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Abstract: We consider the problem of intercepting communications signals between
Multiple-Input Multiple-Output (MIMO) communication systems. To correctly detect a trans-
mitted message it is necessary to know the gain matrix that represents the channel between
the transmitter and the receiver. However, even if the receiver has knowledge of the message
symbol set, it may not be possible to estimate the channel matrix. Blind Source Separation
(BSS) techniques, such as Independent Component Analysis (ICA) can go some way to ex-
tracting independent signals from individual transmission antennae but these may have been
preprocessed in a manner unknown to the receiver. In this paper we consider the situation
where a communications interception system has prior knowledge of the message symbol set,
the channel matrix between the transmission system and the interception system and is able to
resolve the transmissionss from independent antennae. The question then becomes: what is
the mutual information available to the interceptor when an unknown unitary transformation
matrix is employed by the transmitter.

Keywords: MIMO, Communications, Unitary, BSS.

1. Introduction

In this paper we are interested in differential entropy and mutual information as it applies to wireless
communication systems employing antenna arrays at both the transmission and receiving sites. Systems
of this type are more commonly known as Multiple-Input Multiple-Output (MIMO) communication sys-
tems. MIMO communication techniques are known to provide increased information capacity over that
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Figure 1. MIMO Wireless Intercept
Model.

Figure 2. Converting MIMO chan-
nel to parallel channel via SVD.

obtainable via a single transmit antenna to single receive antenna system [1, 2]; however this extra capac-
ity comes at the expense of increased system complexity and additional processing. To correctly receive
and detect the transmitted message, the receive system must know the channel, or mixing, matrix as well
as the message symbol set being used. The channel matrix may be estimated when a predetermined,
known message sequence is incorporated into the transmitted message and the receiver knows where in
the message this sequence occurs. However this training sequence may not always be available and this
presents a blind source estimation problem where neither the message nor the channel matrix are known
to the receiver. One possible solution to this problem is to employ a Blind Source Separation (BSS)
technique such as Independent Component Analysis (ICA) [3] which can go some way to extracting
the signals from individual transmission antennae with the caveat that all but one of the transmitted sig-
nals must have a non-gaussian probability distribution. In some cases the transmitted signals may have
been preprocessed in a manner unknown to the receiver. In this paper we consider the situation where
a communications receiving system has prior knowledge of the message symbol set, the channel matrix
between the transmission system and the receiving system, is able to resolve the transmissions from the,
assumed independent, transmitter antennae but does not know the unitary transformation that has been
applied at the transmitter. The question then becomes: what is the mutual information available to the
receiver when an unknown unitary transformation matrix is employed by the transmitter?

In the following sections we derive expressions for differential entropy, mutual information and hence
capacity for a two-element transmit array to two-element receive array system which we shall refer to
as a 2-Dimensional (2D) system. The 3D case is studied in the appendix giving a basis for a high snr
approximation for the general N-Dimensional (ND) case. The general snr, ND case is derived and the
resulting intended-receiver and intercept receiver mutual informations are compared.

2. Problem and Assumptions

The model that we shall employ for a MIMO system is the simple linear transformation

y = Hx + n (1)
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where y is the received signal vector, x is the transmitted vector, n is additive receiver noise and H is
the channel gain or mixing matrix between the transmitter and receiver. The standard MIMO channel
model [11] assumes independent identically distributed (i.i.d.), frequency-flat Rayleigh fading between
the transmit and receive antennae. Consequently the components Hi,j of H are typically modelled with
a complex Normal density i.e. Hi,j ∼ CN (0, 1). Here we shall assume H to be constant for both the
intended and eavesdropper channels. In [11] the authors show that, for the case where the channel is
unknown and with block coding over a coherence time T , the signal structure that achieves capacity is
formed by the product of an isotropically distributed unitary matrix and a independent real, nonnegative
diagonal matrix. For the purpose of this study we shall treat all of y, x, and n as real random variables.
The benefit of this approach will be to simplify the derivations whilst recognising that, if the real and
imaginary parts of the variables are independent, the results may be readily extended to the complex case
by increasing the dimensionality of the vectors.

Figure 1 illustrates the scenario that we are studying. Employing a well-known cryptographic con-
vention [4], the transmission source array is labelled Alice (A), the intended cooperative receiver array
is labelled Bob (B) and the unintended, passive intercept receiver is labelled Eve (E). The lines represent
the paths that signals take from transmitter antennae to receiver antennae. Shapes in the signal paths rep-
resent objects that cause signal scattering. An important point to realise here is that the paths (channel
HB) between A and B are different to those between A and E (channel HE).

The channel matrix can be factorized using Singular Value Decomposition (SVD) as : H = UDV†

and we can then use:

U†y = DV†x + U†n

or ỹ = Dx̃ + ñ.

This allows us to view the MIMO system as if it were composed of a set of parallel channels and the
input data vector can be designed with this in mind. Figure 2 shows how this channel, with pre and post-
processing, may be configured. For such an approach to work the transmitter requires precise knowledge
of the channel matrix and it is a simple matter for the intended receiver to obtain the (scaled) message,
since D is a real diagonal matrix. However for an unintended receiver, with a different (known) channel
matrix, an unknown unitary transformation has been applied. In this case we desire to know how the
mutual information, is affected. We make the following assumptions:

• y is a real N × 1 observation vector.

• U is a real N ×N unitary (orthogonal) matrix.

• x is a real N × 1 random Gaussian signal vector, xi ∼ N (0, σ2
x).

• n is a real N × 1 random Gaussian noise vector, ni ∼ N (0, σ2
n).

• ||x|| =
√∑N

i=1 x
2
i = A = constant.

• the intended channel (HB) is known to both Alice and Bob.

• Eve knows the intercept channel (HE) but not the intended channel.
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• the channels HB and HE vary slowly with time (or over many symbol periods) and may be as-
sumed constant for the present study.

Based on the last assumption, Eve attempts to estimate the signal vector by applying the channel
inverse as

x̂ = H−1
E y = Vx̃ + H−1

E nE. (2)

Eve is therefore unable to directly obtain x̃ due to the unknown unitary matrix V. In applying the channel
inverse, the noise vector has also been scaled and the modified noise covariance term H−1

e ΣnH
−T
e shows

that the intercept receiver may be operating with a different signal to noise ratio to that of the intended
receiver. This also indicates that Eve could obtain better mutual information with a better channel.

Optimal power allocation to the parallel channels between Alice and Bob would typically be imple-
mented via a technique called waterfilling, see [5] chapter 5, and hence lead to optimal system capacity.
We have not taken waterfilling into account in this study and simply assume that equal power is assigned
to each of the parallel channels.

We could proceed to derive the eavesdropper mutual information in a cartesian or a polar coordinate
system. Of course it doesn’t matter which coordinate system we choose - we should get the same answer.
It is well known that differential entropy involves a Jacobian (J) in the transformation of coordinates [6]
, leading to a ln det(J) term but this will cancel in the mutual information calculations because mutual
information is a relative entropy i.e. the difference between two entropies. For the purpose of this study
our derivations will be based on a cartesian coordinate system. We shall derive differential entropies
according to the definitions given by Cover and Thomas in [7], i.e. the differential entropy h(Y ) of a
continuous random variable Y with a probability density p(y) is defined as

h(Y ) , −
∫

Y
p(y) ln(p(y))dy, (3)

where Y is the support set of the random variable. When we have two random variables Y,X with joint
probability density p(y, x), the conditional differential entropy is defined as

h(Y |X) , −
∫

Y,X
p(y, x) ln(p(y|x))dy dx, (4)

where X is the support set of the random variable X . The Mutual Information (MI) between the two
random variables Y and X is defined as

I(Y ;X) =

∫
Y,X

p(y, x) ln
p(y, x)

p(y)p(x)
dy dx

= h(Y )− h(Y |X) = h(X)− h(X|Y ). (5)

The capacity C is then obtained by maximizing the mutual information over all probability distribu-
tions for the source i.e. over p(x):

C = sup
p(x)

I(Y ;X). (6)

It is well known [7] that a Gaussian source distribution is an entropy maximizer (for a given variance)
so that, by treating x as a vector with i.i.d Gaussian components, the resulting differential entropy expres-
sions will determine the capacity. Since the channels are assumed known we may consider y = x + n
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Figure 3. 2D Transmitter message
symbol set.
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Figure 4. Received ring distribu-
tion caused by unknown rotation
on message symbol set.
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to represent the fully informed (unitary transformation known) case and y = Vx + n to represent the
partially informed (unitary transformation unknown) case. We can write x = x

||x|| ||x|| to obtain

y = V
x

||x||
||x||+ n = vA+ n (7)

where A = ||x|| and v = V x
||x|| is a unit vector for which we may or may not know the rotations. For the

random vectors y and x the mutual information for the fully informed model is given by:

IF = h(y)− h(y|x,V) (8)

and for the partially informed model the mutual information is obtained from:

IP = h(y)− h(y|A) (9)

where the message amplitude A is known but not the rotation angles.

3. 2D Capacity

To illustrate the consequence of not knowing the rotation imposed by the orthogonal transformation
in the 2D case, figure 3 shows a message symbol set where each of the two transmitters can set one of
four possible values. Thus a constellation containing 16 points may be realised at the receiver and the
density of these points is determined by the additive noise. If the rotation is unknown but the amplitude
levels are known then the receiver might obtain a message that looks something like figure 4 where the
density of the rings is determined by the additive noise.
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3.1. 2D Density Function

We can construct the joint density function beginning with

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2) =
1

2πσ2
n

exp

{
−[y − x]T [y − x]

2σ2
n

}
(10)

and then letting |x|2 = x2
1 + x2

2, x1 = |x| cosα and x2 = |x| sinα i.e. |x| is the magnitude of the vector
[x1x2]

T and α is the angle of this vector relative to the origin. Similarly |y|2 = y2
1 + y2

2 , y1 = |y| cosφ

and y2 = |y| sinφ, where |y| is the magnitude of the vector [y1y2]
T and φ is the angle of this vector

relative to the origin.
so that

p(y1, y2|x1, x2) =
1

2πσ2
n

exp

{
−|y|2 − |x|2 − 2|x||y| cos(φ− α)

2σ2
n

}
. (11)

3.2. x and V known

In this case V rotates the original vector xo through a known angle to a new, known x and we can
treat this case with the probability density function (pdf)

p(y1, y2|x1, x2) =
1√

(2πσ2
n)

exp

{
−(y1 − x1)

2

2σ2
n

}
1√

(2πσ2
n)

exp

{
−(y2 − x2)

2

2σ2
n

}
(12)

and the differential entropy is

h(y|x) = −
∫ ∞

0

p(y|x) ln p(y|x)dy =
1

2
ln(2πeσ2

n) +
1

2
ln(2πeσ2

n) = ln(2πeσ2
n). (13)

3.3. A known, V unknown

In this case V rotates the original vector xo through an unknown angle γ so that x1 = A cos γ and
x2 = A sin γ, giving the pdf

p(y1, y2|A, γ) =
1

(2πσ2
n)

exp

{
−|y|2 − A2

2σ2
n

}
exp

{
A|y| cos(φ− γ)

σ2
n

}
. (14)

Now, with β , φ− γ and p(β) = 1
2π

,

p(y1, y2|A) =

∫ 2π

0

p(y1, y2|A, β)p(β)dβ =
1

2πσ2
n

exp

{
−|y|2 − A2

2σ2
n

}
I0

(
A|y|
σ2
n

)
. (15)

At high enough SNR we may approximate the Bessel function as

I0(Kx) ≈ 1√
Kx

exp{Kx}. (16)

Therefore

p(y1, y2|A) ≈ σn

2πσ2
n

√
(2πA|y|)

exp

{
−(|y| − A)2

2σ2
n

}
≈ 1

2πA

1√
2πσ2

n

exp

{
−(|y| − A)2

2σ2
n

}
. (17)

and the differential entropy is

h(y|A) = −
∫ ∞

0

p(y|A) ln p(y|A)dy ≈ ln(2πA) +
1

2
ln(2πeσ2

n) (18)
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3.4. x and V unknown

In this case we assume that we only have knowledge of the variance of x and n and hence the variance
of y. With the components of both x and n treated as zero-mean Gaussian, then the components of y will
also be zero-mean Gaussian with variance equal to the sum of the variances of x and n i.e. yi ∼ N (0, σ2

y)

where σ2
y = σ2

x + σ2
n. The joint pdf for y is

p(y1, y2) =
1√

2πσ2
y

exp

{
−y2

1

2σ2
y

}
1√

2πσ2
y

exp

{
−y2

2

2σ2
y

}
(19)

which leads us to the differential entropy

h(y) = −
∫ ∞

0

p(y) ln p(y)dy =
1

2
ln(2πeσ2

y) +
1

2
ln(2πeσ2

y) = ln(2πeσ2
y). (20)

3.5. Capacity

The fully informed mutual information was defined in equation (8) and so when both x and V are
given, with Gaussian distributions for the source and noise, we have the fully informed capacity

CF2 = ln(2πeσ2
y)− ln(2πeσ2

n) = ln

(
σ2
y

σ2
n

)
. (21)

Similarly partially informed mutual information was defined in equation (9) so that, when the rotation
matrix is unknown, we obtain the partially informed capacity

CP2 ≈ ln(2πeσ2
y)− ln(2πA)− 1

2
ln(2πeσ2

n) = ln

(
σ2
y

Aσn

)
+

1

2
ln
( e

2π

)
(22)

In a similar fashion we may derive the entropies and mutual information for the 3D case. The deriva-
tion is given in Appendix A, where we find that

CF3 = ln

(
σ3
y

σ3
n

)
. (23)

and

CP3 ≈ ln

(
σ3
y

A2σn

)
+ ln

(e
2

)
(24)

4. ND Capacity

4.1. High SNR Case

At high snr we found that the partially informed probability density functions factored into two parts:

2D case: p(y|A) ≈
(

1

2πA

)
1√

2πσ2
n

exp

{
−(|y| − A)2

2σ2
n

}
3D case: p(y|A) ≈

(
1

4πA2

)
1√

2πσ2
n

exp

{
−(|y| − A)2

2σ2
n

}
. (25)
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The first part appears to have the form of a uniform density on the surface of an N-dimensional sphere.
The second part appears to represent a Gaussian distribution across an N-dimensional shell. Therefore
p(y|A) may be viewed as an N-dimensional, variable density, shell with mean radius A. From Wikipedia
(“Sphere”) [8] the general equations for the surface area and volume of an N-dimensional sphere, with

radius A =
√∑N

i x
2
i , are given by:

Surface Area =
2π

N
2 AN−1

Γ
(
N
2

) (26)

and

Volume =
2π

N
2 AN

NΓ
(
N
2

) (27)

Thus the required N-D, high SNR entropies, may be written as:

h(y|x) =
N

2
ln(2πeσ2

n), (28)

h(y|A) ≈ ln

(
2π

N
2 AN−1

Γ
(
N
2

) )
+

1

2
ln
(
2πeσ2

n

)
, (29)

h(y) =
N

2
ln(2πeσ2

y). (30)

The densities p(y) and p(y|x) could be pictured as N-dimensional, probability spheres. Hence the
fully informed capacity becomes the difference in entropy between an N-dimensional probability sphere,
representing the signal plus noise vector distribution, and an N-dimensional sphere, representing the
noise vector distribution. In the partially informed case the capacity becomes the difference in entropy
between an N-dimensional probability sphere, representing the signal plus noise vector distribution, and
an N-dimensional probability shell, representing the amplitude known plus noise distribution. The ND
fully informed capacity may be written as

CFN
= h(y)− h(y|x) =

N

2
ln

(
σ2
y

σ2
n

)
(31)

and the partially informed capacity may be approximated by

CPN
≈ h(y)− h(y|A) =

1

2
ln

(
σ2
y

σ2
n

)
+

1

2
ln
(
π−12N−3eN−1

)
+ ln

(
Γ

(
N

2

))
.

Defining the signal-to-noise ratio as ρ = A2

σ2
n

and with σ2
y = σ2

x + σ2
n = A2 + σ2

x, then the capacities may
be expressed as

CFN
≈ N

2
ln (1 + ρ) (32)

CPN
≈ 1

2
ln (1 + ρ) +

1

2
ln
(
π−12N−3eN−1

)
+ ln

(
Γ

(
N

2

))
. (33)
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4.2. General Case

In this section we derive the general form for p(y|A) thus allowing us to obtain the capacity for
any dimension and snr. The derivation utilises a result by Vesely [9] that shows how the “mass” of
an N dimensional spherical shell is distributed along one sphere axis. This result greatly simplifies the
multidimensional integrals that we require to solve. The surface area, SN(r0), of an N dimensional
sphere, as a function of radius, may be represented as

SN(r0) =

∫ r0

−r0

r0SN−1(r2)

r2
dr1 (34)

where r2 =
√
r2
0 − r2

1. We can rewrite the above as

1 =

∫ r0

−r0

r0SN−1(r2)

r2SN(r0)
dr1 =

∫ r0

−r0
pN(r1)dr1 (35)

which shows how the “mass”of the shell is distributed along the single sphere axis r1.

pN(r1) =
r0SN−1(r2)

r2SN(r0)
=

(N − 1)CN−1r
N−3
2

NCNr
N−2
0

=
(N − 1)CN−1

NCN

1

r0

[
1− r2

1

r2
0

]N−3
2

(36)

where

CN =
2πN/2

NΓ(N/2)
. (37)

The integrals that we are dealing with take the form

p(y|x) = (2πσ2
n)−N/2 exp

{
−|y|2 − |x|2

2σ2
n

}
exp

{∑N
i=1 xiyi
σ2
n

}

= (2πσ2
n)−N/2 exp

{
−|y|2 − |x|2

2σ2
n

}
exp

{
x � y
σ2
n

}
(38)

from which we wish to obtain p(y| |x|). Assuming now that |x| is given we have

p(y|x, |x|) = (2πσ2
n)−N/2 exp

{
−|y|2 − |x|2

2σ2
n

}
exp

{
x � y
σ2
n

}
(39)

and so to obtain p(y| |x|) we must integrate over the xi as follows

p(y| |x|) =

∫
|x|=A

p(y|x, |x|)p(x)dx

= (2πσ2
n)−N/2 exp

{
−|y|2 − |x|2

2σ2
n

}∫
|x|=A

exp

{
x � y
σ2
n

}
p(x)dx (40)

We proceed to calculate this integral by first noting that the xi are uniformly distributed over the
surface of an N-dimensional sphere and we only need to perform the integral along a single dimension,
e.g. x1 and replace p(x) with p(x1) using the results derived earlier. To better understand this, consider
the dot product x � y. The dot product will be unchanged if both vectors are operated on by the same
rotation matrix. Let the rotation matrix beM∈ RN×N , then

(Mx) � (My) = (Mx)T (My) = xTMTMy = xTy = x � y (41)
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since MMT = MM−1 = I . So we are free to choose any rotation matrix and the integral will be
unaffected. Let us chooseM such thatMy = |y|[1, 0, . . . , 0] = |y|e, where e is a unit vector, i.e. the
vector y is rotated to lie along the y1 axis. Let x′ = (Mx) then we have

x′ � (My) = x′ � |y|e = |y|(x′)Te = |y|x′1. (42)

Hence, with |x| = A,∫
|x|=A

exp

{
x � y
σ2
n

}
p(x)dx =

∫ A

−A
pN(x′1) exp

{
|y|x′1
σ2
n

}
=

(N − 1)CN−1

NCN

1

A

∫ A

−A

[
1− x′21

A2

]N−3
2

exp

{
|y|x′1
σ2
n

}
dx′1

(43)

We may make a change of variable by letting z =
x′1
A

to get∫
|x|=A

exp

{
x � y
σ2
n

}
p(x)dx =

(N − 1)CN−1

NCN

∫ 1

−1

[
1− z2

]N−3
2 exp

{
|y|Az
σ2
n

}
dz (44)

The general form for the density, given A, is therefore

p(y|A) = (2πσ2
n)−

N
2 exp

{
−A2 − |y|2

2σ2
n

}
(N − 1)CN−1

NCN

∫ 1

−1

[
1− z2

]N−3
2 exp

{
|y|Az
σ2
n

}
dz. (45)

The entropy calculation involves a multidimensional integration over the components in y:

h(y|A) = −
∫

y

p(y|A) ln p(y|A)dy. (46)

With the general form for the differential entropies we are now able to derive the capacity for both the
fully informed cases and the partially informed (amplitude only) cases. The capacity for dimensions two
to five have been calculated for both cases and the results are presented in figures 5 and 6. Comparing
the two figures we note that the partially informed curves have a smaller slope than their fully informed
counterparts. If both receivers were operating with the same snr then we could also make the observation
that the partially informed values are always less than their fully informed counterparts. However, as
indicated in section 2 earlier, due to the channel matrix inversion required by Eve and a possibly different
local (local to the receivers) noise environment, this may not be the case.

5. Summary

The problem of determining the information intercept capacity, available to a receiving system which
knows its channel matrix but has no prior knowledge of a unitary transformation that has been applied
at the transmitter, has been analysed. Entropy derivations were carried out for two dimensions and three
dimensions giving some insight to the general dimensional, high snr case. The exact capacity for the N-
Dimensional case has been obtained but requires numerical integration to derive the differential entropy
for the partially informed case.
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Figure 5. Capacity: fully informed
Vs SNR.
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Figure 6. Capacity: partially in-
formed Vs SNR.
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The fully informed capacity has been likened to the difference in entropy between two N-dimensional
probability spheres: the larger sphere, representing the distribution of the signal plus noise vector, and
the smaller sphere, representing the distribution of the noise vector. At high snr, the partially informed
capacity was found to be equal to the difference in entropy between an N-dimensional probability sphere,
representing the distribution of the signal plus noise vector, and an N-dimensional probability shell,
representing the distribution of the amplitude plus noise vector.
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Appendix: Derivation of 3D Mutual Information

We can construct the joint probability density function in the following manner. Beginning with

p(y1, y2, y3|x1, x2, x3, V ) =
1

(2πσ2
n)

3
2

exp

{
−[y −Vx]T [y −Vx]

2σ2
n

}
(47)

x known

In the case where x is known after the transformation the pdf is given by

p(y1, y2, y3|x1, x2, x3) =
exp

{
−(y1−x1)2

2σ2
n

}
√

(2πσ2
n)

exp
{
−(y2−x2)2

2σ2
n

}
√

(2πσ2
n)

exp
{
−(y3−x3)2

2σ2
n

}
√

(2πσ2
n)

(48)

and the entropy is

h(y|x) = −
∫ ∞

0

p(y|x) ln p(y|x)dy =
1

2
ln(2πeσ2

n) +
1

2
ln(2πeσ2

n) +
1

2
ln(2πeσ2

n) =
3

2
ln(2πeσ2

n).

(49)

A known, α, β unknown

For the vector [x1x2x3]
T there are two rotation angles to consider: α, β and so, with

|x|2 = A2

x1 = A sinα cos β

x2 = A sinα sin β

x3 = A cosα, (50)

we have the joint probability of the two angles p(α, β) = sinα
4π

. Therefore p(y|x) → p(y|A,α, β)

becomes

p(y|x) =
1

(2πσ2
n)

3
2

exp

{
−|y|2 − |x|2

2σ2
n

}
exp

{
x1y1 + x2y2 + x3y3

σ2
n

}
p(y|A,α, β) =

1

(2πσ2
n)

3
2

exp

{
−|y|2 − A2

2σ2
n

}
exp

{
A

σ2
n

[sinα cos βy1 + sinα sin βy2 + cosαy3]

}
(51)
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The integral

p(y|A) =

∫ 2π

0

∫ π

0

p(y|A,α, β)p(α, β)dαdβ (52)

is obtained by using the form given in Prudnikov et al [10] :∫ 2π

0

∫ π

0

sinα exp

{
A

σ2
n

[sinα cos βy1 + sinα sin βy2 + cosαy3]

}
dαdβ =

2πσ2
n

A|y|
exp

{
A|y|
σ2

}
(53)

and so

p(y|A) =
1

4πA|y|
1√

2πσ2
n

exp

{
−(|y| − A)2

2σ2
n

}
, (54)

which may be approximated, at high SNR, as:

p(y|A) ≈ 1

4πA2

1√
2πσ2

n

exp

{
−(|y| − A)2

2σ2
n

}
, (55)

The differential entropy is

h(y|A) = −
∫ ∞

0

p(y|A) ln p(y|A)dy ≈ ln(4πA2) +
1

2
ln(2πeσ2

n) (56)

x unknown

In this case we assume that we only have knowledge of the variance of x and n and hence the variance
of y. With both x and n treated as zero-mean Gaussian, then y will also be zero-mean Gaussian with
variance equal to the sum of the variances of x and n i.e. yi ∼ N (0, σ2

y) where σ2
y = σ2

x + σ2
n.

p(y1, y2, y3) =
exp

{
−y21
2σ2

y

}
√

2πσ2
y

exp
{
−y22
2σ2

y

}
√

2πσ2
y

exp
{
−y23
2σ2

y

}
√

2πσ2
y

(57)

giving the differential entropy as

h(y) = −
∫ ∞

0

p(y) ln p(y)dy =
1

2
ln(2πeσ2

y) +
1

2
ln(2πeσ2

y) +
1

2
ln(2πeσ2

y) =
3

2
ln(2πeσ2

y). (58)

Capacity

Define IF , h(y)− h(y|x) (59)

and IP , h(y)− h(y|A) (60)

where IF is the mutual information in the best case where both x and V are given. IP is the mutual infor-
mation when the rotation matrix is unknown. Since the source and noise distributions are Gaussian, and
assuming constant source variance, we then obtain the fully informed and partially informed capacities
as

CF3 =
3

2
ln(2πeσ2

y)−
3

2
ln(2πeσ2

n) = ln

(
σ3
y

σ3
n

)
(61)
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and

CP3 =
3

2
ln(2πeσ2

y)− ln(4πA2)− 1

2
ln(2πeσ2

n) = ln

(
σ3
y

A2σn

)
+ ln

(e
2

)
(62)
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