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Abstract: Theories and numerical models of atmospheres and oceans are based on classical 
mechanics with added parameterizations to represent subgrid variability. Reformulated in 
terms of derivatives of information entropy with respect to large scale configurations, we 
find systematic forces very different from those usually assumed. Two examples are given. 
We see that entropic forcing by ocean eddies systematically drives, rather than retards, large 
scale circulation. Additionally we find that small scale turbulence systematically drives up 
gradient (“un-mixing”) fluxes. Such results confront usual understanding and modeling 
practice. 
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1. Geophysical Fluid Dynamics (GFD), Based on Classical Mechanics 

 
Seeking to characterize the large scale evolution of atmospheres or oceans, GFD is based on 

classical fluid mechanics under influences of gravity and rotation. As an exercise of classical 
mechanics, GFD is deterministic. Equations are written as though all macroscopic degrees of freedom 
are explicitly represented. The only uncertainty is that scales of molecular motion are subsumed under 
the continuum hypothesis with well-tested representations in terms of thermal conductivity or 
viscosity, for examples. 

In practice, GFD is almost never exercised on scales for which complete representation of all 
macroscopic motion is possible. The only exceptions occur when GFD is applied in numerical models 
of laminar flows in rotating tank experiments on scales for which “molecular” coefficients for 
viscosity or haline conduction can be applied. In “real world” applications, the scales of motion that 
can be resolved on even the most powerful computers are only the tiniest fraction of the macroscopic 
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variability actually present. Atmosphere, oceans and even most duck ponds are simply way too large 
for the theories and numerical methods that are applied. As example, Earth’s oceans exhibit something 
like 1025 to 1030 degrees of freedom (taking into account only the fields of velocity, temperature and 
salinity). The largest ocean models to date consider 109 to 1010  variables to define the ocean state. 
Thus, for any one variable retained explicitly, there are at least 1015variables unknown (not counting 
very many more molecular degrees of freedom). What to do? 

This circumstance has a long history, often called subgridscale (SGS) parameterization. The 
simplest, and still among the most common, “fix” for SGS is to write the GFD equations as though 
everything was resolved down to the scale of continuum hypothesis (averaging over molecular 
motions), but then to replace coefficients of viscosity or of thermal conductivity with adjustable 
coefficients several orders of magnitude larger, effectively treating macroscopic variability on SGS as 
a sort of super molecular variability. Because SGS issues arise throughout fields of fluids engineering, 
there have been vastly many studies seeking to refine parameterizations, usually be seeking a 
dependence of the parameters upon the larger scale, resolved environment. In engineering applications, 
SGS can be quite sophisticated with extensive empirical adjustment. 

In atmospheric application, there has been opportunity for empirical adjustment to SGS schemes on 
account on numerical weather forecasting with daily validation. However, for longer term projections 
of climate change and in ocean modeling, an empirical basis for refining SGS schemes is difficult. 

It is hoped that this article may be of interest to readers of Entropy for two reasons. First, we’ll see 
some attempts to improve upon SGS by taking explicit account of entropy calculus. The limited extent 
of these efforts to date may encourage some readers to join in a stronger overall effort. Second, it may 
be startling when phenomena such as organizing roles of entropy, as known e.g. at nanoscales, are seen 
again on planetary scales, such as when entropy organizes ocean circulation. 
 
2. Early Indications, Extremal Principles 
 

There have been indications that entropy can guide understanding of GFD, with entropy: 

H = − dPlog∫ P        (1) 
where dP integrates over probabilities of all possible configurations. Two quite different approaches 
have been taken. 

Considering uncertainty only on molecular scales, (1) provides a basis for traditional thermo-
dynamic entropy. Pioneering papers [1,2] have argued that the mean state of the atmosphere is close to 
that which maximizes production of thermodynamic entropy. Further researches along these lines are 
reviewed, e.g., [3], while the logical basis for maximizing entropy production (MEP) has been 
strengthened [4-7]. 

Alternatively and omitting thermodynamic entropy altogether, [8] considered (1) based on 
uncertainty of fluctuations on macroscales for an idealized (quasigeostrophic) ocean. This and other 
early works, reviewed at [9], considered the maximum of entropy (ME) rather than MEP. ME 
solutions in GFD continue to hold interest [10,11]. 

We see nearly antipodal approaches: on one hand taking no account of entropy associated with 
macroscale fluctuations while maximizing production of thermodynamic entropy; on the other hand 
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discarding thermodynamic entropy while maximizing entropy (not entropy production) due to 
macroscale fluctuations. Each approach claims successes characterizing the climate system. Can both 
be correct, as far as they go? Can we go further? 

Among difficulties with extremal principles is that answers have a “take it or leave it” air. If one 
contemplates Earth’s atmosphere and ocean, so well as these can be observed, and asks “what next?”, 
we turn to general circulation models (GCMs) which seek to solve equations of motion under explicit 
forcing. Results may resemble somewhat certain ME and MEP states, and this may be encouraging in 
terms of interpretive guidance. We wish to go further.  
 
3. Turbulence Closure Theory 
 

This is a subject recently reviewed [12] in Entropy. Present comments will be brief. Since 
pioneering work [13,14], a wealth of studies have been performed for statistically homogenous 
turbulence in 3D and in 2D, the latter suggestive of large scale eddies in atmospheres and oceans. 
Closure theory for 2D turbulence has been extended to include many geophysical effects including 
differential rotation (on beta-plane or on sphere), baroclinicity and bottom topography. 

While turbulence closure theory developed largely independently of entropy considerations, an 
important connection was established [15] showing that a broad class of closure theories strictly 
implied a Boltzmann H theorem, i.e., entropy (1) is non-decreasing: 

dH dt ≥ 0       (2) 
on account of interactions among turbulent fluctuations. In isolation from forcing and dissipation, (2) 
implies evolution toward ME solutions cited previously. However closure theory allows external 
(stochastic) forcing as well as explicit representation of dissipation, losing energy from macroscale 
fluctuations to the field of (implied) molecular agitation. Then the part of H due to macroscale 
fluctuations satisfies a budget with a source term given by external (stochastic) forcing, an internal 
production term due to turbulent interactions, and a loss term by dissipation. 

For such theories the connection with entropy is explicit and can be further explored. At the very 
least a 2nd Law statement (2) can be proven. This is important because, for the vastly many SGS 
schemes used in GCMs, no 2nd Law consistency is considered and indeed is demonstrably violated in 
some cases. 

The huge challenge for closures that have followed since [13,14] is their technical difficulty. Only 
special circumstances such as statistically homogenous and nearly isotropic turbulence have been 
amenable to careful investigation. Attempts are made to overcome these limitations, as perhaps seen in 
a series of papers [16-19]. This approach has allowed investigators (see [19] and references therein) to 
include mean zonal flow, sphericity (or beta effect) and bottom topography. 

To make calculations more amenable, [16] introduced a quasi-diagonal approximation, “QDIA”, 
assuming that second order correlations between coefficients at different wavevectors can be 
represented by correlations only at the same wavevector. This was used in later studies summarized in 
[19]. However, even with simplifying assumptions such as QDIA, the technical difficulty in closures 
has so far prevented practical application in GCMs.  
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4. Entropy Gradients and Generalized Forces 
 

Three challenges are: 
1) to utilize full information theoretic entropy (1), including both thermodynamics and 

macroscale variability, 
2)  to address the non-equilibrium, open nature of the Sun - Earth - atmosphere - ocean - space 

system, and 
3)  to deliver practical results, for example to measurably improve the fidelity of GCMs. 

Usually we write, then hope to solve, equations of motion for how things change, where “things” 
might be flow fields, temperature fields, etc. We might write:  

∂Y/∂t = F(Y) + G      (3) 
where Y is the collection of fields of interest, perhaps momentum, temperature, etc. F(Y) expresses the 
linear and nonlinear dependence of ∂Y/∂t upon Y, and G expresses external forces that may be 
independent of Y. Especially the science of GFD provides the dynamic core for GCMs by writing (3) 
for the coupled fields of momentum and density under the influences of gravity and planetary rotation. 
viz.: 

∂t + u ⋅∇( )u + 2Ω × u = −
∇p
ρ

+ ∇Φ + υ∇2u
     (4a) 

∂t + u ⋅ ∇( )T = κ∇2T + Q       (4b) 
where ∂t denotes partial derivative with respect to time, u is velocity, ∇ is spatial gradient, Ω is 
coordinate rotation rate, p is pressure, ρ is density, Φ is generalized gravitational potential (includes 
coordinate rotation and tidal forcing), υ is coefficient of viscosity (kinematic units), ∇2≡∇·∇, T is 
potential temperature (after adiabatic adjustment to a reference pressure), κ is coefficient of thermal 
conduction (kinematic units), Q represents internal source of heat, and an equation of state, ρ = ρ (T,p), 
couples (4a) and (4b). Depending upon applications, there may be more coupled equations such as for 
moisture in the atmosphere, salinity in the oceans, etc. 

Based in classical mechanics, there is well-established confidence in the derivation of (4). We 
should be cautious though. Eqn. (4) is a partial differential equation, yet the basis for (4) does not 
allow true differentials (infinitesimal differences across infinitesimal displacements). Rather (4) 
already requires that the least allowed displacement be very much larger than distances among 
molecules in the fluid, i.e., we take a continuum assumption. In many cases this assumption is quite 
secure and coefficients such as υ or κ in (4) have values well observed (not derived!) from  
laboratory studies. 

Here we do not question this continuum assumption. Instead we recognize that there is no feasible 
way, theoretically or numerically, to solve (4) in a domain such as an atmosphere or an ocean or a lake 
or even a modest duck pond at the length scales for which (4) would be valid. That is, one would solve 
down to length scales at which u and θ should vary so smoothly that differences over finite 
displacements would approximate derivatives. Historically we’ve done something else, replacing 
measurable coefficients υ or κ with artificial coefficients typically several orders of magnitude larger 
than the measured coefficients, rewriting (4) as: 
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∂t + u ⋅∇( )u + 2Ω × u = −
∇p
ρ

+ ∇Φ + ∇⋅ A m∇u( )  (5a)

∂t + u ⋅ ∇( )T = ∇⋅ A h∇T( )+ Q  (5b)

where Am and Ah are second order tensors which are usually assumed to be anisotropic, possibly with 
symmetric and anti-symmetric parts, with coefficients that may vary in space and time, perhaps 
depending upon properties of large scale u and T. Two arguments are often given for rewriting (4) to 
(5). First, one must do something like this to make models (e.g., GCMs) work. Second, coefficients in 
Am or Ah are supposed to represent effects of subgridscale fluctuations in u and T which are believed 
to generally “mix away” large scale property gradients. Efforts to find suitable expressions for 
coefficients in Am or Ah have been the subject of the huge SGS research mentioned in Sect. 1. A great 
deal of plausible thinking and post hoc corrections have gone into the many schemes for Am or Ah. Yet 
what is striking is the absence of consideration for entropic calculus or even for consistency with 
Second Law (2). We can and should do better. 

A very first step is to recognize more clearly what are the dependent variables for which we would 
solve. Regarding output from a GCM, we might view maps of u or T. Are fields of u and T the 
dependent variables? That is, is T(x,t) a prediction for the precise temperature at a precise point at a 
precise time? No. Modellers sometimes retreat to a modelling answer, possibly viewing T as the ratio 
of heat content to thermal mass in a model’s cell that might be some 10 s of km in horizontal extent 
and 10 s to 100 s of m in vertical. Unhappily, an integral operator which could extract cell heat content 
(say) cannot be passed over (4) in a way that obtains complete (closed) expressions. One is left to 
guessing, much as we were guessing at (5). 

Alternatively we recognize from the outset that we make calculations in the absence of full 
information. All of the degrees of freedom, both in the molecular field and in the macroscale 
variability on length scales too small to be explicitly represented, are known only in probability. Fields 
such as u or T are moments over the probabilities of all possible realizations of subgrid fluctuations. 
Rather than speaking of a “temperature equation”, if we were obliged to speak of “the equation for the 
temperature moment over the probabilities of ...”, we might sooner have been skeptical about 
equations such as (5). Of course it is much easier to say “temperature equation”. Yet, when we realize 
that we seek equations of the evolution of moments of probabilities, we are more ready to consider 
entropic effects absent from classical mechanics. 

Taking u and T, understood as moments over probabilities, for Y, many of the terms seen in (4) or 
(5) are part of ∂Y/∂t, cf. (3). Linear terms appear just as in (4) or (5), and nonlinearities whereby large 
scale moment fields interact with large scale moment fields also appear as in (4) or (5). But there is 
more. The aggregate effect of the myriad subgrid fluctuations also affect ∂Y/∂t. How? The suggestion 
here is that the gradient of entropy with respect to the moment fields act as a forcing upon the moment 
fields. That is, insofar as total entropy depends upon configurations of moment fields, if a hypothetical 
small change δY to Y yields a change δH in entropy, then an entropic force δH/δY acts to drive ∂Y/∂t. 
Symbolically: 

∂Y/∂t = F(Y) + G + C·∂YH      (6) 
where ∂YH is the gradient of H with respect to the fields that form Y. C is an operator projecting ∂YH 
onto ∂Y/∂t . 
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The great challenge is to move from (6), which is only symbolic, to actual calculation. Two 
approaches are feasible. Observing that C·∂YH acts to drive Y toward higher entropy, we can try to 
replace C·∂YH with a MEP term. Difficulties in GFD context are to obtain a valid expression for 
entropy production and to maximize that subject to suitable constraints. Partial progress has been made 
in this way, e.g., [20-22]. For the present, we will attempt to address the entropy gradient terms in (6) 
directly. It will be seen in Section 5.1 that the present method and MEP yield very similar results. 

The first step is to recognize that C·∂YH has two parts, C and ∂YH. While some components of ∂YH 
may be very large, if the elements in C which project ∂YH onto ∂Y/∂t are extremely small, then these 
large ∂YH are not very effective. In the case of oceans, a huge increase in entropy could be realized if 
the oceans (in “thought experiment”) could come to absolute thermodynamic equilibrium (isothermal, 
in solid body rotation with Earth). However, the timescale to accomplish such adjustment, even 
assuming turbulent enhancement of macroscale dissipation via υ and κ, is enormous compared with 
vastly more rapid oceanic adjustments. Hence, as a practical step, we here omit thermodynamic 
contribution to H, retaining only the part due to macroscale variability. 

Notably, the choice here to omit thermodynamic H is exactly opposite from choices [1,2] and others 
who treat H as entirely thermodynamic without contribution from macroscale variability. These 
authors have constructed plausible distributions for Earth’s and other planetary atmospheres, as 
reviewed at [3], as well as idealized oceans [23] by maximizing production of thermodynamic H. 
Clearly the present paper, as well as those reviewed at [3], are incomplete and a more comprehensive 
account, retaining both thermodynamics and macroscale variability in H, remains a challenge to future 
researchers. For the present paper we will proceed from only the partial perspective arising from 
macroscale variability. 

The rapid mechanism by which oceans can generate H is macroscale advection. On timescales from 
minutes (viz., internal gravity wave interactions) to weeks (viz., mesoscale eddy interactions), we may 
rearrange large volumes of seawater with very little thermodynamic modification. At first let us treat 
advection as ideal (adiabatic). 

Seeking ways to render C·∂YH calculable, consider: 

C ⋅ ∂YH ≈ C ⋅ ∂Y∂YH ⋅ Y*-Y( )≡ K ⋅ Y*-Y( ) (7)

That is, we identify a locus, Y*, where ∂YH is small in the sense that ∂YH at Y* is very much 
weaker than ∂YH at Y. Identification of Y* depends upon rapid dynamical adjustments, influenced by 
gravity and planetary rotation, for example. We then estimate ∂YH at Y as proportional to the 
displacement Y*-Y. Having not yet obtained an expression for C or for ∂Y∂YH, we collapse these two 
into unknown operator K for which we will seek plausible “eddy scaling” representation. 

Cautions are obvious. “≈” in (7) is an assumption more than an approximation, given that we make 
no assertion about how small is Y*-Y. Representations for Y* and K are developed in examples in the 
next section. As will be seen, such representations to date are crude (at best). Nonetheless 
improvements to GFD and to skill realized in practical models are seen. A hope is that such tangible 
progress will invite more critical attention to the sorts of developments which here must be described 
as rudimentary. 
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5. Two Examples 

5.1. Neptune Effect: Entropic Forcing of Mean Ocean Circulation 

This and the following section are drawn from oceans applications based upon this author’s 
familiarity. Implications for Earth’s atmosphere, other planetary flows and GFD generally will be 
apparent. First we consider “neptune effect”, so-called after a cartoon [24]. We will see the strong and 
largely unsuspected role of entropy organizing Earth’s mean ocean circulation along with a simple 
opportunity to correct, in part, ocean and climate models. 

The theoretical basis for neptune follows from the quasigeostrophic barotropic vorticity equation, 
one of the fundamentals of GFD, recently discussed [12] in Entropy. Further simplifying from [12], we 
consider only: 

∂ζ
∂t

+
∂ ψ ,ζ + h( )

∂(x,y)
= 0 (8)

    
in Cartesian x,y coordinates where ζ = ?z ⋅∇ × v = ∇2ψ  is the vertical component of relativity vorticity 
and ψ is the corresponding streamfunction for horizontal, nondivergent (in quasigeostrophic 
approximation) velocity, u. ∂(,)/∂(,) denotes the Jacobian determinant. The fluid, bounded above and 
below by rigid level planes is subject to uniform background rotation about vertical axis ?z . h(x,y) 
appears in (8) when we allow one of the bounding planes to include small (with respect to separation 
between planes) deformations. Thus h(x,y) may represent bottom topography underlying an 
atmosphere or ocean in this approximation. At this point we put the right side of (8) to zero, i.e., 
considering only unforced, non-dissipative advection of potential vorticity, q = ζ + h. 

There are two reasons to begin so simply as (8). First, we are isolating only mechanisms that allow 
rapid adjustments by advecting q. 

Second, and possibly of special interest to readers of Entropy, we connect with two of the seminal 
papers of Onsager [25,26]. [25] considered (8) without h, i.e. supposing h=0, while treating the 
vorticity field as a collection of pointwise vortices each carrying integrated vorticity, termed 
circulation, Гi ≡ ∫dAζi where Гi is the circulation due to vorticity, ζi, of the ith point vortex and dA is an 
elemental area. (The problem is posed in two dimensions.) The collection of point vortices conserves 
interaction energy: 

E = − 1
2π Γi

i> j
∑ Γ j log rij

 
where rij is the separation between ith and jth vortex. Depending on configurations of the vortices, E 
can take any value from - ∞ to ∞. But then the available phase space (here configuration space) is a 
function of E, taking a maximum at some E*. For E > E*, greater E would decrease available phases 
space, a circumstance of “negative temperature”. The result is that vortices of like sign tend to cluster, 
creating larger compound vortices (today we say “coherent structures”) while weaker vortices are 
more free to roam nearly randomly. In this way Onsager foresaw much of the literature of “two-
dimensional turbulence” that would unfold over the subsequent half century. 

[26] considered a different question: the orientation of rod-like particles in colloidal suspension. 
Entropy in this case depends upon the freedom of each rod to be nearly randomly located and nearly 
randomly oriented. If the density of rods is increased, there comes a point where restricting the 



Entropy 2009, 11                            
 

 

367

freedom of orientation by forming patches of like-oriented rods (“nematic ordering”) makes available 
greater volume for more nearly random location. In this way Onsager foresaw much of the literature of 
“excluded volume effects” that play a role today understanding entropic forces in colloidal chemistry, 
microbiology and nanomechanics. 

Onsager did not happen to include the role of bottom topography, h in (8), when he considered 
vortices. But we can imagine only a footnote in [25] if Onsager appended a collection of bound 
vortices (assigned to fixed locations) with circulations Ωk. Then there is interaction energy ГiΩklogrij 
as well as ГiГjlogrij (energy due to products ΩΩ is a constant for fixed geometry of bound charges). If 
free vortices tend to locate near bound vortices of like sign, increased energy stored in ГΩ permits 
reduced energy in ГГ, allowing greater mutual freedom of location among the free vortices. 
Analogously colloidal particles in containers with boundaries that include concave and convex 
variations will tend to cluster near (or avoid) fixed locations of preferred concavity, driven by entropic 
forces arising from excluded volume effects. In oceans, currents will tend to locate their vorticity in 
specific regions given by bottom geometry, allowing greater numbers of “free” vortices to roam more 
randomly. Entropic ordering, foreseen by Onsager and observed at microscales, thus appears in oceans 
at megascales. 

[8] considered statistical equilibrium for circumstances more complicated than (8) by including 
motion in two layers [only one layer exists in (8)] and including variation of Coriolis (vertical 
component of planetary rotation) with latitude. Sufficiently for present purpose, a concise treatment 
[27] limited to (8) is summarized below. 

Whereas [25] adopted the idealization of assuming point vortices, instead we expand: 

ψ = ψ n t( )∑ φn  and h = hn∑ φn  (9)

on a set of continuous eigenfunctions defined by ∇
2φn + λn

2φn = 0. Equation (8) conserves energy, E, 
and potential enstrophy, Q: 

E = 1
2 λn

2 ψ n
2∑  and Q = 1

2 −λn
2ψ n + hn

2∑  (10)

Maximizing (1): 
δ dx p log p + α1Ep + α2Qp + α3 p( )= 0∫     (11) 

where Lagrange multipliers, αj, impose constraints 〈E〉 = E0, 〈Q〉 = Q0, and 〈1〉 = 1, with 〈〉 denoting 
expectation. Consequently logp + 1 + α1E + α2Q +α3= 0 or: 

22 2
1 2 ˆexp( ( ) )n n n np λ α α λ ψ ψ= Ω − + −∑     (12) 

where: 
2

2 1 2ˆ / ( )n n nhψ α α α λ≡ +      (13) 

 
or: 

2
1 2 ˆ( ) hα α ψ− ∇ =       (14) 

with α1, α2, and Ω given by constraints on 〈E〉, 〈Q〉 and 〈1〉.  
The probability density (12) is Gaussian due to quadratic constraints (10). Further constraints can 

be applied leading to departures from Gaussianity, viz., [28-30]. However, what is especially important 
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here is that the Gaussian (12) is centered not about zero but about the mean flow given by (14). If one 
imagines initializing an ideal “ocean” defined by (8) with random currents with zero mean, the 
currents will spontaneously organize ˆψ ψ= . This is exactly the opposite of what is assumed in 

atmosphere - ocean - climate models where the action of SGS eddies is presumed to erode any mean 
flows toward zero. We should pause at this, realizing that large models which are guiding public 
policy are based on assumptions such as SGS “friction” that seem to be quite mistaken. 

The result (14) is not applicable in real oceans for at least two reasons. First, (14) is an equilibrium 
(ME) result, supposing an “ocean” with no internal dissipation, isolated from all external forcing. 
Clearly that is far from real forced, dissipative oceans. Applications in real oceans or atmospheres 
must follow from disequilibrium statistical mechanics, not ME. Second, even apart from forcing and 
dissipation, actual dynamics of oceans or atmospheres are vastly more complex than (8). 

What to do? The answer is not to revert to traditional “friction” for want of a better idea. What we 
learned in (8) - (14) is that oceans can generate entropy if their currents become closer to ψ̂ . That 
potential to increase entropy should appear as an entropic forcing which drives ocean currents and 
which was missed in the classical mechanical basis for GFD. The challenge is to construct a 
serviceable approximation. Recognizing uncertainty about calculations far from ME, and also 
recognizing that effective parameterizations for models must be as simple as possible, the following 
was proposed [27]. 

Streamfunction ψ, which may be interpreted as either velocity or transport streamfunction in (8) 
where quasigeostrophy is ambiguous, is taken in the sense of transport: 

 
z × ∇Ψ ≡ udz

−D

0

∫
      (15) 

where z = − D defines the sea bottom and z is unit vector in vertical. In (14), α1/α2 ≡ 1/L2 defines a 
lengthscale parameter L. For the idealization (8), with given set of φn and given E and Q, L can be 
evaluated exactly. In oceans this is not possible and L is adjusted to obtain pleasing model outcomes. 
However, the values of L so found, ranging from O(10 km) in open ocean subtropics to just a few km 
at high latitudes or in shallow and semi-enclosed seas plausibly reflect a lengthscale below which eddy 
vorticity fluctuations rapidly diminish. We may use this information to greatly simplify (14) given that 
ocean models typically compute on grids very much larger than L. Then α1/α2 (= 1/L2) very much 
dominates ∇2 and we simplify (14) by omitting ∇2, avoiding the need to invert (α1/α2 − ∇2) and 
obtaining simply 2ˆ L hψ = . On this basis a neptune transport streamfunction is defined as Ψ* = −ƒL2D, 
where the negative sign is because h is traditionally expressed as a small elevation above the mean 
bottom, scaled by the mean depth and multiplied by Coriolis parameter, f. From Ψ* and (15) we 
obtain neptune velocity: 

u* = − fL2z × ∇logD (16)
After L is assigned, u* is given from ocean basin geometry (D). u* is independent of depth, z, and 

time, t. Clearly u* is not itself a very good descriptor of oceanic u(x,y,z,t). However, the difference 
field, u* − u, as a component of Y* − Y, cf. (7), points to a higher entropy configuration for u which is 
relatively accessible by rapid (quasigeostrophic vorticity advection) processes. The accessiblity of that 
higher entropy u is the source of entropic forcing which should appear in momentum equations but 
which is missed in the classical mechanical basis for GFD. 
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It remains to represent K. Closure theory such as [12] might be applied. Fine resolution numerical 
experiments can be performed to obtain empirical K. In modeling practice the result must also be 
made rather simple and computationally inexpensive.The neptune compromise, to date, has favored  
K=A∇2 with A a constant coefficient. Then a modeled horizontal eddy viscosity, Ah∇2u, is simply 
replaced by Ah∇2(u–u*). 

In the vertical, usual viscous terms may be expressed ∂z(Av∂zu), where Av is a vertical viscosity 
typically presumed to depend upon z. Because u* is independent of z (but see Section 6), the form of 
vertical momentum mixing is not changed. However, the magnitude of Av changes enormously. Usual 
modeling supposes that momentum is “mixed” similarly with fluid parcels, hence with a coefficient 
comparable to (usually rather larger than) water property mixing coefficients. Neptune recognizes 
vastly more effective ways of rearranging momentum by potential vorticity advection, with Av 
typically orders of magnitude greater than as usually assumed. 

Preceding paragraphs have given a rationale for, and brief summary of, neptune as practiced. It 
should be clear that many of the steps should be refined, possibly in conjunction with closure theory 
such as [12] (Section 3). Such research remains to be done and is beyond present scope. Here we only 
summarize recent results from neptune then return to open research questions in Section 6. 

Modeling experiments with neptune began with [31,32] and are ongoing. A review [33] has 
discussed much of the earlier work. We recall only one item from earlier work because of its relevance 
to discussion in Sect. 4, comparing MEP with the present entropy gradient estimations. [34] examined 
MEP after [22] for an Arctic Ocean model similar to a case studied by [35] using entropy gradient 
forcing. Pleasingly, the two results were rather similar, suggesting that differences between MEP and 
entropy gradient estimations are not crucial. Of course this single examination was far from 
exhaustive. 

Below we consider work since [33]. 
A major project (Arctic Ocean Models Intercomparison Project (AOMIP), [36]) involved efforts of 

15 Arctic Ocean modeling groups in nine countries, examining differences among models, and 
differences between model results and observations, under conditions of similar setup and forcing. 
Within AOMIP, [37] compared temperature, salinity and velocity fields among nine of the models. 
Three of the nine models included neptune while the remaining six employed more traditional 
frictional representations. Comparing velocity fields among models is difficult because of the 
complicated vector fields varying in three dimensions and time. A descriptive measure termed 
topostrophy, τ ≡f x u·∇D, was introduced, where f is the vertical Coriolis vector, u is model velocity, 
and ∇D is the gradient of total depth, D. In this way the complicated vector field u and complicated 
basin geometry D were combined in a single scalar variable which could be averaged over various 
regions. Results were startling. Whereas all measures show differences among models, τ seemed to 
separate the models into disjoint classes as illustrated in Figure 1. Here τ is averaged over the Eurasian 
Basin (a portion of the Arctic Ocean) and normalized: 

22ˆ { } / { } { }f u uD f Dτ ≡ × ⋅∇ ∇      (17) 

where brackets {}denote averaging over a region. 
Symbols in Figure 1 designate specific models, whose identities are not important here. What is 

important is that all of the traditional models produce highly variable timeseries for ?τ  with values 
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bounded -.4< τ̂ <+.4 and most τ̂ amplitudes smaller than about 0.1 with frequent reversals of sign. 
Contrariwise the three neptune models exhibit relatively persistent τ̂  in the range +.4< τ̂ <+.7. 
Averages over other regions within the Arctic or over the entire Arctic Ocean showed very similar 
results. Although Figure 1 only shows timeseries of an averaged scalar, examination of the model u 
maps (not shown here) reveals stunningly different perceptions of how Arctic Ocean currents may 
flow. Each of the neptune models show persistent cyclonic (counter-clockwise) “rim currents” around 
the several Arctic basins whereas traditional frictional models tend to be ambiguous, showing broader 
gyre circulations of variable cyclonic and anticyclonic sense. 

Figure 1. Normalized topostrophy averaged over the volume of the Arctic Eurasian Basin 
is plotted for nine AOMIP models [37]. 

 
 

The principle result from Figure 1 is that the possible role of entropic forcing, however imperfectly 
realized in the neptune parameterization, can be quite strong in comparison with the classical forces 
represented in traditional modeling. At the date of publication (2007), it was not known which trace in 
Figure 1 might be closer to reality. Subsequently, from a world database of more than 17,000 long 
term current meter records spanning over 83,000 current meter-months, climatological τ̂  was mapped 
globally as function of latitude and depth [38]. These observations clearly put regionally-averaged 
Arctic τ̂ >+.4. The strong suggestion, as seen also in many cases cited in [33], is that traditional ocean 
modeling, based upon classical GFD, is systematically deficient. 

There is one further note from the current meter observations that may be of special interest to 
readers of Entropy. Globally τ̂  is positive with overall mean value near +.3 (based on available data). 
It has long been understood in classical GFD that mean flows, under the influence of background 
rotation, tend to follow contours of bottom topography. Hence f x u tends to align with ∇D. But either 
sign for f x u·∇D is allowed. Why does observed τ̂  so clearly favour positive sign? As we’ve seen, 
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entropic forcing introduces the Second Law (2), supplying classical GFD with an “Arrow of Time”, 
thereby selecting the sign ofτ̂ . 

Three more recent publications should be mentioned. [39] examined topostrophy among four global 
ocean models: two with relatively coarse grid spacing, two with finer grid spacing. None of the four 
employed neptune. The two models with finer grids tended to produce somewhat more  
positive topostrophy. 

[40] explored introducing neptune into a global model with sufficiently fine grid that the model 
spontaneously generated eddies (albeit poorly resolved). In such models it is usual to replace Laplacian 
friction with a biharmonic form (i.e., ∇2 with ∇4). Correspondingly, neptune was represented as 
A∇4(u−u*). The interesting question is: if realized eddies are already generating entropy, what role is 
left for an entropy generation parameterization? Comparing model runs with and without u*, [40] 
obtained modest improvements with u* present, suggesting that explicit eddy generation was not fully 
represented. 

Finally, returning to the Arctic, the model “OPA-LIM” [41,42], not previously included in AOMIP 
studies, was examined [43]. Consistently with prior AOMIP results, cf. Figure 1, markedly higher τ̂  
was found [43] when OPA-LIM was modified for neptune. This study also allowed detailed 
examination of entropically forced cyclonic “rim currents”. 

5.2 Differential Mixing of Heat and Salt in the Ocean 

We turn to a very different example on very different scales in order to see how robust are some of 
the entropic insights. The example is chosen because it illustrates another circumstance where simpler 
intuition has led to mistaken ideas, and entropic calculus reveals surprising understandings with 
practical, observable consequences. 

We contemplate mixing heat and salt by small scale turbulence in the gravitationally stably 
stratified ocean. Larger scale motions are regarded as internal gravity waves. Occasional 
superpositions of waves yield local regions of instability (“breaking”) where turbulent mixing occurs. 
Energy is stored both as kinetic energy and as gravitational potential energy, with spectral densities 
U(k) and B(k) respectively. Here we will treat k merely as magnitude wavenumber. In fact, motions on 
larger scales are quite anisotropic, and one should at least distinguish vertical and horizontal 
wavenumbers. At smaller scales, even during more intense turbulent events, anisotropy tends to 
persist. This is a complication to which the reader should be aware, but which will not overly concern 
us for the present level of discussion. Potential energy arises because heat and salt affect the density of 
sea water due to volumetric coefficients of thermal expansion and haline contraction. It is convenient 
to define buoyancy, b(x,t) = ρ0(z,t)−ρ(x,t), where ρ is density and ρ0 is regionally horizontally 
averaged ρ. Gravitational potential energy occurs due to fluctuations in b such that specific potential 
energy (per unit mass) is B = ½gZb2/ρ0

2 where g is the acceleration of gravity and Z= (∂zlogρ0)-1 is a 
height scale due to stable background stratification in ρ0. Specific kinetic energy is U = ½u·u. Spectral 
energy balance equations for B and U are: 

∂tB k( )= −∂k χ k( )− η k( )− F k( )    (18a) 
and: 

∂tU k( )= −∂kε k( )− ξ k( )+ F k( )    (18b) 
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where χ(k) is transfer (by nonlinear effects) of B from wavenumbers less than k to wavenumbers 
greater than k, ε(k) is the corresponding transfer of U, η(k) is the dissipation of B due to thermal and 
haline conduction, and ξ(k) is the dissipation of U due to viscosity. Importantly, F is an exchange of 
energy between B and U by vertical buoyancy flux, F = gwb/ρ0, due to correlations of vertical 
velocity, w, with b. 

Traditional understanding has characterized large scale motion as interaction among waves until, at 
some smaller scale, waves “break” and turbulence ensues. At the scales of wavelike motion, F should 
vanish on average since individual waves carry no mean F and the waves are believed to be nearly in 
random phase superposition. At the smaller scales of turbulence, we might expect a downward mixing 
of lighter (more buoyant) water above with denser water below, i.e., F<0. Such downward mixing is 
necessary to compensate the gradual overall upwelling of deep water that has been supplied by sinking 
(mainly at high latitudes). 

Theoretical approaches are possible. On large scales and assuming waves are sufficiently weak, 
closure methods described in Section 3 can be applied to waves - turbulence mix. In small amplitude 
limit, [44] showed that such closures approach the resonant interaction approximation (RIA) seen, e.g., 
in [45,46]. For RIA, applied to statistically homogenous fields, systematic energy transfers occurs only 
on triads for which wavevectors k + p + q = 0 and also the intrinsic frequencies of the three wave 
components must satisfy resonance ωk + ωp + ωq = 0. At larger amplitude, the condition of frequency 
resonance is somewhat relaxed as near-resonant waves support part of the energy transfer. Finally, in 
the large amplitude limit, frequency resonance becomes entirely insignificant and all waves participate 
in energy transfer. Importantly from an entropic view, these closures ranging from RIA to full 
turbulence strictly satisfy the Second Law (2). 

RIA has been explored by [47,48] and others to attempt to account for the observed spectral 
distribution of oceanic internal wave energy. On the scales for which RIA would be valid, F vanishes. 
In fact the oceanic scales for which RIA is applicable remain an unresolved question, viz., [49,50]. 
Closure theories capable of representing strongly interacting waves and turbulence (i.e., beyond RIA) 
have been examined by [51-54]. 

Full examination by closure theory has been to date too daunting, and the above cited works have 
made partial accounts of the spectral distributions of kinetic or potential or wave energy. Vertical 
buoyancy flux F was considered [53] but only under the very restrictive and unrealistic constraint of 
motion confined to a vertical plane. Let us here see how the concept of entropy gradient forcing, 
C·∂YH in (6), can help us foresee the more complete picture despite specific uncertainties that will 
remain for closure theory and/or numerical experimentation. 

In equations (18) for ∂t(B,U) we seek to represent terms arising from C∂H/∂(B,U) where ∂H is 
change of total entropy with respect to changes ∂(B,U) in B and U while C is an operator projecting 
these entropy tendencies onto ∂t(B,U). Here, although scales of motion are very much closer to scales 
of molecular chaos (compared with Section 5.1), we can still proceed without taking direct account of 
molecular contributions to H [included parametrically as η and ξ in (18)]. 

Omitting external forcing and internal dissipation, dynamics conserve the total energy, B+U. ME 
thus favours energy equipartition. This is far from reality in which large scale forcing and small scale 
dissipation lead to spectra steeply decreasing with increasing wavenumber k. The result is a strongly 
entropically driven forward transfer of both B and U from small k toward large k. Traditional scaling 



Entropy 2009, 11                            
 

 

373

arguments from turbulence are not so directly applicable due to additional parameters that have 
entered on account of gravitationally stable background stratification, cf. [55-59]. 

At small scales (large k), one might imagine approaching classical (unstratified) turbulence. For the 
moment we consider B and U. Later we return to F. B and U behave similarly on scales for which 
turbulent advection dominates both. Writing for U, nonlinear transfer: 

−∂kε ≈ C ⋅ ∂YH ≈ K U − U *( )     (19) 
where U* is constant over modes. Operator K is sometimes hypothesized as a sort of diffusion,  
K≈∂kDU∂k, with k-dependent coefficient DU. With (19), this suggests ε ≈ − DU∂kU. Continuing for this 
moment with classical turbulence ideas, if we hypothesize that DU depends only upon “local” scale k 
and ε(k), we must take DU ≈ ε1/3k8/3 ≡ τ-1k-2/3, where an “eddy timescale” is 

τ = ε
1

3k −2
3      (20) 

Then: 
U ≈ ε

2
3k −5

3      (21) 
a classical result since Kolmogorov [60], albeit argued differently by different authors. Considerations 
for B are similar to those for U on scales for which advection dominates, hence B ≈ χ2/3k-5/3 on scales 
for which η and ξ in (18) are not important while we continue, for this moment, to set aside F. Further 
considerations arise because the ratio of viscosity, v, to thermal conductivity, κ, is near v⁄κ ≈ 7 while 
the ratio of viscosity to haline conductivity, γ, is near v⁄γ ≈ 700 for seawater. Thus, fluctuations in 
temperature or salinity persist to smaller scales (larger k) where velocity fluctutations are suppressed 
by viscosity. On these scales, k > kK where kK = (ε⁄v3)1/4, Batchelor [61] argued that the eddy timescale 
should be given by a characteristic straining rate (ε⁄v)1/2 due to velocity fluctuations near k ≈ kK, 
yielding B ≈ χ(ε⁄v)1/2k-1. Over the broader range of scales including k < kK, this yields: 

B ≈ χ
2

3k −5
3 + χ ε

ν( )1
2 k−1

     (22) 
neglecting so far the role of stable stratification. 

A reader may feel alarmed in the previous paragraph for the many uses of “≈” and other “loose” 
arguments. While this is due in part to necessary brevity in the present paper (more complete 
discussion having filled literature for decades), it is appropriate to recognize that further careful work 
remains. Only for present purpose the preceding “thumbnail” may capture some of classical turbulence 
theory sufficiently to let us proceed. Notably for readers of Entropy, we see that these “cascades” of B 
and U are driven by entropy generation, ultimately expressed at the level of molecular chaos. 

At some sufficiently large scale (small k), it may be that RIA describes wave-wave energy transfers, 
viz. [47,48]. While neither the RIA limit nor the turbulent limit may be fully realized in the ocean, a 
greater challenge yet is to bridge the intermediate scales with mixed wavelike and turbulent-like 
properties. In closure theory a crucial quantity is termed “triple correlation timescale”, θk,p,q, 
characterizing the time over which three modes satisfying k+p+q=0 can remain phase-correlated to 
enable systematic energy transfers. A bridge between wave interactions and turbulence was seen [44] 
where: 

θk ,p,q =
μk + μp + μq

μk + μp + μq( )2
+ ωk + ωp + ωq( )2

    (23) 
limits on πδ(ωk + ωp + ωq) in a weak wave limit, μ ⁄ ω → 0, and upon (μk + μp + μq)-1 in a turbulence 



Entropy 2009, 11                            
 

 

374

limit, ω ⁄ μ → 0, where μ is a nonlinear deformation rate obtained from the closure theory. It is this full 
evaluation from closure theory that has, to date, remained daunting. 

We can push a little ahead with some simplifying, albeit uncertain, suppositions. If we suppose the 
energy transfers ε and χ are only weakly divergent in k on scales for which dissipation rates η and μ are 
small, i.e., supposing that buoyancy flux F does not dominate, then we may associate μ(k) ≈ τ-1(k) with 
as (20). At intermediate scales, between weak waves and strong turbulence, we suppose precise 
resonances ωk + ωp + ωq ≅ 0 are not crucial and estimate for typical triples of waves (ωk + ωp + ωq)2 is 
“roughly” N2 where N is termed “buoyancy frequency”, N2 = −g∂zlogρ0. Near a scale k, we estimate 
(23) simply as θ ≈ τ-2⁄(τ-2 + N2). From closure theories we know energy transfers are proportional to θ. 
Thus, if we appeal to the simple heuristic ε ≈ −DU·∂kU, then take DU· ≈ θτ-2k2 which, with the 
expression for θ, yields: 

U ≈ N 2k −3 + ε
2

3k − 5
3      (24a) 

and similarly: 

B ≈ N 2k−3 + χ
2

3k − 5
3 + χ ε

ν( )1
2 k−1

    (24b) 
apart from the direct roles of dissipation at high k and the effects of near-resonances for wavelike 
interactions at low k. Spectra near (24) are observed in oceans [62] and in the middle atmosphere [63]. 

For clarity of illustration, Figure 2a shows k2U, k2BT and k2BS, where we assume (for reasons to be 
explained shortly) that total buoyancy, B, is contributed in a representative oceanic example 60% from 
temperature fluctuations yielding BT and 40% from salinity (concentration of dissolved ions) 
fluctuations yielding BS. 

In obtaining (24), we’ve not especially depended upon entropic forcing ideas. We see “forward” 
(i.e., from large scales or low k to small scales or high k) energy transfers, ε > 0 and χ > 0, driven by 
the relative excess of energy at large scales compared with small scales (i.e., far from ME). The 
different dependences upon k in the terms in (24) reflect different processes that affect the efficiencies 
of transfers. Significantly, we know [15] that closure theories which lead to (24) are proven to satisfy 
(2). Nonetheless, we could have inferred these spectra without considering entropy. 

The subject turns unexpected, indeed startling, when we inquire about F. Recall that traditional 
thinking supposes F ≈ 0 on larger, more wavelike scales with F < 0 (i.e., downgradient buoyancy 
mixing) on smaller, more turbulent scales. Turbulence is usually thought to occur on scales for which 
density structures are occasionally overturned, observed to occur near a scale kb = (N3⁄ε)1/2 where 
spectra (24) turn from k-3 to k-5/3. Efforts to observe downgradient F have been frustrating. Laboratory 
experiments [64-66] and numerical simulations [67-69] often suggest just the opposite, F > 0, termed 
“persistent countergradient fluxes”. Why? 

A tendency toward energy equipartition (here ME) occurs not only across scales of k but also 
among the available modes of motion at any k. Linear modes from (4), assuming incompressibility, 
∇·u = 0, include two inertio-gravity waves (oppositely propagating) and a geostrophic mode 
(sometimes called “vortical”) mode. When these three are equally excited, then U = 2B at each k [70]. 
A reader might also intuit this by realizing that only two components of u are independent, given  
∇·u = 0, while a third variable is b, so that energy is shared among two velocity components and one 
buoyancy component at each k. 
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Figure 2. (a) Spectra k2BT (solid line), k2BS (dashed line) and k2U (dash-dot) are shown. (b) 
Spectra k2FT (solid line) and k2FS (dashed line) are shown where FT and FS are 
contributions to total buoyancy flux F=w’b’ due to temperature, T, and salinity, S. Scalings 
are assumed such that buoyancy wavenumber kb=1 while Kolmogorov kK and diffusive 
cutoffs kT and kS for T and S are representative of corresponding typical oceanic values. 

 
 
There develops a competition between entropy generating processes. On one hand, excess energy 

(both U and B) at low k drive positive transfers ε and χ. But the transfers are not equally efficient. Even 
in the absence of gravitationally stable stratification, it is well known from closure theories (viz., [71]) 
that transfer of tracer variance, here b2, is more efficient than transfer of velocity variance, u·u. The 
result is to retain somewhat more kinetic energy, U, in the sense U > 2B at low k while accumulating 
somewhat more potential energy, B, in the sense 2B > U at high k. Then F arises as the entropic 
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forcing, C·∂YH, at each local k driving toward U = 2B. At lower k, |F| will be impeded by wave 
propagation tendencies. 

Quantifying details of F will require closure theoretic investigation beyond present scope, including 
taking account of anisotropy of B and U. With plausible assumptions, [72] obtained F as seen in Figure 
2b. Again for clarity the figure shows k2FT and k2FS where FT and FS are contributions from T and S in 
the representative oceanic case shown in Figure 2a. The choice to weight by k2 allows one to better see 
the countergradient fluxes F < 0. 

Details of this F are uncertain. We cannot say, e.g., at precisely what k the sign of F changes from  
F < 0 at lower k to F > 0 at higher k, and we do not know how effectively wave propagation suppresses 
|F| at yet lower k [73]. What is stunning though is how strongly this theoretical result contradicts 
traditional thinking. We anticipate F < 0 over scales for which it was supposed F ≈ 0. We anticipate 
F > 0 over scales for which it was supposed F < 0. Thus “turbulence”, over k > kb is not expending 
kinetic energy to mix buoyancy downward but rather the turbulence is being excited by release of 
potential energy as buoyancy “re-stratifies” (upwards flux). Is all of this very strange? No. F is only 
taking the sign of positive entropy production, i.e., following the Arrow of Time. 

With such clear contrast between present theory and traditional thinking, can the difference be 
tested? It’s not easy. Although laboratory experiments and numerical simulations have shown 
persistent countergradient fluxes, F>0, there are always questions how any experiment (laboratory or 
numerical) is set up. Interestingly, the oceans offer another test, possibly with greater consequences. 

As mentioned at Figure 2a, we illustrate for the case of buoyancy in seawater which is controlled by 
both temperature, T, and salinity, S. However the molecular coefficient, κT, for thermal conduction is 
about 100x greater than the coefficient, κS, for ionic conduction. There are regions of the ocean which 
may be gravitationally stably stratified with respect to one tracer while unstably stratified with respect 
to the other tracer while the total density remains stable, ∂zρ0 < 0. This leads to many interesting 
phenomena, generally termed “double diffusive”. Throughout much of the oceans, stratification is 
stable with respect to both T and S, i.e., ∂zT > 0 and ∂zS < 0. Then the usual practice supposes that 
turbulent mixing is the same for T and S in the sense that vertical fluxes w’T’ and w’S’ are represented 
by the same eddy diffusion coefficients, AT and AS. I.e., γ ≡ AS/AT = 1. 

If traditional views about turbulent mixing in stably stratified flows were correct, we would expect 
small scale turbulence to support downgradient fluxes. The lesser molecular conduction coefficient, κS, 
would allow a somewhat wider range of downgradient flux, w’S’, hence γ < 1. On the other hand, if the 
arguments for F from entropic forcing are correct, then we expect small scale turbulence to be 
characterized by countergradient (upgradient) w’T’ and w’S’ which will be partially offsetting 
downgradient fluxes from larger scales. In this case a somewhat wider range for w’S’ permits 
somewhat greater offsetting flux for overall γ < 1. Oceanic observations [74], laboratory studies [75], 
and numerical experiments [69,76] have found γ < 1 in gravitationally stable environments. 

6. Outstanding Issues 

In all areas of environmental fluid mechanics, from atmospheres to oceans to duck ponds, the 
number of excited degrees of freedoms enormously exceeds our theoretical and numerical capabilities. 
Recognizing that dependent variables should be understood as moments over probabilities of all 
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possible configurations of the myriad degrees of freedom for which we retain no explicit knowledge, 
we anticipate forces acting upon these dependent variables driven by the entropy associated with 
probabilities for all the missing information. How? That is the quantitative challenge. 

Section 5 provides illustrations from two widely disparate aspects of ocean dynamics. In Example 
5a we considered how unresolved eddies on scales from km to tens of km provide a mean driving force 
(neptune) that may organize circulation on the scale of ocean basins. In Example 5b we consider the 
vertical mixing of heat and salt, with seemingly strange results that the smaller oceanic scales 
(typically 1 m and smaller) associated with turbulent motion may be supporting counter-gradient 
fluxes, “unmixing” or restratifiying the ocean. These examples are chosen not only as disparate in 
scale but also because the results are almost exactly contrary to traditional views which combine the 
classical mechanics of GFD with intuitive ideas that “turbulence” is a sort of enhanced mixing  
or friction. 

The examples in Section 5 also show inadequacies in research to date. We may feel encouraged that 
even the rudimentary progress to date already indicates substantial improvement upon otherwise “state 
of the art”. Doubtless many further exercises, beyond the examples in Section 5, await. However, for 
the remainder of this paper, let us consider some of the shortcomings and open questions arising in 
Sections 4 and 5. 

We can ask in what other contexts we understand entropic force, possibly as expressed as C·∂YH in 
(6). E.g., entropic elasticity in polymers? Or excluded volume forces in colloids [26]? The relation 
between entropy gradient formulation and MEP invites further attention. Then the simplifying 
assumption (7) to render C·∂YH calculable in terms of K·(Y*−Y) wants care for identifying Y*, for the 
(large?) distance│Y*−Y│and for estimating K. Among possible research avenues, some of these 
issues might be examined within careful closure theoretic calculation such as reviewed in Entropy 
[12], cf. Section 3. 

There is a remark to emphasize at this point. The appearance of Y*, which is itself an ME result, 
often leads to the mistaken impression one is seeking ME as a model for atmospheres or oceans. 
Clearly ME is not appropriate for strongly forced, dissipative, open systems like atmospheres and 
oceans. The theory advanced in this paper is not ME. Rather, what we are doing is using a locus of 
weak ∂YH (near Y*) as a way to estimate nonzero ∂YH at the actual state Y. Thus the goal is distinctly 
non-equilibrium rather than ME.  

Examples described in Section 5 raise many more specific issues. In the case of neptune (Section 
5.1) there is a whole gallery of concerns. First, the idealized dynamics at (8) are far from the more 
complete dynamics employed in most GCMs. Second, translating ψ̂  at (14) to u* at (16) depended 
upon various assumptions the quality of which should be questioned. Third, the choice to represent  
K = A∇2 is taken more from modeling convenience than sound theory. Seeming improvements to 
ocean models may be more a reflection upon “state of the art” than upon the basis of neptune schemes 
(to date!) Nonetheless the evidences of improved modeling are encouraging as early efforts to bring 
entropic forces into GFD are seen to have such marked consequences.  

Guidance for assigning values to parameters is problematic, especially for neptune L2 which takes 
precise values, α2/α1, in (14) but is uncertain at (16) for practical use in GCMs. Experience to date has 
led to choices for L ranging from a few km to order of 10 km. This may earn a double negative: it is 
not unsatisfying. As usual practice takes K = A∇2, the value of A, like L, is a “fudge factor”. From this 
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perspective, the difference between traditional friction and neptune is only that friction assigns 
(unwittingly and without reason) value L=0 whereas neptune adopts a value that is “not unsatisfying”. 
We call this progress. 

A further aspect of neptune is the vertical transfer of horizontal momentum. Ordinarily this is 
accomplished by a vertical eddy viscosity term, e.g. ∂z(Av∂zu) with coefficient Av only somewhat larger 
than vertical diffusion coefficients for T or S. With u* from (16) independent of z, the neptune form for 
this term remains the same as in traditional modeling. However, the values of Av change enormously. 
Rather than assuming small scale turbulent momentum mixing, quasigeostrophy in (8) implies that in 
the ocean interior (away from upper and lower surfaces), we should obtain Av = (ƒ2/N2)Ah where Ah is 
the horizontal exchange coefficient. Values for Av under neptune are typically some orders of 
magnitude greater than those used in traditional modeling. Although there has been much 
experimentation with lateral fluxes, Ah∇2(u−u*), there has been very little testing of ∂z(Av∂zu) with  
Av = (ƒ2/N2)Ah, and there is no discussion to date about possible impacts on model fidelity. 

Over horizontal scales larger than about R = ND/ƒ, hence for most ocean GCMs with grid spacing 
comparable to, or larger than R, it is appropriate to treat u* as independent of z. However, if one 
considers features on a scale W, smaller than R, then u* diminishes upwards from bottom topography 
over a vertical distance approximately ƒW/N. In this case the vertical exchange term, ∂z(Av∂z(u−u*)), 
acts to induce vertical shear ∂zu. To this author’s knowledge, such a neptune application has not yet 
been explored. 

There is a further point however. In Section 5.1 we considered neptune with respect to u. Under 
quasigeostrophy however, u and density, ρ, are linked as f x ∂zu = g∇h ρ where ∇h is horizontal 
gradient. On scales larger than R, neptune forcing toward u* with ∂zu* = 0 implies forcing toward  
∇h ρ = 0. In fact forcing toward ocean models adiabatically toward level density surfaces, ∇h ρ = 0, is a 
popular idea that occurs in models based upon density layers and that was introduced into z-level 
models [77]. A physical argument for adjusting toward ∇h ρ = 0 is that this is a condition of minimal 
potential energy. Coincidentally ∇h ρ = 0 corresponds to higher entropy on scales larger than R. But 
then an interesting quandry may be seen on scales smaller than R. On such scales, entropic 
consideration suggests ∂zu* ≠ 0, hence ∇h ρ* ≠ 0 where f x ∂zu* = g∇h ρ*. This contradicts popular 
thinking [77] about potential energy minimization, suggesting instead that an ocean with initially  
∇h ρ = 0 would spontaneously build ∇h ρ ≠ 0 on length scales smaller than R, thereby increasing rather 
than decreasing potential energy. These contradictory predictions have not yet been tested. 

Commenting briefly after Section 5.2, perhaps the greatest single shortcoming has been a tendency 
to treat vaguely defined scale k without more careful analysis of anisotropy. Much stronger closure 
theoretical calculations as well as high-resolution 3-D numerical experiments will surely guide future 
research. We find entropic forces leading to a reversal of the sign of buoyancy flux, F, occurring 
somewhere near kb = (N 3⁄ε)½. Further analyses will be needed to better define k at which F changes 
sign. Already this is interesting because we find more wave-like disturbances on k ≤ kb supporting the 
downgradient (F<0) mixing of buoyancy [73] while more turbulent-like k ≥ kb is characterized by 
countergradient or restratifying F>0. A consequence is that a more diffusive tracer, T, exhibits 
stronger turbulent transport, w’T’, than does a less diffusive tracer, S. 

In this paper, we have used a reduced (or relative) H based upon uncertainty in macroscale 
variability while ignoring the contribution of molecular chaos, i.e., thermodynamic H. We then 
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attempted to approximate the entropy gradient forcing terms in eq. 6. The present work differs from, 
and yet complements, efforts [1-3] which consider MEP calculations based on thermodynamic H while 
omitting uncertainty from macroscale variability. Each approach has merit, with MEP strengthened in 
recent articles [4,6]. We would have both elegance and greater confidence if we could commence from 
more complete formulation, taking account at once of uncertainty both at molecular level and at 
macroscale variability.  

This paper ends without “Conclusions”. A hope is that theoretical constructs sketched in Section 4 
and illustrated with examples in Section 5 can stimulate further research, bringing a statistical 
mechanical basis to the otherwise classical mechanical understanding of GFD as applied to 
atmospheres and oceans. And duck ponds. 

Acknowledgements 

Advice of anonymous reviewers is gratefully acknowledged. 

References 

1. Paltridge, G. W. Global dynamics and climate—A system of minimum entropy exchange, Q. J. R. 
Meteorol. Soc. 1975, 101, 475–484.  

2. Paltridge, G. W. The steady-state format of global climate, Q. J. R. Meteorol. Soc. 1978, 104, 
927–945. 

3. Ozawa, H.; Ohmura, A.; Lorenz, R.D.; Pujol, T. The second law of thermodynamics and the 
global climate system: a review of the maximum entropy production principle, Rev. Geophys. 
2003, 41, 4, doi:10.1029/2002RG000113. 

4. Dewar, R.C. Information theory explanation of the fluctuation theorem, maximum entropy 
production and self-organized criticality in non-equilibrium stationary states. J. Phys. A 2003, 36, 
631–641. 

5. Dewar, R.C. Maximum entropy production and non-equilibrium statistical mechanics. In Non-
Equilibrium Thermodynamics and Entropy Production: Life, Earth and Beyond; Kleidon, A.; 
Lorenz, R., Eds.; Springer-Verlag: New York, 2005; pp. 41–55. 

6. Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A 2005, 38, 
L371-L381. 

7. Lorenz, R.D. Full steam ahead – probably. Science 2003, 299, 837–838. 
8. Salmon, R.; Holloway, G.; Hendershott, M.C. The equilibrium statistical mechanics of simple 

quasi-geostrophic models, J. Fluid Mech. 1976, 75, 691–703. 
9. Holloway, G. Eddies, waves, circulation and mixing: Statistical geofluid mechanics, Ann. Rev. 

Fluid Mech. 1986, 18, 91–147. 
10. Majda, A.J.; Wang, X. Non-Linear Dynamics and Statistical Theories for Basic Geophysical 

Flows. Cambridge University Press: Cambridge, UK, 2006; p. 551. 
11. Salmon, R. Lectures on Geophysical Fluid Dynamics; Oxford Univ. Press: Oxford, UK, 1998;  

p. 378. 
12. Frederiksen, J.S.; O’Kane, T. J. Entropy, closures and subgrid modeling. Entropy 2008, 10,  

635–683. 



Entropy 2009, 11                            
 

 

380

13. Kraichnan, R. Irreversible statistical mechanics of incompressible hydrodynamic turbulence.  
Phys. Rev. 1958, 109, 1407. 

14. Kraichnan, R. H. The structure of isotropic turbulence at very high Reynolds number. J. Fluid 
Mech. 1959, 5, 497. 

15. Carnevale, G.; Frisch, U.; Salmon, R. H theorems in statistical fluid dynamics. J. Phys. A: Math. 
Gen. 1981, 14, 1701. 

16. Frederiksen, J. Subgrid-scale parameterizations of eddy-topographic force, eddy viscosity, and 
stochastic backscatter for flow over topography. J. Atmos. Sci. 1999, 56, 1481. 

17. Frederiksen, J.; O’Kane, T. Inhomogeneous closure and statistical mechanics for Rossby wave 
turbulence over topography. J. Fluid Mech. 2005, 539, 137–165. 

18. O’Kane, T.; Frederiksen, J. The QDIA and regularized QDIA closures for inhomogeneous 
turbulence over topography. J. Fluid Mech. 2004, 504, 133–165. 

19. O’Kane, T.; Frederiksen, J. Statistical dynamical subgrid-scale parameterizations for geophysical 
flows. Phys. Scr. 2008, T132, 014033 (11pp). 

20. Robert, R., Sommeria, J. Relaxation towards a statistical equilibrium state in two-dimensional 
perfect fluid dynamics. Phys. Rev. Lett. 1992, 69, 2776–2779. 

21. Robert, R., Rosier, C. The modelling of small scales in 2D turbulent flows: A statistical 
mechanics approach.  J. Stat. Phys. 1997, 86, 481–515. 

22. Kazantsev, E.; Sommeria J.; Verron, J. Subgridscale eddy parameterization by statistical 
mechanics in a barotropic ocean model, J. Phys. Oceanogr. 1998, 28, 1017–1042 

23. Shimokawa, S.; Ozawa H. Thermodynamics of irreversible transitions in the oceanic general 
circulation. Geophys. Res. Lett. 2007, 34, L12606, doi:10.1029/2007GL030208. 

24. Holloway, G. A shelf wave/topographic pump drives mean coastal circulation, Ocean Model. 
1986, 68, 12–15. 

25. Onsager, L. Statistical hydrodynamics. Nuovo Cimento Suppl. 2, 1949a, 6, 279–287. 
26. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 

1949b, 51, 627–659. 
27. Holloway, G. Representing topographic stress for large scale ocean models, J. Phys. Oceanogr. 

1992, 22, 1033–1046. 
28. Miller, J. Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 1990, 65, 

2137–2140. 
29. Robert, R.; Sommeria, J. Statistical equilibrium state in two-dimensional flows, J. Fluid Mech. 

1991, 229, 291–310.  
30. Robert, R.; Rosier, C. The modelling of small scales in 2D turbulent flows: A statistical 

mechanics approach, J. Stat. Phys. 1997, 86, 481–515. 
31. Alvarez, A.; Tintore, J.; Holloway, G.; Eby, M.; Beckers, J.M. Effect of topographic stress on the 

circulation in the western Mediterranean. J. Geophys. Res. 1994, 99, 16053–16064. 
32. Eby, M.; Holloway G. Sensitivity of a large scale ocean model to a parameterization of 

topographic stress. J. Phys. Oceanogr. 1994, 24, 2577–2588. 
33. Holloway, G. From classical to statistical ocean dynamics. Surv. Geophys. 2004, 25, 203–219. 
34. Polyakov, I. An eddy parameterization based on maximum entropy production with application to 

modeling of the Arctic Ocean circulation, J. Phys. Oceanogr. 2001, 31, 2255–2270. 



Entropy 2009, 11                            
 

 

381

35. Nazarenko, L.; Holloway, G.; Tausnev,N. Dynamics of transport of ‘Atlantic signature’ in the 
Arctic Ocean. J. Geophys. Res. 1998, 103, 31003–31015. 

36. Proshutinsky, A.; Yang, J.; Gerdes, R.; Karcher, M.; Kauker, F.; Hakkinen, S.; Hibler, W.; 
Holland, D.; Maqueda, M.; Holloway, G.; Hunke, E.; Maslowski, W.; Steele, M.; Zhang, J. Arctic 
Ocean study: Synthesis of model results and observations. EOS Trans. AGU 2005, 86, 368–371. 

37. Holloway, G.; Dupont, F.; Goloubeva, E.; Hakkinen, S.; Hunke, E.; Jin, M.; Karcher, M.; Kauker, 
F.; Maltrud, M.; Morales Maqueda, M.A.; Maslowski, W.; Platov, G.; Stark, D.; Steele, M.; 
Suzuki, T.; Wang, J.; Zhang, J. Water properties and circulation in Arctic Ocean models. J. 
Geophys. Res. 2007, 112, doi: 10.1029/2006JC003642.  

38. Holloway, G. Observing global ocean topostrophy. J. Geophys. Res. 2008, 113, C07054, 
doi:10.1029/2007JC004635. 

39. Merryfield, Wm.J., Scott, R. B. Bathymetric influence on mean currents in two high-resolution 
near-global ocean models. Ocean Model. 2007, 16, 76–94. 

40. Maltrud, M., Holloway, G. Implementing biharmonic neptune in a global eddying ocean model. 
Ocean Model. 2008, 21, 22–34. 

41. Fichefet, T.; Morales Maqueda, M. A. Sensitivity of a global sea ice model to the treatment of ice 
thermodynamics and dynamics. J. Geophys. Res. 1997, 102, 12609–12646. 

42. Madec, G.; Delecluse, P.; Imbard, M.; Levy, C. OPA 8.1 Ocean General Circulation Model 
Reference Manual. Notes de l’LPSL. Universite P. et M. Curie: Paris, France, 1998. 

43. Holloway, G., Wang, Z. Representing eddy stresses in an Arctic Ocean model. J. Geophys. Res. 
2009, in press. doi:10.1029/2008JC005169. 

44. Holloway, G. On the spectral evolution of strongly interacting waves. Geophys. Astrophys. Fluid 
Dyn. 1979, 11, 271–287. 

45. Benney, D.J.; Newell, A.C. Random wave closures. Stud. Appl. Math. 1969, 48, 29–43. 
46. Hasselman, K. On the nonlinear energy transfer in a gravity spectrum. J. Fluid Mech. 1962, 12, 

481–500. 
47. McComas, C.H.; Bretherton, F.P. Resonant interaction of oceanic internal waves. J. Geophys.  

Res. 1977, 83, 1397–1412. 
48. Olbers, D.J. Nonlinear energy transfer and energy balance of the internal wave field in the deep 

ocean. J. Fluid Mech. 1976, 74, 375–399. 
49. Holloway, G. On interaction time scales of oceanic internal waves. J. Phys. Oceanogr. 1982, 12, 

293–296. 
50. McComas, C. H.; Muller, P. Time scales of interaction among oceanic internal waves. J. Phys. 

Oceanogr. 1981, 11, 139–147. 
51. Frederiksen, J.S.; Bell, R.C. Statistical dynamics of internal gravity waves—turbulence. Geophys. 

Astrophys. Fluid Dyn. 1983, 26, 257–301. 
52. Frederiksen, J.S.; Bell, R.C. Energy and entropy evolution of interacting internal gravity waves 

and turbulence. Geophys. Astrophys. Fluid Dyn. 1984, 28, 171–203. 
53. Holloway, G. The buoyancy flux from internal gravity wave breaking. Dyn. Atmos. Oceans 1988, 

12, 107–125. 



Entropy 2009, 11                            
 

 

382

54. van Haren, L.; Staquet, C.; Cambon, C. Decaying stratified turbulence: comparison between a 
two-point closure EDQNM model and direct numerical simulations. Dyn. Atmos. Oceans 1996, 
23, 217–233. 

55. Bolgiano, R. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 1959, 64,  
2226–2229. 

56. Holloway, G. A conjecture relating oceanic internal waves and small scale processes. 
Atmosphere-Ocean 1983, 21, 107–122. 

57. Holloway, G. Considerations on the theory of temperature spectra in stably stratified turbulent 
flows. J. Phys. Oceanogr. 1986, 16, 2179–2183. 

58. Lumley, J.L. The spectrum of nearly inertial turbulence in a stably stratified fluid. J. Atmos. Sci. 
1964. 21, 99–102. 

59. Weinstock, J. On the theory of temperature spectra in a stably stratified fluid. J. Phys. Oceanogr. 
1985, 15, 475–477. 

60. Kolmogorov, A.N. The local structure of turbulence in an incompressible viscous fluid for very 
large Reynolds numbers. C. R. Akad. Nauk, SSSR 1941, 30, 301–305. 

61. Batchelor, G.K. Small scale variation of convected quantities like temperature in a turbulent fluid. 
J. Fluid Mech. 1959, 5, 113–133. 

62. Gargett, A.E.; Hendricks, P.J.; Sanford, T.B.; Osborn, T.R.; Williams III, A.J. A composite 
spectrum of vertical shear in the upper ocean. J. Phys. Ocean. 1981, 11, 1258–1271. 

63. Dewan, E.M.; Good, R.E. Saturation and the ‘‘universal’’ spectrum for vertical profiles of 
horizontal scalar winds in the atmosphere. J. Geophys. Res. 1986, 91, 2742–2748. 

64. Itsweire, E.C.; Helland, K.N.; van Atta, C.W. The evolution of grid-generated turbulence in a 
stably stratified fluid. J. Fluid Mech. 1986, 162, 299–338. 

65. Komori, S.; Nagata, K. Effects of molecular diffusivities on countergradient scalar and 
momentum transfer in strongly stable stratification. J. Fluid Mech. 1996, 326, 205–237.  

66. Stillinger, D.C.; Helland, K.N.; Van Atta, C.W. Experiments on the transition in a stably stratified 
shear flow. J. Fluid Mech. 1983, 131, 91–122. 

67. Gargett, A.E.; Merryfield, W.J.; Holloway, G. Direct numerical simulation of differential scalar 
diffusion in three-dimensional stratified turbulence. J. Phys. Ocean. 2003, 33, 1758–1782. 

68. Merryfield, W.J.; Holloway, G.; Gargett, A.E. Differential vertical transport of heat and salt by 
weak stratified turbulence. Geophys. Res. Lett. 1998, 25, 2773–2776. 

69. Merryfield, W.J. Dependence of differential mixing on N and R_rho. J. Phys. Ocean. 2005,  
991–1003. 

70. Waite, M.L.; Bartello, P. Stratified turbulence dominated by vortical motion. J. Fluid Mech. 2004, 
517, 281–308. 

71. Lesieur, M. Turbulence in Fluids. Martin Nijhoff Publishers: Dordrecht, The Netherlands, 1987;  
p. 286. 

72. Holloway, G. Statistically stationary differential diffusion in a large-scale internal waves–vortical 
modes environment. Deep-Sea Res. II 2006, 53, 116–127. 

73. Sidi, C.; Dalaudier, F. Temperature and heat flux spectra in the turbulent buoyancy subrange. 
Pure Appl. Geophys. 1989, 130, 547–569. 



Entropy 2009, 11                            
 

 

383

74. Nash, J.D.; Moum, J.N. Microstructure estimates of turbulent salinity flux and the dissipation 
spectrum of salinity. J. Phys. Ocean. 2002, 32, 2312–2333. 

75. Jackson, P.R.; Rehmann, C.R. Laboratory measurements of differential diffusion in a diffusively 
stable, turbulent flow. J. Phys. Ocean. 2003, 33, 1592–1603. 

76. Smyth, W.D.; Nash, J.D.; Moum, J.N. Differential diffusion in breaking Kelvin–Helmholtz 
billows. J. Phys. Ocean. 2005, 35, 1004–1022. 

77. Gent, P. R.; McWilliams, J.C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 
1990, 20, 150–155. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


