribution π, find the stochastic matrix [image: there is no content] which admits π as a stationary distribution and that has maximum entropy rate [image: there is no content]([image: there is no content]).







This principle can be seen as an instance of a Maximum Entropy principle for the case of constraints on two-dimensional distributions. Its justification is provided in [7] (see also [8],[9]) using a large deviation theory type estimate on the empirical second order distributions [image: there is no content], in the same spirit of Sanov’ Theorem for first order empirical distributions.



Remark. In the case that the only constraints on P are the stationarity and normalization ones, [image: there is no content] The answer to this problem can be easily found by using the elementary inequality, see [6]


[image: there is no content](P)=-∑i,jπiPijlnPij≤H(π)=-∑iπilnπi



(1.1)




with equality if and only if [image: there is no content]ij=πj,i,j=1,…,n. (all rows are equal). This result is a simple consequence of the fact that the entropy [image: there is no content] can be seen as the entropy rate of a stationary process with i.i.d. random variables [image: there is no content] and that conditioning reduces the entropy rate. It is immediate to verify that [image: there is no content] admits π as a stationary distribution. By recalling the ergodic theorem, we see also that [image: there is no content]=[image: there is no content] for every N.



The starting point of the above M.E.R. principle is the probability distribution π, which is, apart from being positive, completely arbitrary. It affords the statistical description of our system at equilibrium. In case we have some macroscopic information on the system, for example its average energy, that we represent as


[image: there is no content]








where [image: there is no content] is the energy of the system in state i, then this information can be used to select a probability distribution [image: there is no content] among all these satisfying the above constraint. By applying the Maximum Entropy principle one gets


[image: there is no content]i=e-β[image: there is no content]Z(β)



(1.2)




the Gibbs probability distribution. Here the inverse temperature [image: there is no content] is uniquely determined by the value e.




2. Model of the System in a Stationary Non-Equilibrium State


We begin with the model of the energy exchange between our system χ and another system [image: there is no content]. Let us suppose that the system is described by our stationary Markov chain [image: there is no content]. We suppose also that the whole system [image: there is no content]∪χ is energetically insulated, that is if [image: there is no content] and [image: there is no content], then the microscopic energy conservation law holds


ΔEχ=Ej-[image: there is no content]=-ΔE[image: there is no content]∀i,j=1,…,n








Let us denote with


Eij=Ej-[image: there is no content]








the skew-symmetric matrix of the difference of energy between states and with


[image: there is no content]








the joint probability at one time step. The average energy transfer between [image: there is no content] and χ is


EP[ΔEχ]=E·P=∑i,jPijEij=∑i,jπiPijEj-∑i,jπiPij[image: there is no content]=E[image: there is no content]π(E)-Eπ(E)








and it follows easily that if π is stationary for P, and if our microscopic energy conservation law holds, then


EP[ΔEχ]=-EP[ΔE[image: there is no content]]=0








hence the stationary distribution π describes the system χ at macroscopic equilibrium with [image: there is no content].



2.1. Coupling of the system with two environments


We now want to model the coupling of the system with two environments [image: there is no content] and [image: there is no content]. As before, the statistical description of the system is given by a Markov chain. As a simplifying assumption, we suppose that at every time step along the evolution of the chain, the system χ is in contact (i.e., the microscopic energy conservation holds) with only one of the environments, alternatively [image: there is no content] and [image: there is no content]. Therefore, now the system is described by the non-homogeneous Markov chain ([image: there is no content])


Pt=At=2m,Bt=2m+1



(2.1)







We will see that it is not restrictive to suppose that the stochastic matrices [image: there is no content] have positive entries. Also, notice that the chain “observed” at even times [image: there is no content] is a time-homogeneous chain described by the positive stochastic matrix [image: there is no content], hence the ergodic theorem applies. Let us denote with π the unique stationary distribution for [image: there is no content]. If π is the distribution describing the system χ at [image: there is no content], then we have


π(0)=π,π(1)=A*π,π(2)=B*A*π=(AB)*π=π,π(3)=A*π,…











Therefore, the probability distribution describing the chain switches between π (at even times) and [image: there is no content] (at odd times). Let us compute as before the joint probability at one and two time-steps starting from an even time [image: there is no content] . We have


Pij(2m,2m+1)=Prob(X2m+1=j,X2m=i)=πiAijPjk(2m+1,2m+2)=Prob(X2m+2=k,X2m+1=j)=∑iπiAijBjkPijk(2m,2m+2)=Prob(X2m+2=k,X2m+1=j,X2m=i)=πiAijBjk











Reasoning as before, we can compute the averaged energy differences


EP[ΔEχ](2m,2m+1)=-EP[ΔE[image: there is no content]]=E[image: there is no content](E)-Eπ(E)EP[ΔEχ](2m+1,2m+2)=-EP[ΔE[image: there is no content]]=E(AB)*π(E)-E[image: there is no content](E)EP[ΔEχ](2m,2m+2)=E(AB)*π(E)-Eπ(E)











Modifications of the above formulae for the case that we start the observation of the chain at an odd time are straightforward. By a simple inspection of the above equalities we can draw the following conclusions:



Proposition 1 If π is a stationary distribution for [image: there is no content], then


EP[ΔE[image: there is no content]]=-EP[ΔEχ](2m,2m+1)=EP[ΔEχ](2m+1,2m+2)=-EP[ΔE[image: there is no content]]



(2.2)




and also


[image: there is no content]



(2.3)




Moreover, if π is a stationary distribution for [image: there is no content] and A, then it is a stationary distribution for B also and


EP[ΔE[image: there is no content]]=-EP[ΔE[image: there is no content]]=EP[ΔEχ](2m,2m+2)=0











Therefore, with a distribution π stationary for [image: there is no content] and A we model a system at equilibrium with the two environments, and with a probability distribution π stationary for [image: there is no content]but not for A, we model a system in a stationary non equilibrium state. Moreover, the condition of stationarity of π with respect to [image: there is no content], which is sufficient (but not necessary in the general case) for the balance of energy to hold, is the one that will allow to compute the entropy rate. The value of the macroscopic energy flux can be specified by the macroscopic constraint introduced by the first equality in (2.2)


EP[ΔEχ](2m,2m+1)=-EP[ΔE[image: there is no content]]=EP[ΔE[image: there is no content]]=E[image: there is no content](E)-Eπ(E)=q≥0











Note that, as before, we made no assumption on the distribution π. We have to choose matrices A and B satisfying the following constraints (here [image: there is no content])


A·1=B·1=1i.e.∑jAij=∑jBij=1∀i(normalization of A and B)E[image: there is no content](E)-Eπ(E)=q,i.e.∑ijπiAijEij=q,(specify inflow)E(AB)*π(E)-Eπ(E)=0,i.e.∑ijπiAijBjk=πk∀k(π is stationary for AB)



(2.4)







The above constraints do not specify in the general case the matrices A and B. Therefore, we need to invoke a selection criterion, which will be our M.E.R. principle. We are led to investigate the existence of an entropy rate for the stochastic process described by the non-homogeneous Markov chain (2.1) with initial distribution π stationary for [image: there is no content]. Before turning to this, we look at the solution of our problem in case of zero flux, [image: there is no content]. It is immediate to see that if we limit ourselves to the case [image: there is no content], then the chain is ergodic and


A=B=[image: there is no content],where[image: there is no content]ij=πj








is the maximum entropy rate solution.




2.2. Computation of the entropy rate


It is easy to see that the chain described by (2.1) with initial distribution π stationary for [image: there is no content] but not for A describes a non-stationary stochastic process. Moreover, the chain is not strongly ergodic, but, with the non restricting assumption that A and B have positive entries it is weakly ergodic (see e.g., [10] for the notion of strong and weak ergodicity and [11],[12] and the bibliography therein for the study of convergence of Markov processes using information theoretic tools.) We now show that the entropy rate is well defined and finite for the process at hand. This is not surprising since the inhomogeneity of the chain is very mild and the chain will become homogeneous with a suitable time-reparameterization, However, we will proceed with the chain as it is for simplicity’ sake. Recall that the probability of a typical sequence [image: there is no content] of length N of the chain with initial distribution π is


p(ω)=p(i0,i1,…,iN-1)=πi0Ai0i1Bi1i2Ai2i3…











To compute [image: there is no content] we use the well known chain rule (see [6]):


[image: there is no content]








Therefore, we have


H(X0)=H(π)=-∑i0πi0lnπi0H(X1|X0)=-∑i0,i1p(i0,i1)lnp(i1|i0)=-∑i0,i1πi0Ai0i1lnAi0i1H(X2|X1,X0)=-∑i0,i1,i2p(i0,i1,i2)lnp(i2|i0,i1)=-∑i0,i1,i2πi0Ai0i1Bi1i2lnBi1i2








Hence, if the condition of stationary [image: there is no content] holds, the terms following [image: there is no content] alternate between the form of


[image: there is no content]








and


[image: there is no content]








Hence,


[image: there is no content]=limN→+∞1NH(X0,…,XN-1)=12(H(π,A)+H(A*π,B))








or


[image: there is no content]=[image: there is no content](A,B)=-12(∑i,j=1nπiAijlnAij+∑i,j,k=1nπiAijBjklnBjk)



(2.5)








2.3. Application of the M.E.R. principle and solution


In this section we solve the constrained extremum problem for the objective function [image: there is no content](A,B) subject to the constraints (2.4) using the Lagrange multipliers method. The Lagrange function is


G(A,B)=[image: there is no content](A,B)-∑ijγiAij--∑jkλjBjk-∑ijkμkπiAijBjk-β∑ijπiAijEij



(2.6)




and the necessary condition for the extremum are


∂G∂Aij=0,∂G∂Bjk=0,∀i,j,k.











By simple computations we get the expression for the solution A and B in terms of the unknown multipliers as


A^ij=eλj(A*π)je-γiπie-βEij=:xj(λ)yi(γ)Qij(β)B^jk=e-λj(A*π)jeμk+1=:xj-1(λ)[image: there is no content](μ)



(2.7)







In the following we use [image: there is no content] as unknowns in place of the Lagrange multipliers. By using the normality constraint on A and B respectively we get


yi=1∑jQijxj,xj=∑k[image: there is no content]:=z











By using the stationarity constraint of π with respect to [image: there is no content] we get the following equations for [image: there is no content], [image: there is no content],


πk=∑ijπiQij∑jQij[image: there is no content]z:=∑ijπi[image: there is no content]ij[image: there is no content]zwhere[image: there is no content]ij=Qij∑jQij











Since the above introduced matrix [image: there is no content] is a stochastic one with positive entries ∑j[image: there is no content]ij=1, it is easy to see that the solution of the above equation for [image: there is no content] is [image: there is no content]=πk. Hence, [image: there is no content] and from (2.7)


A^ij=[image: there is no content]ij,B^jk=πk.











Before turning to the inflow constraint to determine the multiplier β, we note that the matrix [image: there is no content] admits a simpler form using the definition Eij=Ej-[image: there is no content]


[image: there is no content]ij=Qij∑jQij=e-βEij∑je-βEij=e-βEj∑je-βEj=:[image: there is no content]j











Therefore [image: there is no content], since


(A^*π)i=∑j[image: there is no content]jiπj=∑j[image: there is no content]iπj=[image: there is no content]i











Now the inflow constraint can be rewritten as


q=∑ijπiA^ijEij=∑ijπi[image: there is no content]ijEij=∑ijπi[image: there is no content]jEij=E[image: there is no content](E)-Eπ(E)











Hence, for any given π and q, setting [image: there is no content], the Lagrange multiplier [image: there is no content] is uniquely determined by the equation


[image: there is no content]



(2.8)







We conclude by noting that, if the relation [image: there is no content] is seen as a constraint for the unknown probability distribution π, then the maximum entropy assignation for π is the Gibbs distribution


πi=e-β[image: there is no content]Z(β)whereβ=β(e).



(2.9)







We have found that the maximum entropy rate assignation for the non-stationary stochastic process described by the non-homogeneous Markov chain (2.1) defined by the stochastic matrices A and B and by the probability distribution π which is stationary for [image: there is no content] is


Aij=[image: there is no content]j,Bjk=πk



(2.10)




where [image: there is no content] is the Gibbs distribution for [image: there is no content] and π is the Gibbs distribution for [image: there is no content]. As expected, the solution depends only on the macroscopic information supplied: the equilibrium energy e and the flow q.




2.4. Entropy rate and entropy production


By a direct computation from (1.1), (2.8), (2.10), the entropy rate of the process is the sum of two terms of the type


[image: there is no content]








Hence, from (2.5)


[image: there is no content](A,B)=[image: there is no content](q,e)=12(H([image: there is no content])+H(π))=12(S(e+q)+S(e))



(2.11)







Since the chain spends “half of its time” in a state with average energy e and the remaining half in a state with average energy [image: there is no content], the above formula proposes that the entropy rate be the time average of its “instantaneous” entropies.



Which is the relation between the entropy rate of the stochastic process and the thermodynamic entropy of the system in a stationary non-equilibrium state? If q is small, we can consider the Taylor expansion of [image: there is no content](q,e) w.r.t. q and get


[image: there is no content](q,e)=[image: there is no content](0,e)+∂[image: there is no content]∂q(0,e)q+O(q2)=S(e)+12∂S∂e(e)q+O(q2)








Hence, by the well known identification [image: there is no content],


[image: there is no content](q,e)=S(e)+12β(e)q+O(q2)=S(e)+12qkT(e)+O(q2)



(2.12)




In the above formula, the entropy rate is the sum of two terms, one of which [image: there is no content] is non negative while the other has the sign of q. It is appealing to interpret the first as the source term an the other as the flux term.



Moreover, from the relation between the average energy e and the related multiplier [image: there is no content], we have that, if q is small


[image: there is no content]








Hence, up to [image: there is no content] order terms,


[image: there is no content]












2.5. Entropy production of the [image: there is no content]∪χ∪[image: there is no content] system


Let us consider the insulated system [image: there is no content]∪χ∪[image: there is no content] and let us suppose that the two environments [image: there is no content] and [image: there is no content] are two thermostats respectively at temperatures [image: there is no content] and [image: there is no content]. The net effect of putting the system χ alternatively in contact with [image: there is no content] and with [image: there is no content] is the flow in two time steps of the chain of an average energy amount [image: there is no content] from a reservoir at higher temperature [image: there is no content] to a reservoir a lower temperature T leaving the system χ unchanged, since the equilibrium distribution π is stationary for [image: there is no content]. By a standard non-equilibrium thermodynamics formula (see e.g. [13]) the entropy production in the π→A[image: there is no content]→Bπ cycle is


Spr=dSA+dSB=-q[image: there is no content]+qT=kq(β-β˜)≥0











If we now compute the information divergence (also called relative entropy, see [6]) of the Gibbs distribution [image: there is no content] with respect to Gibbs distribution π we find


D([image: there is no content]∥π)=∑i[image: there is no content]iln[image: there is no content]iπi=lnZ(β)Z(β˜)+(β-β˜)E[image: there is no content](E)≥0











The information divergence it is not a symmetric function of the two probability distributions [image: there is no content] while the symmetrized information divergence (see [14]) of p and q is a symmetric and non negative one


[image: there is no content]



(2.13)







The standard interpretation (see again [14]) of the symmetrized information divergence is a measure of the difficulty of assessing which is the statistical description (p or q) of the system on the basis of the observations of the system state. Since


Δ(π,[image: there is no content]):=D([image: there is no content]∥π)+D(π∥[image: there is no content])=(β-β˜)(E[image: there is no content](E)-Eπ(E))=(β-β˜)q≥0.








we have the following



Proposition 2 The entropy production of the closed system [image: there is no content]∪χ∪[image: there is no content] is equal to the symmetrized information divergence between the probability distributions π, [image: there is no content]


Spr=kΔ(π,[image: there is no content])≥0



(2.14)







Remark. In the literature (see e.g the books [15],[16] or the papers [17], [18]) there is a well established notion of entropy production rate for a stationary Markov chain with countable state space. Let [image: there is no content] be the transition matrix and its unique stationary distribution respectively. Then the entropy production rate, also called the information gain of the stationary chain with respect to its time reversal, is defined as


[image: there is no content]








We immediately see that if the the chain satisfy the detailed balance condition [image: there is no content], then the entropy production rate is zero. Let us show that this is the case for our χ system described by the maximum entropy rate matrices A and B defined in (2.10). Indeed, the chain observed at even times is described by the transition matrix [image: there is no content] with entries [image: there is no content], whose stationary distribution is the same π in (2.9), and this stationary Markov chain satisfy trivially the detailed balance condition. Therefore, the entropy production of the overall system [image: there is no content]∪χ∪[image: there is no content] is exclusively due to the energy exchange between the two reservoirs [image: there is no content] and [image: there is no content] as computed above.





3. Generalizations


In this section, we generalize the previous results to the case of a open system with k macroscopic observables [image: there is no content] with possibly different speed of relaxation to equilibrium and k stationary fluxes [image: there is no content].



3.1. The case of k isochronous fluxes and Onsager’ reciprocity relations


The considerations in Section 2 and Section 2.1 developed for E apply without changes for every macroscopic observable [image: there is no content]. We consider therefore our M.E.R. problem with k constraints of the form (2.4). Since the constraints specifying the values [image: there is no content] of the k inflows are linear and independent, the last term in the r.h.s. of the Lagrange function (2.6) becomes a sum over the index α


[image: there is no content]











By a simple inspection of the previous computations, one finds that the matrix [image: there is no content] has the form


[image: there is no content]ij=e-∑α[image: there is no content]Ejα∑je-∑α[image: there is no content]Ejα=:[image: there is no content]j








where the k Lagrange multipliers [image: there is no content] are uniquely determined by the k equations


E[image: there is no content]([image: there is no content])=-∂lnZ(β)∂[image: there is no content]=∑rErαe-∑σβσErσZ(β)=[image: there is no content]+Eπ([image: there is no content])=[image: there is no content]+eα











The considerations and the results of Section 2.4. can be reformulated without changes for the vector of fluxes [image: there is no content] and equilibrium values [image: there is no content]. In particular, the linear approximation of small fluxes formula (2.12) becomes


[image: there is no content](q)=S(e)+12∑α[image: there is no content](e)[image: there is no content]+O(q2)



(3.1)




and, by a computation like the one done before in Section 2.4., we get


[image: there is no content]








which are Onsager reciprocity relations.




3.2. The case of different speed of relaxation to equilibrium


In this section we sketch how to model a system where there are two observables [image: there is no content] with different speed of relaxation to equilibrium. As before, let the system χ be alternatively in contact with the two environments [image: there is no content] and [image: there is no content] but now we suppose that for the observable X its average value switches from e to [image: there is no content] and back to e upon the contact with [image: there is no content] and [image: there is no content], while for the observable Y its average value switches from u to [image: there is no content] and back to u upon the contact with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] (two cycles). Therefore, the system returns (relaxes) to equilibrium with respect to observable X in a two-step cycle [image: there is no content] or [image: there is no content] while, with respect to observable Y relaxes to equilibrium in a full (four step) cycle [image: there is no content]. Can we infer average values of slow quantity Y at intermediate states B, C from knowledge of average values of fast observable X ?



To this we introduce a periodic Markov chain with four stochastic matrices A, B, C, D generalizing (2.1) and the following set of constraints generalizing (2.4)


A·1=B·1=C·1=D·1=1(normalization)E[image: there is no content](X)-Eπ(X)=q,(specify inflow of X in A)E(AB)*π(X)-Eπ(X)=0,(specify outflow of X in AB)E(ABC)*π(X)-Eπ(X)=q,(specify inflow of X in ABC)E(AB)*π(Y)-Eπ(Y)=r,(specify inflow of Y in AB)(ABCD)*π=π,(π is stationary for ABCD)



(3.2)







By a computation entirely analogous to the previous one, we find the expression of the entropy rate


[image: there is no content]=14[H(π,A)+H(A*π,B)+H((AB)*π,C)+H((ABC)*π,D)]











Moreover, if the equilibrium state is defined by the macroscopic values [image: there is no content] and [image: there is no content], one can show that then system switches between three Gibbsian states


[image: there is no content]











Then, the inferred average value of Y at the intermediate states is


[image: there is no content]








and also


[image: there is no content]













4. Conclusions


In this paper we have dealt with a simple model describing a system in a stationary non-equilibrium state. The probabilistic description is provided by a non-homogeneous Markov chain, which is not assumed on the basis of a model of the microscopic interactions but rather derived from the knowledge of the macroscopic fluxes traversing the system through a maximum entropy rate principle. With respect to existing applications of the M.E.R. principle, here we have introduced a Markov chain defined by two or more stochastic matrices. In this way we are able to describe a system in a stationary non-equilibrium state that may exhibit different speed of relaxation to equilibrium. We made reference to physical quantities such as the energy for the ease of interpretation of the results, but this is not necessary and the same model can be applied in other domains, such as economy or biology, as it is sufficiently general to take into account macroscopic constraints of different nature.
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