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Abstract: Statistical complexity is a measure of complexity of discrete-time stationary
stochastic processes, which has many applications. We investigate its more abstract properties
as a non-linear function of the space of processes and show its close relation to the Knight’s
prediction process. We prove lower semi-continuity, concavity, and a formula for the ergodic
decomposition of statistical complexity. On the way, we show that the discrete version of the
prediction process has a continuous Markov transition. We also prove that, given the past out-
put of a partially deterministic hidden Markov model (HMM), the uncertainty of the internal
state is constant over time and knowledge of the internal state gives no additional information
on the future output. Using this fact, we show that the causal state distribution is the unique
stationary representation on prediction space that may have finite entropy.
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1. Introduction

An important task of complex systems sciences is to define “complexity”. Measures that quantify
complexity are of both theoretical (e.g., [1]) and practical interest. In applications, they are widely used
to identify “interesting” parts of simulations and real-world data (e.g., [2]). There exist various measures
of different kinds of complexity. In particular, statistical complexity constitutes a complexity measure for
stationary stochastic processes in doubly infinite discrete time and discrete state space. It was introduced
by Jim Crutchfield and co-workers within a theory called computational mechanics [3–5]. Note that
here “computational mechanics” is unrelated to computer simulations of mechanical systems. Statistical
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complexity is applied to a variety of real-world data, e.g., in [6]. An important, closely related concept
of computational mechanics is the so-called ε-machine. It is a particular partially deterministic HMM
that encodes the mechanisms of prediction. Partially deterministic HMMs are often called deterministic
stochastic automata to emphasize their close connection to a key concept of theoretical computer science,
namely deterministic finite state automata [7].

In this paper, we look at more abstract features of statistical complexity as well as partially determin-
istic HMMs. We consider statistical complexity to be a non-linear functional from the space of ∆-valued
stationary processes (∆ countable) to the set R+ = R+ ∪ {∞} of non-negative extended real numbers.
Here, we identify stationary processes with their law, i.e., with shift-invariant probability measures on
the sequence space ∆Z, and equip the space of measures with the usual weak-∗ topology (often called
“weak topology”). Because ∆ is discrete, this topology is equal to the topology of finite-dimensional
convergence. In ergodic theory, Kolmogorov-Sinai entropy is studied as a function of the (invariant)
measure, and the questions of continuity properties, affinity, and behaviour under ergodic decomposition
arise naturally (e.g., [8]). We believe that these questions are worth considering also for complexity mea-
sures. A formula for the ergodic decomposition of excess entropy, which is another complexity measure
for stochastic processes, was obtained in [9,10]. Our results presented here include the corresponding
formula for statistical complexity, and this formula directly implies concavity. The most important result
is lower semi-continuity of statistical complexity. We consider this a desirable property for a complexity
measure, as it means that a process cannot be complex if it can be approximated by non-complex ones.

In Section 2., we define statistical complexity and show its relations to a discrete version of Frank
Knight’s prediction process [11,12]. The prediction process is the measure-valued process of conditional
probabilities of the future given the past. It takes values in the space P(∆N) of probability measures on
∆N, called prediction space. In our formulation, statistical complexity is the marginal entropy of the
prediction process. This is equivalent to the classical definition as entropy of a certain partition of the
past. We only replace equivalence classes with the respective induced probabilities on the future. In this
section, we also show that the discrete (and thus technically vastly simplified) version of the prediction
process has a continuous Markov transition kernel (Proposition 5).

In Section 3., we investigate properties of partially deterministic HMMs. Here, we use a general
notion of HMM (sometimes called edge-emitting HMM), where new internal state and output symbol are
jointly determined and may have dependencies conditioned on the last internal state. Partial determinism
means that this dependence is extreme in the sense that the last internal state and the output altogether
uniquely determine the following internal state. We show that, if one knows the past output trajectory,
the remaining uncertainty (measured by entropy) of the internal state is constant over time, although it
may depend on the ergodic component (Proposition 18). Furthermore, the distribution of future output
is the same for any internal state that is compatible with the past output (Corollary 20). In Section 3.3.,
we construct a canonical Markov kernel, such that taking any measure ν on prediction space P(∆N)

(i.e., ν is a measure on measures) as initial distribution, we obtain a partially deterministic HMM of a
process P ∈ P(∆N). This process P coincides with the measure r(ν) represented by ν in the sense of
integral representation theory, and if ν is appropriately chosen, we obtain the ε-machine of computational
mechanics (or something isomorphic) as special case. Using the properties of partially deterministic
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HMMs, we obtain that there is no invariant representation on prediction space with finite entropy other
than, possibly, the causal state distribution, which may have finite or infinite entropy (Proposition 23).

Section 4. contains our results about statistical complexity. We show that the complexity of a process
is the average complexity of its ergodic components plus the entropy of the mixture (Proposition 26). As
a direct consequence, statistical complexity is concave (Corollary 27) and non-continuous (even w.r.t.
variational topology). But it does have a continuity property. Namely, using the results of the previous
sections, we show in Theorem 32 that it is weak-∗ lower semi-continuous.

2. Prediction Dynamic and Statistical Complexity

For the whole article, fix a countable set ∆ with at least two elements and discrete topology. We
identify ∆-valued stochastic processes XZ := (Xk)k∈Z, defined on some probability space (Ω, A,P),
with their respective laws P := P ◦X−1

Z ∈ P(∆Z). Here, P denotes the set of probability measures. If
XZ is stationary, P is in the setPinv(∆

Z) of shift-invariant probability measures. Let ξk : ∆Z → ∆ be the
canonical projections. Then ξZ is a process on (∆Z,B(∆Z), P ) with the same distribution as XZ. Here,
B denotes the Borel σ-algebra. We often decompose the time set Z into the “future” N and the “past”
Z \N = −N0, where N0 = N ∪ { 0 }. For simplicity of notation, we denote the canonical projections
on ∆N with the same symbols, ξk, as the projections on ∆Z. If not stated otherwise, product spaces are
equipped with product and spaces of probability measures are equipped with weak-∗-topology. We use
the arrow ∗

⇀ to denote weak-∗ convergence.

2.1. Discrete Version of Knight’s Prediction Process

For every measurable stochastic process with time setR+ on some Lusin space, Frank Knight defines
the corresponding prediction process as a process of conditional probabilities of the future given the past.
This theory originated in [11] and was further developed in [12–14]. The most important properties of
the prediction process are that its paths are right continuous with left limits (cadlag), it has the strong
Markov property and determines the original process. The continuity of the time set and the generality
of the state space lead to a lot of technical difficulties. In our simpler, discrete setting, these difficulties
mostly disappear, and useful properties of the prediction process, such as having cadlag paths, become
meaningless. A new aspect, however, is added by considering infinite pasts of stationary processes via
the time-set Z. The marginal distribution (unique because of stationarity) of the prediction process is
an important characteristic, which is used to define statistical complexity. For this subsection, fix a
stationary process XZ with distribution P ∈ Pinv(∆

Z).
We use the following notation concerning Markov kernels and conditional probabilities. If K is a

kernel from Ω to a measurable space M , we consider K as measurable function from Ω to P(M) and
write K(ω; A) := K(ω)(A) for the probability of a measurable set A w.r.t. the measure K(ω). Given
random variables X,Y on Ω, we write K = P(X | Y ) if K is the conditional probability kernel of X

given Y , i.e., K(ω; A) = P
({X ∈ A }

∣∣ Y
)
(ω).

Definition 1. Let ZZ = ZP
Z be the P(∆N)-valued stochastic process of conditional probabilities defined

by Zk := P (ξ[k+1,∞[ | ξ]−∞,k]) for k ∈ Z. Then ZZ is called prediction process of XZ. P(∆N) is called
prediction space.
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It is evident that the Markov property of the prediction process in continuous time also holds in
discrete time. Nevertheless, we give a proof, because it is elementary in our discrete setting. The
corresponding transition kernel works as follows. Assume the prediction process is in state z ∈ P(∆N).
The transition kernel maps z to a measure on measures, namely P (Z1 | Z0 = z) ∈ P(P(∆N)

)
. Note

that z is a state of the prediction process but at the same time a probability measure. Thus it makes sense
to consider the conditional probability given ξ1 = d w.r.t. the measure z. It is intuitively plausible that
the next state will be one of those conditional probabilities with d distributed according to the marginal
of z. The resulting measure has to be shifted by one as time proceeds. With ς : ∆N → ∆N, we denote
the left shift.

Proposition 2. For z ∈ P(∆N), let φz : ∆N → P(∆N), φz(ω) := z(ς−1
( · ) | ξ1)(ω). The prediction

process ZZ is a stationary Markov process. The kernel S : P(∆N) → P(P(∆N)
)

with S(z) = z ◦ φ−1
z ,

i.e.
S(z)(B) := S(z; B) := z

({φz ∈ B }), z ∈ P(∆N), B ∈ B
(P(∆N)

)
,

satisfies P (Zk | Zk−1) = S◦Zk−1 a.s. In other words, S is the transition kernel of the prediction process.

Proof. Stationarity is obvious from stationarity of XZ. We obtain a.s.

S(Z0; B) = Z0

({
Z0(ς

−1
( · ) | ξ1) ∈ B

})
= P

({
P (ξ[2,∞[ | ξ]−∞,1]) ∈ B

} ∣∣∣ ξ−N0

)

= P
({Z1 ∈ B }

∣∣ ξ−N0

)
.

In particular, P
({Z1 ∈ B }

∣∣ ξ−N0

)
is σ(Z0)-measurable (modulo P ) and together with σ(Z0) ⊆

σ(ξ−N0) we obtain

P
({Z1 ∈ B } ∣∣ Z0

)
= P

({Z1 ∈ B } ∣∣ ξ−N0

)
= S(Z0; B), (1)

as claimed. We still have to verify the Markov property. But because the σ-algebra induced by Z−N0 is
nested between those induced by Z0 and ξ−N0 , i.e. σ(Z0) ⊆ σ(Z−N0) ⊆ σ(ξ−N0), we obtain the Markov
property from the first equality in (1).

Definition 3. We call the Markov transition S of the prediction process prediction dynamic.

Note that although the prediction process ZZ obviously depends on P , the prediction space P(∆N)

and the prediction dynamic S do not. In the case of general Lusin state space, it is non-trivial to prove
the existence of the regular versions of conditional probability such that φz(ω) is jointly measurable in
(z, ω) (see [12]). For countable ∆, however, we even obtain essential continuity in an elementary way.
This enables us to prove continuity of the prediction dynamic.

Lemma 4. Let z, zn ∈ P(∆N) and zn
∗
⇀ z. There is a clopen (i.e. closed and open) set Ωz ⊆ ∆N with

z(Ωz) = 1 such that φzn

∗
⇀ φz, uniformly on compact subsets of Ωz.

Proof. Let Aω := ξ1
−1

(
ξ1(ω)

)
and Ωz :=

{
ω ∈ ∆N

∣∣ z(Aω) > 0
}

. Because ∆ is discrete and
countable, Ωz is clopen with z(Ωz) = 1. Uniform convergence on compacta is equivalent to φzn(ωn)

∗
⇀

φz(ω) whenever ωn → ω in Ωz. For sufficiently large n, ξ1(ωn) = ξ1(ω) and because ς−1 maps cylinder
sets to cylinder sets, φzn(ωn) = zn(Aω∩ ς−1( · ))

zn(Aω)

∗
⇀ φz(ω).
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Proposition 5. The prediction dynamic S is continuous.

Proof. Let zn, z ∈ P(∆N) with zn
∗
⇀ z and Ωz as in Lemma 4. We have to show

∫
g dS(zn) =

∫
g ◦ φzn dzn

n→∞−→
∫

g ◦ φz dz =

∫
g dS(z) (2)

for any bounded continuous g. According to Prokhorov’s theorem, the sequence (zn)n∈N is uniformly
tight and we can restrict the integrations to compact subsets. Because limn→∞ zn(Ωz) = z(Ωz) = 1, we
can restrict to compact subsets of Ωz. There, the convergence of φzn is uniform, thus (2) holds.

2.2. Statistical Complexity

In integral representation theory, a measure ν ∈ P(P(∆N)
)

represents the measure z ∈ P(∆N) if

z = r(ν) :=

∫

P(∆N)

idP(∆N) dν, (3)

where r : P(P(∆N)) → P(∆N) is called resolvent or barycentre map (see [15]) and id is the iden-
tity map. Here, measure valued integrals are Gel’fand integrals. That is, µ =

∫
K dν for some ker-

nel K means
∫

f dµ =
∫ ∫

f dK( · ) dν for all continuous, real-valued f or, equivalently, µ(B) =∫
K( · ; B) dν for all measurable sets B. z = r(ν) means that z is a mixture (convex combination)

of other processes, and the mixture is described by ν. A trivial representation for z is given by δz, the
Dirac measure in z. The measure ν is called S-invariant if νS = ν, where νS :=

∫
S dν. In other

words, it is S-invariant if the iteration with the prediction dynamic S does not change it. We see in the
following lemma that general iteration with S shifts the represented measure, i.e., νS represents z ◦ ς−1.

Lemma 6. r(νS) = r(ν) ◦ ς−1. In particular, S-invariant ν represent stationary processes.

Proof. Because r(νS) =
∫ ∫

idP(∆N) dS dν, it is sufficient to consider Dirac measures δz, z ∈ P(∆N)

(the general claim follows by integration over ν). For Dirac measures we have

r(δzS) =

∫
idP(∆N) dS(z) =

∫
φz dz =

∫
z
(
ς−1( · )

∣∣ ξ1

)
dz = z ◦ ς−1

If ν is S-invariant, we also say that ν represents the stationary extension of r(ν) to ∆Z. The marginal
of the prediction process is an important such representation, which we call causal state distribution
because of its close relation to the causal states of computational mechanics.

Definition 7. For P ∈ Pinv(∆
Z), the causal state distribution µC(P ) is the marginal distribution of the

prediction process, i.e., µC(P ) := P ◦ Z−1
0 ∈ P(P(∆N)

)
.

The causal state distribution of P is an S-invariant representation of P .

Lemma 8. Let P ∈ Pinv(∆
Z). Then µC(P ) is S-invariant and represents P .

Proof. From Proposition 2 we know that P (Z1 | Z0) = S ◦ Z0 and ZZ is stationary. Thus
∫

S dµC(P ) =

∫
S ◦ Z0 dP =

∫
P (Z1 | Z0) dP = P ◦ Z−1

1 = µC(P )

Furthermore, µC(P ) represents P because we have

r
(
µC(P )

)
=

∫
Z0 dP =

∫
P (ξN | ξ−N0) dP = P ◦ ξN

−1
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Remark. The definitions in computational mechanics are slightly different. There, one works with
equivalence classes of past trajectories (called causal states) instead of probability distributions on future
trajectories. Because past trajectories x, y ∈ ∆−N0 are identified if P (ξN | ξ−N0 = x) = P (ξN | ξ−N0 =

y), the two approaches are equivalent. The advantage of working on prediction space P(∆N) is that it
has a natural topology and the prediction processes of all ∆-valued stochastic processes are described in
a unified manner on the same space with the same transition kernel.

Example 9. µC is not continuous. Let P be a non-deterministic i.i.d. (independent, identically dis-
tributed) process. Obviously, the causal state distribution of an i.i.d. process is the Dirac measure δPN in
its restriction PN := P ◦ ξN

−1 to positive time. According to [16], periodic measures are dense in the
stationary measures and we find an approximating sequence Pn

∗
⇀ P of periodic measures Pn. But the

past of a periodic process determines its future. Thus its causal state distribution is supported by the set
of Dirac measures on ∆N. Because the set of Dirac measures is closed in P(P(∆N)

)
, the topological

supports supp µC(Pn) are disjoint from the support supp µC(P ) = {PN }. Consequently, µC(Pn) cannot
converge to µC(P ). ♦

With statistical complexity, we measure complexity of a process P by the “diversity” of its expected
futures, given observed pasts (i.e., of µC(P )). The Shannon entropy H(µ) is used as the measure of
“diversity” of a probability measure µ. With ϕ(x) := −x log(x), it is defined as

H(µ) := sup
{ n∑

i=1

ϕ
(
µ(Bi)

) ∣∣ n ∈ N, Bi disjoint, measurable
}

(4)

Definition 10. For P ∈ Pinv(∆
Z), the quantity CC(P ) := H

(
µC(P )

) ∈ R+ is called statistical com-
plexity of P .

Note that if the probability space is sufficiently regular (e.g., separable, metrisable), H(µ) can only
be finite if µ is supported by a countable set A. In this case

H(µ) =
∑
a∈A

ϕ
(
µ({ a }))

Probably, lower semi-continuity of this entropy functional is well-known. We give a proof in the
appendix.

Lemma 11. Let M be a separable, metrisable space. Then the entropy H : P(M) → R+ is weak-∗
lower semi-continuous.

3. Partially Deterministic HMMs

The probability measures on prediction space induce hidden Markov models (HMMs) with an ad-
ditional partial determinism property, and it turns out to be helpful to investigate such HMMs. In Sec-
tion 3.1., we define HMMs and introduce the notation we need for the further discussion. In Section 3.2.,
we define the partial determinism property and obtain our results about the HMMs satisfying this prop-
erty. In Section 3.3., we show how measures on prediction space induce partially deterministic HMMs
and apply the results from Section 3.2. to prove that the causal state distribution is the only invariant
representation on prediction space that can have finite entropy.
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3.1. HMMs

We use the term HMM in a wide sense, meaning a pair (T, µ), where µ is an initial probability
measure on some Polish space M of internal states and T is a Markov kernel from M to ∆ ×M . The
HMM generates on (Ω,A,P) a ∆-valued output process XN and a (coupled) M -valued internal process
WN0 , such that W0 is µ-distributed and the joint process is Markovian with

P
({Xk ∈ D, Wk ∈ B } ∣∣ Xk−1, Wk−1

)
= T (Wk−1; D ×B) a.s.

We call (T, µ) an HMM of z ∈ P(∆N) if z = P ◦ X−1
N . If µ(B) =

∫
T ( · ; ∆ × B) dµ, we say that

the HMM is invariant and extend the generated processes to stationary processes XZ and WZ. We need
some further notation.

Definition 12. Let (T, µ) be an HMM, m ∈ M , d ∈ ∆, and ν ∈ P(M).

a) The output kernel K : M → P(∆) is defined by K(m) := Km := T (m; · ×M) ∈ P(∆). We also
use the notations K̂d(m) := Km(d) := Km

({ d }) and Kν :=
∫

K dν.

b) The internal operators Ld : P(M) → P(M)∪{ 0 } are defined as follows. Ld(ν) = 0 if Kν(d) = 0

and

Ld(ν)(B) :=

∫
T ( · ; { d } ×B) dν

Kν(d)
otherwise.

Remark. a) Km is the distribution of the next output symbol when the internal state is m, i.e. Km =

P(X1 | W0 = m) a.s. Further, Kµ is the law of X1.

b) The internal operator Ld describes the update of knowledge of the internal state when the symbol
d ∈ ∆ is observed. For Dirac measures, we obtain

Ld(δm) = P(W1 | W0 = m, X1 = d) a.s.

Be warned that Ld is not induced by a kernel in the following sense. There is no kernel ld : M →
P(M) such that Ld(ν) =

∫
ld dν. To see this, note that Ld(ν) 6= ∫

Ld ◦ ι dν for ι(m) = δm, because
Ld(ν) is normalised outside the integral as opposed to an individual normalisation of the Ld(δm)

inside the integral on the right-hand side.

It directly follows from the definition of (XN,WN0) by a Markov kernel that the conditional probabil-
ity, given that the internal state is m, is obtained by starting the HMM in m. In other words, it is generated
by the HMM (T, δm). Similarly, the conditional probability given an observed symbol X1 = d is ob-
tained by starting the HMM in the updated initial distribution Ld(µ). We formulate these observations
in the following lemma and give a formal proof in the appendix.

Lemma 13. Let (T, µ) be an HMM with internal and output processes WN0 , XN as above. Then a.s.
(T, δW0(ω)) is an HMM of P(XN | W0)(ω), and

(
T, LX1(ω)(µ)

)
is an HMM of P(X[2,∞[ | X1)(ω).

Definition 14 (processes YZ and HZ). Given an invariant HMM, let YZ be the P(M)-valued stochastic
process of expectations over internal states, given by Yk := P(Wk | X]−∞,k]). Let HZ be the process of
entropies of the random measures Yk, i.e., Hk(ω) := H

(
Yk(ω)

)
, where entropy H is defined by (4).
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Remark. Yk describes the current knowledge of the internal state, given the past. Hk is the entropy
of the value of Yk and measures “how uncertain” the knowledge of the internal state is. It is important
to bear in mind that this is different from the entropy of the random variable Yk. To avoid confusion,
we always write HP(X) when referring to the entropy of a random variable X defined on a probability
space with measure P.

The following lemma justifies the idea of the internal operator Ld being an update of knowledge of the
internal state. Furthermore, it enables us to condition on Y0 instead of X−N0 . The conditional probability
of the internal state given the past, Y0, contains as much information about X1 (and in fact XN, but we
do not need that here) as the past X−N0 does.

Lemma 15. a) Y1(ω) = LX1(ω)

(
Y0(ω)

)
a.s.

b) P
({X1 = d }

∣∣ Y0

)
(ω) = P

({X1 = d }
∣∣ X−N0

)
(ω) = KY0(ω)(d) a.s.

Proof. Conditional independence of (X1,W1) and X−N0 given W0 implies that a.s. P(X1, W1 | W0) =

P(X1, W1 | W0, X−N0) and thus
∫

T dY0 =

∫
P(X1, W1 | W0) dP( · | X−N0) = P(X1, W1 | X−N0) (5)

a) Let d = X1(ω) and for B ∈ B(M) set FB := {X1 = d, W1 ∈ B }. We obtain a.s.

Ld(Y0)(B)
(5)
=

P(FB | X−N0)

P(FM | X−N0)

(d = X1(ω))
= P

({W1 ∈ B }
∣∣ X−N0 , X1

)
= Y1( · )(B)

b) The second equality follows directly from (5). The first follows because, due to the second equality,
P

({X1 = d }
∣∣ X−N0

)
is σ(Y0)-measurable modulo P.

The previous lemma enables us to prove that YZ is Markovian and compute its transition kernel.
We already know that Ld(ν) is the updated expectation of the internal state when it was previously ν

and is now observed d. Thus it is not surprising that the conditional probability of Yk given Yk−1 = ν

is a convex combination of Dirac measures in Ld(ν) for different d (note that Yk is a measure-valued
random variable, thus its conditional probability distribution is indeed a distribution on distributions).
The mixture is given by the output kernel K, more precisely by Kν .

Lemma 16. For an invariant HMM, YZ and HZ are stationary. YZ is a Markov process with transition
kernel

P(Yk+1 | Yk = ν) =
∑

d∈∆

Kν(d) · δLd(ν) ∈ P(P(M)
) ∀ν ∈ P(M).

Proof. Stationarity is obvious. For ν0, . . . , νk ∈ P(M) and ν := νk we obtain

P(Yk+1 | Y[0,k] = ν[0,k])
(lem. 15a)

= P
(
LXk+1( · )(ν)

∣∣ Y[0,k] = ν[0,k]

)

=
∑

d∈∆

P
({Xk+1 = d }

∣∣ Y[0,k] = ν[0,k]

) · δLd(ν).

Because σ(Y[0,k]) is nested between σ(Yk) and σ(X]−∞,k]), Lemma 15 b) implies that P
({Xk+1 = d }

∣∣
Y[0,k] = ν[0,k]

)
= Kνk

= Kν and hence the claim.
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3.2. Partial Determinism

If the transition T of an HMM is deterministic, i.e., if the internal state determines the next state
and output (and thus the whole future) uniquely, the HMM is called (completely) deterministic. In a
deterministic HMM, all randomness is due to the initial distribution. This is a very strong property, and
a weaker partial determinism property is useful. In a partially deterministic HMM, the output symbol
is determined randomly, but the new internal state is a function f(m, d) of the last internal state m

and the new output symbol d. If the internal space M is finite, such HMMs are stochastic versions of
deterministic finite state automata (DFAs), an important concept of theoretical computer science (see [7,
Chap. 2]). The function f directly corresponds to the transition function of the DFA, but the start state
is replaced by the initial distribution and the HMM assigns probabilities to the outputs via the output
kernel K. A difference in interpretation is that the symbols from ∆ are considered input of the DFA and
output of HMMs. To emphasise their close connection to DFAs, partially deterministic HMMs are often
called deterministic stochastic automata, although they are not completely deterministic.

Definition 17. An HMM (T, µ) is called partially deterministic if there is a measurable function
f : M ×∆ → M , called transition function, such that T (m) = Km ⊗ δfm( · ) for all m ∈ M , i.e.,

T (m; D ×B) = Km

(
D ∩ f−1

m (B)
) ∀m ∈ M, D ⊆ ∆, B ∈ B(M)

where fm(d) := f̂d(m) := f(m, d) and B(M) is the Borel σ-algebra on M .

Remark. For partially deterministic HMMs we obtain

Ld(ν)(B) =
1

Kν(d)

∫

f̂−1
d (B)

K̂d dν and Ld(δm) = δfm(d) (6)

The second equation implies that Wk = fWk−1
(Xk) a.s., justifying the name transition function for f .

The following proposition is crucial for understanding partially deterministic representations. It states
that, given the past output, the uncertainty Hk = H(Yk) about the internal state is constant over time
and the next output symbol is independent of the internal state. The proof is along the following lines. If
we know the internal state at one point in time, we can maintain knowledge of the internal state due to
partial determinism. More generally, the uncertainty Hk of the internal state cannot decrease on average
and thus is a supermartingale. But because it is also stationary, the trajectories have to be constant. If two
possible internal states would lead to different probabilities for the next output symbol, we could increase
our knowledge of the internal state by observing the next output. But because of partial determinism,
this would also decrease the uncertainty of the following internal state, in contradiction to the constant
trajectories of HZ.

Proposition 18. Let (T, µ) be a partially deterministic, invariant HMM with H(µ) < ∞. Then HZ has
a.s. constant trajectories, i.e., Hk = H0 a.s. Furthermore, the restriction K¹supp(Y0) of the output kernel
K to the support supp(Y0) ⊆ M of the random measure Y0 is a.s. a constant kernel, i.e.,

Km = Km̂ ∀m, m̂ ∈ supp
(
Y0(ω)

)
a.s. (7)
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Proof. We show that HZ is a supermartingale to use the following well-known property.

Lemma. Every stationary supermartingale has a.s. constant trajectories.

Because H(µ) < ∞, we may assume w.l.o.g. that M is countable. Note that ϕ(x) = −x log(x) satisfies
ϕ(

∑
xi) ≤

∑
ϕ(xi). We obtain

H
(
Ld(ν)

) (6)
=

∑

m̂∈M

ϕ


 ∑

m∈f̂−1
d (m̂)

ν(m)
Km(d)

Kν(d)


 ≤

∑

m∈f̂−1
d (M)=M

ϕ

(
ν(m)

Km(d)

Kν(d)

)
.

We use the filtration Fk := σ(Y]−∞,k]). Markovianity of YZ yields E(Hk+1 | Fk) = E(Hk+1 | Yk).

E
(
Hk+1

∣∣ Yk = ν
) (lem. 16)

=
∑

d∈∆

Kν(d) ·H(
Ld(ν)

) ≤ −
∑

d,m

ν(m)Km(d) · log

(
ν(m)

Km(d)

Kν(d)

)

= HP(Wk | Xk+1, Yk = ν) ≤ HP(Wk | Yk = ν) = H(ν) (8)

where the second equality holds because P
({Wk = m, Xk+1 = d }

∣∣ Yk = ν
)

= ν(m)Km(d) and
P

({Xk+1 = d }
∣∣ Yk = ν

)
= Kν(d). Thus HZ is a supermartingale w.r.t. (Fk)k∈Z and has a.s. constant

trajectories. In particular, inequality (8) is actually an equality. Because H(µ) < ∞ and µ =
∫

Yk dP,
the entropy of Yk(ω) is a.s. finite. Thus, HP(Wk | Xk+1, Yk = ν) = HP(Wk | Yk = ν) implies that Wk

and Xk+1 are independent given Yk = ν, i.e. K¹supp(ν) is constant.

Note that the finite-entropy assumption is indeed necessary for the second statement of Proposition 18.
For example, the shift defines a deterministic HMM that does not (in general) satisfy (7).

Example 19 (shift HMM). The shift HMM is defined as follows. The internal state consists of the whole
trajectory, M := ∆Z. T = T ς outputs the symbol at position one and shifts the sequence to the left.
More formally with m = (mk)k∈Z ∈ M and ς(m) = (mk+1)k∈Z we have

T ς(m) = δm1 ⊗ δς(m) = δ(m1,ς(m))

If P ∈ Pinv(∆
Z), it is obvious that (T ς , P ) is an invariant, deterministic (in particular partially deter-

ministic) HMM of P . Here, P is the law of both XZ and W0; in fact even XZ = W0. We claim that,
generically, (T ς , P ) does not satisfy (7) (and of course the internal state entropy H(P ) is infinite). In-
deed, Km = δm1 and thus Km = Km̂ implies m1 = m̂1. Because Y0(ω) = P(XZ | X−N0)(ω), Equation
(7) implies that X−N0 determines X1 uniquely, which is generically not true. The analogously defined
one-sided shift on M = ∆N also does not satisfy (7). Note that, because future trajectories are equiv-
alent to internal states, the associated process YZ is essentially the prediction process in the sense that
Yk = Zk ◦XZ. ♦

Proposition 18 tells us that the next output symbol of a partially deterministic HMM is conditionally
independent of the internal state, given the past output. But even more is true. The whole future output
is conditionally independent of the internal state. Thus, if we know the past, the internal state provides
no additional information useful for the prediction of the future output.

Corollary 20. Let (T, µ) be partially deterministic, invariant, and H(µ) < ∞. Then

P(XN | W0 = m) = P(XN | W0 = m̂) ∀m, m̂ ∈ supp(Y0) a.s.
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Proof. According to Proposition 18, P(X1 | W0 = ·) = K is constant on supp(Y0). To obtain the state-
ment for X[1,n], we consider the n-tuple HMM defined as follows. The output space is ∆n, the internal
space is M , whereas the output and internal processes X̂Z and ŴZ are given by X̂k = X[(k−1)n+1,kn] and
Ŵk = Wnk. This is achieved by the HMM (T̂ , µ) with T̂ : M → P(∆n ×M), T̂ (m) = P(X[1,n],Wn |
W0 = m). The HMM is obviously partially deterministic with transition function fdn ◦ · · · ◦ fd1 and
invariant. Thus Proposition 18 implies that P(X[1,n] | W0 = ·) = P(X̂1 | Ŵ0 = ·) is constant on
supp(Ŷ0). Because we can couple the processes such that Ŷ0 = Y0, the claim follows.

3.3. Representations on Prediction Space

We can interpret any probability measure µ on prediction space P(∆N) as initial distribution of an
HMM. The “internal state update” of the corresponding transition T C follows the same rule as the pre-
diction dynamic S, described by the conditional probability given the last observation. The difference
is that now we include output symbols from ∆. We want to construct the HMM in such a way that if it
is started in the internal state z ∈ P(∆N), its output process is distributed according to z (which is also
a measure on the future). Thus, the distribution of the next output d has to be equal to the marginal of
z. The next internal state has to be the conditional z-probability of the future given ξ1 = d. Recall that
φz(ω) = z(ς−1

( · ) | ξ1)(ω).

Definition 21. We define the Markov kernel T C from P(∆N) to ∆×P(∆N) by

T C(z; D ×B) := z
({ ξ1 ∈ D, φz ∈ B }), z ∈ P(∆N), D ⊆ ∆, B ∈ B

(P(∆N)
)
.

Note that T C(z; ∆ × B) = S(z; B), i.e., marginalising T C(z) to the internal component yields the
prediction dynamic. Thus, if µ = µC(P ) is the causal state distribution (Definition 7) of some process
P ∈ Pinv(∆

Z), then the internal state process of the induced HMM (T C, µ) coincides with the prediction
process ZZ of P . From the following lemma we conclude that the output process XZ is, as expected,
distributed according to P . More generally, if µ ∈ P(P(∆N)

)
represents a process z ∈ P(∆N) in the

sense of integral representation theory as a mixture of other processes, it also induces an HMM of z,
namely (T C, µ). Recall that r is the resolvent, defined in (3), and associates the represented process to µ.

Lemma 22. Let µ ∈ P(P(∆N)
)
. Then (T C, µ) is a partially deterministic HMM of r(µ). In particular,(

T C, µC(P )
)

is an invariant HMM of P ∈ Pinv(∆
Z).

Proof. Partial determinism follows directly from the definition of T C. We have Kz = z ◦ ξ1
−1 and the

transition function f is given by fz ◦ ξ1 := φz. It is well defined due to the σ(ξ1)-measurability of φz

and obviously T C(z; D × B) = Kz

(
D ∩ f−1

z (B)
)
. We assume w.l.o.g. that µ is a Dirac measure (the

general claim follows by integration over µ). Thus let µ = δz with z = r(µ). Recall that, according to
Lemma 13,

(
T C, T C

d (δz)
)

is an HMM of the conditional probability of ξ[2,∞[ given that ξ1 = d (w.r.t. the
output process of (T C, δz)). Using T C

(
z; { d } × P(∆N)

)
= z

({ ξ1 = d }) and

r
(
T C

d (δz)
) (6)

= r
(
δfz(d)

)
= fz(d) = z

(
ς−1( · ) | ξ1 = d

)
,

the claim follows by induction.
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Remark (ε-machine). (T C, µC(P )) corresponds to the so-called ε-machine of computational mechanics.
It is in some sense a minimal predictive model but in general not the minimal HMM of P (see [17]).

Given a process P ∈ Pinv(∆
Z), there are (usually) many invariant representations on prediction space

(i.e., S-invariant ν ∈ P(P(∆N)
)

with r(ν) = PN). The next proposition shows that the causal state
distribution of P is distinguished among them as the only one that can have finite entropy.

Proposition 23. Let ν ∈ P(P(∆N)
)

be S-invariant, and P ∈ Pinv(∆
Z) the measure it represents. If

ν 6= µC(P ), then H(ν) = ∞.

Proof. Let H(ν) < ∞. According to Lemma 22, (T C, ν) is an invariant HMM of P and satisfies the
conditions of Corollary 20. Let WZ be the corresponding M = P(∆N)-valued internal process. For a.e.
fixed ω, Lemma 13 tells us that (T C, δW0(ω)) is an HMM of P(XN | W0)(ω), but it is also an HMM of
r(δW0(ω)) = W0(ω) due to Lemma 22. Thus, P(XN | W0) = W0 and

z = P(XN | W0 = z)
(cor. 20)

= P(XN | W0 = ẑ) = ẑ ∀z, ẑ ∈ supp
(
Y0(ω)

)

This means
∣∣supp(Y0)

∣∣ = 1, i.e. Y0(ω) is a Dirac measure. Thus Y0 = P(W0 | X−N0) = δW0 a.s. and

Z0 ◦XZ = P(XN | X−N0) =

∫
P(XN | W0 = · ) dY0 = P(XN | W0) = W0 a.s.

Because W0 is ν-distributed and µC(P ) is the law of Z0, we obtain ν = µC(P ).

We conclude this section with two examples of representations on prediction space. They are extreme
cases. The first one, ν1, is maximally concentrated, namely ν1 is the Dirac measure in (the future part
of) the process we want to represent. Thus it has no uncertainty in itself, but the (unique) process in its
support can be arbitrary. The second example, ν2, is supported by maximally concentrated processes,
i.e. by Dirac measures on ∆N, but the mixture ν2 is as diverse as the original process. The HMM
corresponding to ν2 is equivalent to the one-sided shift (Example 19).

Example 24. Let P ∈ Pinv(∆
Z), PN = P ◦ X−1

N and ν = δPN . Then ν is a representation of PN with
H(ν) = 0. This is no contradiction to Proposition 23 because ν is not S-invariant (if P is not i.i.d.) ♦

Example 25 (lifted shift). Let P ∈ Pinv(∆
Z) and ν = PN◦ι−1, where ι : ∆N → P(∆N), ι(x) = δx is the

embedding as Dirac measures. ν is an S-invariant representations of P and (T C, ν) is equivalent to the
one-sided shift. The only difference is that trajectories x ∈ ∆N are replaced by the corresponding Dirac
measures δx ∈ P(∆N). In other words, ι is an isomorphism. This is no contradiction to Proposition 23
because H(ν) = ∞ (if P is not concentrated on countably many trajectories). ♦

4. Properties of the Statistical Complexity Functional

Recall that the statistical complexity CC(P ) (Definition 10) of a process P ∈ Pinv(∆
Z) is defined as

the entropy H
(
µC(P )

)
of its causal state distribution. In this section, we investigate CC as a functional

on the space of processes. First, we consider the problem of ergodic decomposition. With ergodic
decomposition of P , we denote a probability measure ν on the ergodic measures Pe(∆

Z) ⊆ Pinv(∆
Z)

that satisfies
P = r(ν) =

∫

Pe(∆Z)

idPe(∆Z) dν
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Such a measure ν always exists and is uniquely determined by P . In [9,10], Łukasz Dębowski inves-
tigated another complexity measure, excess entropy, and gave a formula for its ergodic decomposition.
Here, we obtain the corresponding result for statistical complexity. It is the average complexity of the
ergodic components plus the entropy of the mixture.

Proposition 26 (ergodic decomposition). Let ν ∈ P(Pe(∆
Z)

)
be the ergodic decomposition of P ∈

Pinv(∆
Z). Then

CC(P ) =

∫
CC dν + H(ν)

Proof. First note that µC(P1) and µC(P2) are singular for distinct ergodic P1, P2 ∈ Pe(∆
Z). Indeed, there

exist disjoint A1, A2 ∈ σ(ξ−N0) and disjoint B1, B2 ∈ σ(ξN) s.t. Pk(Ak) = 1 and Pk(Bk | ξ−N0)¹Ak
≡ 1.

Consequently, if ν is not supported by a countable set, µC(P ) cannot be supported by a countable set and
CC(P ) = H(ν) = ∞. Thus assume ν =

∑
k∈N νkδPk

for some νk ≥ 0 and distinct Pk ∈ Pe(∆
Z). Then

there are disjoint Ak ∈ σ(ξ−N0) s.t. Pk(Ak) = 1. We claim

P ( · | ξ−N0) =
∑

k∈N
1Ak

Pk( · | ξ−N0) P -a.s.

Indeed, the σ(ξ−N0)-measurability is clear, and for A ∈ σ(ξ−N0), F ∈ B(∆Z) we have
∫

A

∑

k∈N
1Ak

Pk(F | ξ−N0) dP =
∑
j∈N

νj

∫

A

∑

k∈N
1Ak

Pk(F | ξ−N0) dPj

(Pj(Aj) = 1)
=

∑
j

νj

∫

A∩Aj

Pj(F | ξ−N0) dPj

=
∑

j

νjPj(F ∩ A ∩ Aj) = P (F ∩ A)

As P (Ak) = νk, it follows that µC(P ) =
∑

k νkµC(Pk). Mutual singularity of the µC(Pk) implies

CC(P ) = H

(∑

k

νkµC(Pk)

)
=

∑

k

νkH
(
µC(Pk)

)
+ H(ν)

Several corollaries follow directly from this proposition. The set PC := C−1
C (R) of stationary

processes with finite statistical complexity is convex, CC is concave but not continuous, and the set
P∞ := Pinv(∆

Z) \ PC of processes with infinite statistical complexity is dense.

Corollary 27 (concavity). PC is a convex set and CC is concave. Moreover, for all ν ∈ P(N), νk := ν(k)

and Pk ∈ Pinv(∆
Z)

∑

k∈N
νkCC(Pk) ≤ CC

(∑

k∈N
νkPk

)
≤

∑

k∈N
νkCC(Pk) + H(ν)

Proof. Use ergodic decomposition of the Pk and Proposition 26.

Corollary 28 (non-continuity). CC¹PC
is not continuous in any P ∈ PC w.r.t. variational topology, let

alone w.r.t. weak-∗ topology.
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Proof. Let Qn ∈ PC with limn→∞ 1
n
CC(Qn) →∞ and Pn := n−1

n
P + 1

n
Qn. Then Pn → P in variational

topology, but CC(Pn) ≥ 1
n
CC(Qn) →∞ by Corollary 27.

Corollary 29. P∞ is dense in Pinv(∆
Z) w.r.t. variational- and a fortiori w.r.t. weak-∗-topology.

Proof. Let P,Q ∈ Pinv(∆
Z) with CC(Q) = ∞. Then P∞ 3 n−1

n
P + 1

n
Q → P

We give a simple example of a situation where statistical complexity is not continuous.

Example 30 (non-continuity). Let Qp be the Bernoulli process on ∆ = { 0, 1 } with parameter 0 < p <

1, i.e. Qp(ξ1 = 1) = p. Consider the process of throwing a coin which is either slightly biased to 0 or 1,
each with probability 1

2
, i.e. Pε = 1

2
Q 1

2
+ε + 1

2
Q 1

2
−ε with 0 < ε < 1

2
. Then Pε

∗
⇀ P0 = Q 1

2
for ε → 0, but

CC(Pε) = log(2) for ε > 0 and CC(P0) = 0. ♦

The proof of our most important result about statistical complexity, namely its lower semi-continuity,
makes use of the propositions given in Sections 2.1. and 3.. It also uses a compactness argument. To this
end we need, in the case of infinite ∆, a lemma guaranteeing that µC preserves relative compactness.

Lemma 31. Let M ⊆ Pinv(∆
Z) be relatively compact. Then µC(M) :=

{
µC(P )

∣∣ P ∈ M}
is

relatively compact in P(P(∆N)
)
.

Proof. Using Prokhorov’s theorem, we have to show that µC(M) is tight provided that M is tight. Let
ε > 0 and Kn ⊆ ∆Z compact with P (Kn) ≥ 1 − ε2−n

n
for all P ∈ M. We define K ′

n := ξN(Kn),
K̃ :=

{
z ∈ P(∆N)

∣∣ z(K ′
n) ≥ 1− 1

n
∀n ∈ N}

and fn := P
({ ξN ∈ K ′

n }
∣∣ ξ−N0

)
. For P ∈M

∫
fn dP ≥

∫
P (Kn | ξ−N0) dP = P (Kn) ≥ 1− ε2−n

n
.

We obtain P
(⋃

n { fn < 1− 1
n
}) ≤ ∑

n n(1−∫
fn dP ) ≤ ∑

ε 2−n = ε and consequently µC(P )(K̃) =

P
({Z0 ∈ K̃ }) = P

(⋂
n { fn ≥ 1− 1

n
}) ≥ 1 − ε for all P ∈ M. We still have to show compactness

of K̃. It is closed because zk
∗
⇀ z implies z(K ′

n) ≥ lim supk zk(K
′
n) due to closedness of K ′

n. It is tight
by definition because the K ′

n are compact. Therefore, K̃ is compact.

Theorem 32 (lower semi-continuity). The statistical complexity functional, CC : Pinv(∆
Z) → R+, is

weak-∗ lower semi-continuous.

Proof. Let Pn, P ∈ Pinv(∆
Z) with Pn

∗
⇀ P . Every subsequence of

(
µC(Pn)

)
n∈N has an accumulation

point (a.p.), according to Lemma 31. Consequently,

lim inf
n→∞

CC(Pn) = lim inf
n→∞

H
(
µC(Pn)

) (H lsc)
≥ inf

{
H(ν)

∣∣ ν a.p. of (µC(Pn))n∈N
}
.

Every µC(Pn) is S-invariant. According to Proposition 5, S is continuous and thus every a.p. ν of(
µC(Pn)

)
n∈N is also S-invariant. The resolvent r : P(P(∆N)

) → P(∆N) is continuous (see [15]), and
thus ν represents P . Therefore, according to Proposition 23, H(ν) ≥ CC(P ). In total we obtain

lim inf
n→∞

CC(Pn) ≥ CC(P ).
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We argue that, from a theoretical point of view, every complexity measure should be lower semi-
continuous. While it is not counter-intuitive that it is possible to approximate a simple system by un-
necessarily complex ones (and hence the complexity is not continuous), it would be strange to consider
a process complex if there is an approximating sequence with (uniformly) simple processes. Therefore,
an axiomatic characterisation of complexity measures (although, of course, we are far from having such
a characterisation) should include lower semi-continuity. There are also slightly more practical reasons
why semi-continuity is a nice property.

In a model selection task, for instance, it might be desirable to impose some upper bound a ∈ R+

on the complexity of considered processes (e.g. to avoid overfitting). An important consequence of
lower semi-continuity is that the set C−1

C

(
[0, a]

)
=

{
P ∈ Pinv(∆

Z)
∣∣ CC(P ) ≤ a

}
of processes with

complexity bounded by a is closed. This makes the complexity constraint technically easier. Consider
any complete metric on Pinv(∆

Z) compatible with weak-∗ (or any stronger) topology (e.g. Prokhorov,
Kantorovich-Rubinshtein or variational metric). Then due to the closedness, for every P ∈ Pinv(∆

Z)

with arbitrary complexity, there is a (not necessarily unique) closest “sufficiently simple” process Pa with
complexity not exceeding a. Another consequence is that the set of processes with infinite complexity is
generic in the following sense.

Corollary 33. P∞ contains a dense Gδ-set.

Proof. Because all C−1
C

(
[0, n]

)
are closed, P∞ is a Gδ-set. It is dense according to Corollary 29.

Example 34. Consider the experiment of first choosing a random coin with success probability p uni-
formly in [0, 1] and then generating an i.i.d. sequence with this coin. More precisely, let Qp be the
Bernoulli process with parameter p on ∆ = { 0, 1 } and P =

∫
Qp dp. Then P has infinite statistical

complexity according to Proposition 26. We might approximate P by Pn
∗
⇀ P (e.g. with ergodic Pn).

Then Theorem 32 implies that the complexity of Pn necessarily tends to infinity. ♦

Example 35. Let ∆ be finite, then Pinv(∆
Z) is compact. Assume we made observations of a ∆-valued

process and want to fit some P ∈ Pinv(∆
Z). From the observations, we might derive a set of closed

constraints, e.g., P
({ ξ1 = ξ2 }

) ∈ [a, b], P
({ ξ1 = d }) ≥ ε, and P

({ ξ2 = d }
∣∣ ξ1 = d

) ∈ [a, b] (the
third is closed only in presence of the second). Further closed constraints may be given by modelling
assumptions. Because the resulting set of admissible processes is compact, lower semi-continuity implies
that there is at least one process of minimal complexity satisfying all constraints. ♦

Appendix

Proof of Lemma 11 (lower semi-continuity of the entropy). Recall that ϕ(x) := −x log(x) and denote
the boundary of a set B by ∂B. Define

Ĥ(µ) := sup
{ n∑

i=1

ϕ
(
µ(Bi)

) ∣∣ n ∈ N, Bi disjoint, µ(∂Bi) = 0
}
.

Obviously, Ĥ ≤ H . Recall that µn
∗
⇀ µ implies µn(A) → µ(A) for all A with µ(∂A) = 0 (e.g., [18]).

Thus Ĥ is clearly lower semi-continuous and it is sufficient to show

H(µ) ≤ Ĥ(µ).
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If µ is not supported by any countable set, Ĥ(µ) = ∞ due to separability of M . Let µ =
∑∞

i=1 aiδxi

(ai ∈ [0, 1], xi ∈ M), and d a compatible metric on M . For fixed n ∈ N, we can choose a radius rn > 0,
such that Bn

i := { x ∈ M | d(xi, x) < rn }, i = 1, . . . , n, are disjoint and µ(∂Bn
i ) = 0. We get

n∑
i=1

ϕ(ai)
(ϕ′ ≥ −1)
≤

n∑
i=1

ϕ
(
µ(Bn

i )
)

+
n∑

i=1

(
µ(Bn

i )− ai

) ≤ Ĥ(µ) +
∞∑

i=n+1

ai.

Therefore, H(µ) = limn→∞
∑n

i=1 ϕ(ai) ≤ Ĥ(µ).

Proof of Lemma 13. We first prove that (T, δW0) is an HMM of P(XN | W0). Let GT (m) ∈ P(∆N)

be the distribution of the output process of (T, δm). Because GT is measurable, GT ◦ W0 is σ(W0)-
measurable. From the definition of (WN0 , XN) it follows for measurable B ⊆ M, A ⊆ ∆N that

P
({W0 ∈ B } ∩ {XN ∈ A }) =

∫

B

GT ( · ; A) dµ =

∫

W−1
0 (B)

GT

(
W0( · ); A

)
dP,

where the second equality holds because W0 is distributed according to µ. Thus GT ◦W0 is the claimed
conditional probability. To see that

(
T, LX1(µ)

)
is an HMM of P(X[2,∞[ | X1), let d ∈ ∆ and observe

∫
GT ( · ; A) dLd(µ) =

1

Kµ(d)

∫ ∫

{d}×M

GT ( · ; A) dT dµ =
P

({X1 = d, X[2,∞[ ∈ A })

P
({X1 = d }) .
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