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Abstract: We show that the maximin average redundancy in pattern coding is eventually

larger than 1.84
(

n
logn

)1/3

for messages of length n. This improves recent results on pattern
redundancy, although it does not fill the gap between known lower- and upper-bounds. The
pattern of a string is obtained by replacing each symbol by the index of its first occurrence.
The problem of pattern coding is of interest because strongly universal codes have been
proved to exist for patterns while universal message coding is impossible for memoryless
sources on an infinite alphabet. The proof uses fine combinatorial results on partitions with
small summands.
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1. Introduction

1.1. Universal Coding

Let P be a stationary source on an alphabet A, both known by the coder and the decoder. Let
X = (Xn)n∈N be a random process with distribution P. For a positive integer n, we denote by Xn

1

the vector of the n first components of X and by Pn the distribution of Xn
1 on An. We denote the

logarithm with base 2 by log and the natural logarithm by ln. Shannon’s classical bound [1] states the
average bit length of codewords for any coding function is lower-bounded by the n-th order entropy
H(Xn

1 ) = E [− log Pn (Xn
1 )]; moreover, this codelength can be nearly approached, see [2]. One

important idea in the proof of this result is the following: every code on the strings of length n is
associated with a coding distribution qn on An in such a way that the code length for x is − log qn(x),
and reciprocally any distribution qn on An can be associated with a coding function whose code length
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is approximately − log qn(x). When P is ergodic, its entropy rate H(X) = limn→∞
1
n
H(Xn

1 ) exists. It
is a tight lower bound on the number of bits required per character.

If P is only known to be an element Pθ of some class C = {Pθ : θ ∈ Θ}, universal coding consists
in finding a single code, or equivalently a single sequence of coding distributions (qn)n, approaching the
entropy rate for all sources Pθ ∈ C at the same time. Such versatility has a price: for any given source
Pθ, there is an additional cost called the (expected) redundancy R(qn, θ) of the coding distribution qn
that is defined as the difference between the expected code length Eθ [− log qn(X

n
1 )] and the n-th order

entropy H(Xn
1 ). Two criteria measure the universality of qn:

• First, a deterministic approach judges the performance of qn in the worst case by the maximal
redundancy R+(qn,Θ) = supθ∈ΘR(qn, θ) The lowest achievable maximal redundancy is called
minimax redundancy:

R+(n,Θ) = min
qn

max
θ
R(qn, θ)

• Second, a Bayesian approach consists in providing Θ with a prior distribution π, and then
considering the expected redundancy Eπ[R(qn, θ)] (the expectation is here taken over θ). Let qπn
be the coding distribution minimizing Eπ[R(qn, θ)] The maximin redundancy R−(n,Θ) of class C
is the supremum of all Eπ[R(qπn, θ)] over all possible prior distributions π:

R−(n,Θ) = max
π

min
qn

Eπ[R(qn, θ)]

A classical minimax theorem (see [3]) states that mild hypotheses are sufficient to ensure that
R−(n,Θ) = R+(n,Θ). Class C is said to be strongly universal if R+(n,Θ) = o(n): then universal
coding is possible uniformly on C. An important result by Rissanen [4] asserts that if the parameter set
Θ is k-dimensional, and if there exists a

√
n−consistent estimator for θ, then

R−(n,Θ) = R+(n,Θ) =
k

2
log n+O(1) (1)

This well-known bound has many applications in information theory, often related to the Minimum
Description Length Principle. It is remembered as a “rule of thumb” that redundancy is 1/2 log n for each
parameter of the model. This result actually covers a large variety of cases, among others: memoryless
processes, Markov chains, Context tree sources, hidden Markov chains. However, further generalization
have been investigated. Shields (see [5]) proved that no coder can achieve a non-trivial redundancy
rate on all stationary ergodic processes. Csiszár and Shields [6] gave an example of a non-parametric,
intermediate complexity class, known as renewal processes, for which R−(n,Θ) and R+(n,Θ) are both
of order O(

√
n). If alphabet A is not known, or if its size is not insignificant compared to n, Rissanen’s

bound (1) is uninformative. If the alphabet A is infinite, Kieffer [7] showed that no universal coding is
possible even for the class of memoryless processes.

1.2. Dictionary and Pattern

Those negative results prompted the idea of coding separately the structure of string x and the symbols
present in x. It was first introduced by Åberg in [8] as a solution to the multi-alphabet coding problem,
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where the message x contains only a small subset of the known alphabet A. It was further studied and
motivated in a series of articles by Shamir [9–12] and by Jevtić, Orlitsky, Santhanam and Zhang [13–16]
for practical applications: the alphabet is unknown and has to be transmitted separately anyway (for
instance, transmission of a text in an unknown language), or the alphabet is very large in comparison
to the message (consider the case of images with k = 224 colors, or texts when taking words as the
alphabet units).

To explain the notion of pattern, let us take the example of [9]: string x = “abracadabra” is made of
n = 11 characters. The information it conveys can be separated in two blocks:

• a dictionary ∆ = ∆(x) defined as the sequence of different characters present in x in order of
appearance; in the example ∆ = (a, b, r, c, d).

• a pattern ψ = ψ(x) defined as the sequence of positive integers pointing to the indices of each
letter in ∆; here, ψ = 12314151231.

Let Pn be the set of all possible patterns of n-strings. For instance, P1 = {1}, P2 = {11, 12},
P3 = {111, 112, 121, 122, 123}. Using the same notations as in [15], we call multiplicity µj(ψ) of
symbol j in pattern ψ ∈ Pn the number of occurrences of j in ψ; the multiplicity of pattern ψ is
the vector made of all symbol’s multiplicities: µ(ψ) = (µj(ψ)) 1 6 j 6 n—in the former example,
µ = (5, 2, 2, 1, 1, 0, . . .). Note that

∑n
j=1 µj = n. Moreover, the profile ϕ = (ϕµ)µ>1 of pattern ψ

provides, for every multiplicity µ, its frequency in µ(ψ). It can be formally defined as the multiplicity of
ψ’s multiplicity: µ (µ(ψ)). The profile of string “abracadabra” is (2, 2, 0, 0, 1, 0, . . .) as two symbols (c
and d) appear once, two symbols (b and r) appear twice and one symbol (a) appears five times. We denote
by Φn the set of possible profiles for patterns of length n, so that Φ1 = {(1)}, Φ2 = {(2, 0), (0, 1)},
Φ3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}. Note that

∑n
µ=1 µϕµ = n. As explained in [15], there is one-to-one

mapping between Φn and the set of unordered partitions of integer n. In Section 3., this point will be
used and specified.

1.3. Pattern Coding

Any process X from a source Pθ induces a pattern process Ψ = (Ψn)n∈N with marginal distributions
on Pn defined by Pθ (Ψn

1 = ψ) =
∑

ψ(x)=ψ Pθ (Xn
1 = x). Thus, we can define a n-th block pattern

entropy H(Ψn
1 ) = Eθ [− log Pθ(Ψn

1 )]. For stationary ergodic Pθ, Orlitsky & al. [16] prove that the
pattern entropy rate H(Ψ) = limn→∞

1
n
H(Ψn

1 ) exists and is equal to H(X) (whether this quantity is
finite or not). This result was independently discovered by Gemelos and Weissman [17].

In the sequel, we shall consider only the case of memoryless sources Pθ, with marginal distributions pθ
on a (possibly infinite) alphabet A. Hence, Θ will be the set parameterizing all probability distributions
on A.

Obviously, the process they induce on (Pn)n∈N is not memoryless. But as patterns convey less
information than the initial strings, coding them seems to be an easier task. The expected pattern
redundancy of a coding distribution qn on Pn can be defined by analogy as the difference between
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the expected code length under distribution Pθ and the n-th block pattern entropy:

RΨ(qn, θ) = Eθ [− log qn(Ψ
n
1 )] −H(Ψn

1 )

=
∑
ψ∈Ψn

Pθ(ψ) log
Pθ(ψ)

qn(ψ)

As the alphabet is unknown, the maximal pattern redundancy R+
Ψ(qn,Θ) must be defined as the

maximum of R+
Ψ(qn, θ) over all alphabets A and all memoryless distributions on A. Of course, the

minimax pattern redundancy R+
Ψ(n,Θ) is defined as the lower-bound of R+

Ψ(qn,Θ) in qn. Similarly, the
maximin pattern redundancy R−

Ψ(n,Θ) is defined as the supremum with respect to all possible alphabets
A and all prior distributions π of the lowest achievable average redundancy, that is:

R−
Ψ(n,Θ) = sup

A,π
inf
qn

Eπ[RΨ(qn, θ)]

2. Theorem

There is still uncertainty on the true order of magnitude ofR−
Ψ(n,Θ) andR+

Ψ(n,Θ). However, Orlistky
& et al. in [15] and Shamir in [11] proved that for some constants c1 and c2 it holds that c1n1/3−ϵ 6
R−

Ψ(n,Θ) 6 R+
Ψ(n,Θ) 6 c2

√
n. There is hence a gap between upper- and lower-bounds. This gap

has been reduced in an article by Shamir [10] where the upper-bound is improved to O
(
n2/5

)
. The

following theorem contributes to the evaluation of R−
Ψ(n,Θ), by providing a slightly better and more

explicit lower-bound, the proof of which is particularly elegant.

Theorem 1 For all integers n large enough, the maximin pattern redundancy is lower-bounded as:

R−
Ψ(n,Θ) > 1.84

(
n

log n

)1/3

Gil Shamir [18] suggests that a bound of similar order can be obtained by properly updating (B12)
in [11]. The proof provided in this paper was elaborated independently; both of them use the channel
capacity inequality described in Section 3.. However, it is interesting to note that they rely on different
ideas (unordered partitions of integers and Bernstein’s inequality here, sphere packing arguments or
inhomogeneous grids there). An important difference appears in the treatment of the quantization, see
Equation 2. [11] provides fine relations between the minimax average redundancy and the alphabet size.
The approach presented here does not discriminate between alphabet sizes; in a short and elegant proof,
it leads to a slightly better bound for infinite alphabets.

3. Proof

We use here standard technique for lower-bounds (see [19]): the n-th order maximin redundancy is
bounded from below by (and asymptotically equivalent to) the capacity of the channel joining an input
variable W with distribution π on Θ to the output variable Ψn

1 with conditional probabilities Pθ(Ψn
1 ).

Let H(Ψn
1 |W ) be the conditional entropy of Ψn

1 given W , and let I (Ψn
1 ;W ) = H(Ψn

1 ) − H(Ψn
1 |W )

denote the mutual information of these two random variables, see [2]. Then from [19] and [4] we know
that inequality

R−
Ψ(n,Θ) > I (Ψn

1 ;W )
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holds for all alphabets A and all prior distributions π on the set of memoryless distributions on A: it
is sufficient to give a lower-bound for the mutual information I (Ψn

1 ;W ) between parameter W and
observation Ψ. In words, R−

Ψ(n,Θ) is larger than the logarithm of the number of memoryless sources
that can be distinguished from one observation of Ψn

1 .
Given the positive integer n, let c = cn be an integer growing with n to infinity in a way defined later,

let λ be a positive constant to be specified later, let d = λ
√
c and let A = {1, . . . , c} We denote by Θc,d

the set of all unordered partitions of c made of summands at most equal to d:

Θc,d =

{
θ = (θj)j∈N+ : d > θ1 > θ2 > . . . and

∞∑
j=1

θj = c

}

Then Θc , Θc,c is the set of all unordered partitions of c. Let also Φc,d be the subset of Φc containing
the profiles of all patterns ψ ∈ Pc whose symbols appear at most d times:

Φc,d =

{
ϕ = (ϕ1, . . . , ϕd) ∈ Nd :

d∑
µ=1

µϕµ = c

}

There is a one-to-one mapping χc between Θc and Φc defined by
χc(θ)µ = |{i : θi = µ}| ;

χ−1
c (ϕ)j =

{
0 if

∑d
i=1 ϕi < j,

max{µ :
∑d

i=µ ϕi > j} else.

It is immediately verified that χ
(
Θc,d

)
= Φc,d. In [20], citing [21], Dixmier and Nicolas show the

existence of an increasing function f : R+ →
[
0, π
√

2
3

[
such that ln

∣∣Θc,d
∣∣ = f(λ)

√
c (1 + o(1)) as

c → ∞, where λ = d/
√
c. Numerous properties of function f , and numerical values, are given in [20];

notably, f is an infinitely derivable and concave function which satisfies f(λ) = −2λ log λ+2λ+O(λ3)

when λ→ 0 and f(λ) = π
√

2/3 −
√

6/π exp(−πλ/
√

6) when λ→ ∞.
For θ ∈ Θc,d, let pθ be the distribution on A defined by pθ(i) = θi

c
, and let Pθ be the memoryless

process with marginal distribution pθ. Let W be a random variable with uniform distribution on the set
Θc,d. Let X = (Xn)n∈N+ be a random process such that conditionally on the event {W = θ}, then the
distribution of X is Pθ, and let Ψ = (Ψn)n∈N+ be the induced pattern process.

We want to bound I(Ψn
1 ;W ) = H(W ) −H(W |Ψn

1 ) from below. As

H(W ) = log
∣∣Θc,d

∣∣ = f(λ) log e
√
c (1 + o(1))

we need to find an upper-bound for H(W |Ψn
1 ). The idea of the proof is the following. ¿From Fano’s

inequality, upper-bounding H(W |Ψn
1 ) reduces to finding a good estimator θ̂ for W : conditionally on

W = θ, string Xn
1 is a memoryless process with distribution Pθ and we aim at recovering parameter θ

from its pattern Ψn
1 . Each parameter θ = (θj)j>1 is here an unordered partition with small summands of

integer c. Let Tj be the number of occurrences of j-th most frequent symbol in ψ. Then T = (Tj)j>1

constitutes a random unordered partition of n. We show that by “shrinking” T by a factor c/n we build
a unordered partition θ̂ of c that is equal to parameter θ with high probability, see Figure 1. Note that
only partitions with small summands are considered: this allows to have a better uniform control on
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the probabilities of deviation of each symbol’s frequency, while the cardinality of Θc,d remains of same
(logarithmic) order as that of Θc. Parameters c and d are chosen in order to optimize the rate in Theorem
1, while the value of λ = d/

√
c is chosen at the end to maximize the constant.

Figure 1. The profile of pattern ψ forms a partition of n that can be “shrunk” to θ, the parameter partition
of c, with high probability.
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Let us now give the details of the proof. If W = θ and if we observe string Xn
1 = x having pattern

Ψn
1 = ψ ∈ Pn, we construct an estimator θ̂ =

(
θ̂j

)
16j6c

of θ in the following way: let ϕ(ψ) be the profile

of ψ, and T = (Tj)j>1 = χ−1
n (ϕ(ψ)) be the corresponding partition of n. For j > c, let θ̂j =

[
Tjc

n

]
,

where [x] denotes the nearest integer of x. Observe that as alphabet A contains only c different symbols,
for all j > c we have Tj = θ̂j = θj = 0.

The distribution of T is difficult to study, but is very related to much simpler random variables. For
1 6 i 6 n and j > 1, let U i

j = 1Xi=j; as U i
j has a Bernoulli distribution with parameter θj

c
, and as

process X is memoryless, we observe that Uj ,
∑n

i=1 U
i
j , the number of occurrences of symbol j in x,

has a binomial distribution B
(
n,

θj

c

)
. Let θ̃j =

[
Ujc

n

]
, and θ̃ =

(
θ̃j

)
j>1

; θ̃ would be an estimator of θ

if we had access to x, but here estimators may only be constructed from ψ. However, there is a strong
connection between θ̂ and θ̃: the symbols in x are in one-to-one correspondence with the symbols in ψ.
Hence, T is just the order statistics of U : Tj = U(j) and thus θ̂j = θ̃(j).

Now, if
∣∣∣Ujc

n
− θj

∣∣∣ < 1
2

then θ̃j = θj . Thus, if for all j in the set {1, . . . , c} it holds that
∣∣∣Ujc

n
− θj

∣∣∣ < 1
2
,

then θ̃ = θ and θ̃, as an increasing sequence, is equal to its order statistics θ̂. It follows that

c∩
j=1

{∣∣∣∣Ujcn − θj

∣∣∣∣ < 1

2

}
⊂
{
θ̂ = θ

}
(2)

and hence, using the union bound:

Pθ(θ̂ ̸= θ) 6 Pθ

(
c∪
j=1

{∣∣∣∣Ujcn − θj

∣∣∣∣ > 1

2

})
6

c∑
j=1

Pθ
(∣∣∣∣Ujn − θj

c

∣∣∣∣ > 1

2c

)
(3)

We chose parameter set Θc,d so that all summands in partition θ are small with respect to c.
Consequently, the variance of the

(
U i
j

)
i,j

is uniformly bounded: Var[U i
j ] =

θj

c

(
1 − θj

c

)
6 d

c
. Recall the

following Bernstein inequality [22]: if Y1, . . . , Yn are independent random variables such that Yi takes
its values in [−b, b] and such that Var[Yi] 6 v, and if S = Y1 + · · · + Yn, then for any positive x it holds
that:

P (S − E[S] > x) 6 exp

(
− x2/2

n(v + x/3)

)
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Using this inequality for the
(
U i
j

)
16i6n, we obtain:

Pθ
(∣∣∣∣Ujn − θj

c

∣∣∣∣ > 1

2c

)
6 2e−

n/4c2

2(d/c+1/6c) = 2e−
n

8c(d+1/6)

Thus, we obtain from (3):

P(θ̂ ̸= θ) =
1

|Θc,d|
∑
θ∈Θc,d

Pθ(θ̂ ̸= θ) 6 2ce−
n

8c(d+1/6)

Now, using Fano’s inequality [2]:

H(W |Ψn
1 ) 6 H(W |θ̂)

6 P(W ̸= θ̂) log
∣∣Θc,d

∣∣+ log 2

6 2ce
− n

8λc3/2 f(λ)
√
c (1 + o(1))

Hence,

R−
Ψ(n,Θ) > I(Ψn

1 ;W ) = H(W ) −H(W |Ψn
1 )

> f(λ) log e
√
c (1 + o(1)) − 2ce

− n

8λc3/2 f(λ) log e
√
c (1 − o(1))

= f(λ) log e
√
c
(
1 − 2ce

− n

8λc3/2 − o(1)
)

By choosing c =
(

n
16
3
λ logn

)2/3

we get:

R−
Ψ(n,Θ) > f(λ) log e

(
n

16
3
λ log n

)1/3
(

1 − 2

(
n

16
3
λ log n

)2/3

e−
2
3

logn − o(1)

)

=
f(λ)

λ1/3
log e

(
3n

16 log n

)1/3

(1 − o(1))

By looking at the table of f given at page 151 of [20], we see that function λ → f(λ)/λ1/3 reaches
its maximum around λ = 0.8; for that choice, f(λ) ≈ 2.07236 and we obtain:

R−
Ψ(n,Θ) > 1.843

(
n

log n

)1/3

(1 − o(1))
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22. Massart, P. Ecole d’Eté de Probabilité de Saint-Flour XXXIII. LNM. Springer-Verlag: London,
UK, 2003; Chapter 2.

c⃝ 2009 by the author; licensee Molecular Diversity Preservation International, Basel, Switzerland. This
article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license http://creativecommons.org/licenses/by/3.0/.


	Introduction
	Universal Coding
	Dictionary and Pattern
	Pattern Coding

	Theorem
	Proof

