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1. Introduction

The concept of entropy originated in the physical and engineering sciences but now plays a ubiquitous
role in all areas of science and in many non-scientific disciplines. A quick search of the ANU library
catalogue gives books on entropy in mathematics, physics, chemistry, biology, communication theory
and engineering but also in economics, linguistics, music, architecture, urban planning, social and cul-
tural theory and even in creationism. Many of the scientific applications will be described in the lectures
over the next three weeks. In this brief introductory lecture we describe some of the theoretical ideas
that underpin these applications.

Entropy is an encapsulation of the rather nebulous notions of disorder or chaos, uncertainty or ran-
domness. It was introduced by Clausius in the 19th century in thermodynamics and was an integral part
of Boltzmann’s theory. In the thermodynamic context the emphasis was on entropy as a measure of
disorder. Subsequently the probabilistic nature of the concept emerged more clearly with Gibbs work
on statistical mechanics. Entropy then had a major renaissance in the middle of the 20th century with
the development of Shannon’s mathematical theory of communication. It was one of Shannon’s great
insights that entropy could be used as a measure of information content. There is some ambiguity in
the notion of information and in Shannon’s theory it is less a measure of what one communicates but
rather what one could communicate, i.e. it is a measure of one’s freedom of choice when one selects a



Entropy 2008, 10 494

message to be communicated. Shannon also stressed the importance of the relative entropy as a measure
of redundancy. The relative entropy gives a comparison between two probabilistic systems and typically
measures the actual entropy to the maximal possible entropy. It is the relative entropy that has played
the key role in many of the later developments and applications.

Another major landmark in the mathematical theory of the entropy was the construction by Kol-
mogorov and Sinai of an isomorphy invariant for dynamical systems. The invariant corresponds to a
mean value over time of the entropy of the system. It was remarkable as it differed in character from all
previous spectral invariants and it provided a mechanism for providing a complete classification of some
important systems. Other landmarks were the definition of mean entropy as an affine functional over the
state space of operator algebras describing models of statistical mechanics and the application of this
functional to the characterization of equilibrium states. Subsequently entropy became a useful concept
in the classification of operator algebras independently of any physical background.

In the sequel we discuss entropy, relative entropy and conditional entropy in the general framework
of probability theory. In this context the entropy is best interpreted as a measure of uncertainty. Sub-
sequently we develop some applications, give some simple examples and indicate how the theory of
entropy has been extended to non-commutative settings such as quantum mechanics and operator alge-
bras.

2. Entropy and uncertainty

First consider a probabilistic process with n possible outcomes. If n = 2 this might be something as
simple as the toss of a coin or something as complex as a federal election. Fortunately the details of the
process are unimportant for the sequel. Initially we make the simplifying assumption that all n outcomes
are equally probable, i.e. each outcome has probability p = 1/n. It is clear that the inherent uncertainty
of the system, the uncertainty that a specified outcome actually occurs, is an increasing function of n. Let
us denote the value of this function by f(n). It is equally clear that f(1) = 0 since there is no uncertainty
if there is only one possible outcome. Moreover, if one considers two independent systems with n and
m outcomes, respectively, then the combined system has nm possible outcomes and one would expect
the uncertainty to be the sum of the individual uncertainties. In symbols one would expect

f(nm) = f(n) + f(m) .

The additivity reflects the independence of the two processes. But if this property is valid for all positive
integers n,m then it is easy to deduce that

f(n) = log n

although the base of logarithms remains arbitrary. (It is natural to chose base 2 as this ensures that
f(2) = 1, i.e. a system such as coin tossing is defined to have unit uncertainty, but other choices might
be more convenient.) Thus the uncertainty per outcome is given by (1/n) log n or, expressed in terms of
the probability,

uncertainty per outcome = −p log p .

Secondly, consider a process with n possible outcomes with probabilities p1, p2, . . . , pn, respectively.
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Then it is natural to ascribe uncertainty −pi log pi to the i-th outcome. This is consistent with the fore-
going discussion and leads to the hypothesis

total uncertainty = −
n∑
i=1

pi log pi .

This is the standard expression for the entropy of the probabilistic process and we will denote it by
the symbol H(p), or H(p1, . . . , pn). (This choice of notation dates back to Boltzmann.) Explicitly, the
entropy is defined by

H(p) = H(p1, . . . , pn) = −
n∑
i=1

pi log pi . (1)

Although the argument we have given to identify the entropy with the inherent uncertainty is of a rather
ad hoc nature applications establish that it gives a surprisingly efficient description. This will be illus-
trated in the sequel. It is a case of ‘the proof of the pudding is in the eating’.

Before proceeding we note that the entropy H(p) satisfies two simple bounds. If x ∈ 〈0, 1] then
−x log x ∈ [0, 1] and one can extend the function x 7→ −x log x to the closed interval [0, 1] by setting
−0 log 0 = 0. Then H(p) ≥ 0 with equality if and only if one outcome has probability one and the
others have probability zero. It is also straightforward to deduce that H(p) is maximal if and only if the
probabilities are all equal, i.e. if and only if p1 = . . . = pn = 1/n. Therefore one has bounds

0 ≤ H(p1, . . . , pn) ≤ log n . (2)

There is a third less precise principle: the most probable outcomes give the major contribution to the
total entropy.

The entropy enters the Boltzmann–Gibbs description of equilibrium statistical mechanics through
the prescription that the state of equilibrium is given by the microscopic particle configurations which
maximize the entropy under the constraints imposed by the observation of macroscopic quantities such
as the energy and density. Thus if the configuration with assigned probability pi has energy ei the idea
is to maximize H(p) with E(p) =

∑n
i=1 piei held fixed. If one formulates this problem in terms of a

Lagrange multipliers β ∈ R then one must maximize the function

p = (p1, . . . , pn) 7→ H(p)− β E(p) . (3)

We will discuss this problem later in the lecture.

3. Entropy and multinomial coefficients

In applications to areas such as statistical mechanics one is usually dealing with systems with a large
number of possible configurations. The significance of entropy is that it governs the asymptotic be-
haviour of the multinomial coefficients

nCn1...nm =
n!

n1! . . . nm!

where n1 + . . . + nm = n. These coefficients express the number of ways one can divide n objects into
m subsets of n1, n2, . . . , nm objects, respectively. If n is large then it is natural to examine the number
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of partitions into m subsets with fixed proportions p1 = n1/n, . . . , pm = nm/n. Thus one examines

Pn(p) =
n!

(p1n)! . . . (pmn)!

with p1 + . . .+ pn = 1 as n→∞. Since the sum over all possible partitions,

∑
n1,...,nm

nCn1...nm = mn ,

increases exponentially with n one expects a similar behaviour for Pn(p). Therefore the asymptotic
behaviour will be governed by the function n−1 logPn(p). But this is easily estimated by use of the
Stirling-type bounds

(2πn)1/2nne−ne1/(12n+1) ≤ n! ≤ (2πn)1/2nne−ne1/(12n)

for the factorials. One finds

n−1 logPn(p) = H(p) +O(−n−1 log n−1) (4)

as n→∞ where H(p) is the entropy. Thus the predominant asymptotic feature of he Pn is an exponen-
tial increase exp(nH) with H the entropy of the partition p1, . . . , pm.

Next consider n independent repetitions of an experiment with m possible outcomes and correspond-
ing probabilities q1, . . . , qm. The probability that these outcomes occur with frequencies p1, . . . , pm is
given by

Pn(p|q) = Pn(p) qp1n1 . . . qpmn
m =

n!

(p1n)! . . . (pmn)!
qp1n1 . . . qpmn

m .

Then estimating as before one finds

n−1 logPn(p|q) = H(p|q) +O(−n−1 log n−1) (5)

as n→∞ where H(p|q) is given by

H(p|q) = −
m∑
i=1

(pi log pi − pi log qi) . (6)

The latter expression is the relative entropy of the frequencies pi with respect to the probabilities qi.
Now it is readily established that H(p|q) ≤ 0 with equality if, and only if, pi = qi of all i ∈ {1, . . . ,m}.
Thus if the pi and qi are not equal then Pn(p|q) decreases exponentially as n → ∞. Therefore the only
results which effectively occur are those for which the frequencies closely approximate the probabilities.

One can relate the variational principle (3) defining the Boltzmann–Gibbs equilibrium states to the
relative entropy. Set qi = e−βei/Z where Z =

∑
i e
−βei . Then

H(p)− β E(p) = H(p|q) + logZ .

Therefore the maximum is obtained for pi = qi and the maximal value is logZ.
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4. Conditional entropy and information

Next we consider two processes α and β and introduce the notation A1, . . . , An for the possible
outcomes of α and B1, . . . , Bm for the possible outcomes of β. The corresponding probabilities are
denoted by p(A1), . . . , p(An) and p(B1), . . . , p(Bm), respectively. The joint process, α followed by β, is
denoted by αβ and the probability of the outcomeAiBj is given by p(AiBj). We assume that p(AiBj) =

p(BjAi) although this condition has to be relaxed in the subsequent non-commutative settings. If the α
and β are independent processes then p(AiBj) = p(Ai)p(Bj) and the identity is automatic.

The probability that Bj occurs given the prior knowledge that Ai has occurred is called the condi-
tional probability for Bj given Ai. It is denoted by p(Bj|Ai). A moment’s reflection establishes that

p(Ai)p(Bj|Ai) = p(AiBj) .

Since the possible outcomes BjAi of the process βα are the same as the outcomes AiBj of the process
αβ one has the relation

p(Ai)p(Bj|Ai) = p(Bj)p(Ai|Bj)

for the conditional probabilities. If the two processes are independent one obviously has p(Bj|Ai) =

p(Bj).
The conditional entropy of the process β given the outcome Ai for α is then defined by

H(β|Ai) = −
m∑
j=1

p(Bj|Ai) log p(Bj|Ai) (7)

in direct analogy with the (unconditional) entropy of β defined by

H(β) = −
m∑
j=1

p(Bj) log p(Bj) .

In fact if α and β are independent then H(β|Ai) = H(β). Since Ai occurs with probability p(Ai) it is
natural to define the conditional entropy of β dependent on α by

H(β|α) =
n∑
i=1

p(Ai)H(β|Ai) . (8)

The entropyH(β) is interpreted as the uncertainty in the process β andH(β|α) is the residual uncertainty
after the process α has occurred.

Based on the foregoing intuition Shannon defined the difference

I(β|α) = H(β)−H(β|α) (9)

as the information about β gained by knowledge of the outcome of α. It corresponds to the reduction in
uncertainty of the process β arising from knowledge of α.

The usefulness of these various concepts depends on a range of properties that are all traced back to
simple features of the function x 7→ −x log x.

First, one has the key relation
H(β|α) = H(αβ)−H(α) . (10)
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This follows by calculating that

H(β|α) = −
n∑
i=1

m∑
j=1

p(AiBj) log p(Bj|Ai)

= −
n∑
i=1

m∑
j=1

p(AiBj) log(p(AiBj)/p(Ai))

= −
n∑
i=1

m∑
j=1

p(AiBj) (log p(AiBj)− log p(Ai)) = H(αβ)−H(α)

Note that if α and β are independent then H(β|α) = H(β) and the relation (10) asserts that H(αβ) =

H(α) +H(β). Note also that it follows from (10) that the information is given by

I(β|α) = H(β) +H(α)−H(αβ) . (11)

This latter identity establishes the symmetry

I(β|α) = I(α|β) . (12)

Next remark that H(β|α) ≥ 0 by definition. Hence H(αβ) ≥ H(α) and, by symmetry, H(αβ) ≥
H(β). Thus one has the lower bounds

H(αβ) ≥ H(α) ∨H(β) . (13)

But it also follows by a convexity argument that H(β|α) ≤ H(β). The argument is as follows. Since the
function x ≥ 0 7→ log x is convex one has

n∑
i=1

λi log xi ≤ log(
n∑
i=1

λixi)

for all λi ≥ 0 with
∑n
i=1 λi = 1 and all xi ≥ 0. Therefore

H(β|α) = −
n∑
i=1

m∑
j=1

p(AiBj) log p(Bj|Ai)

=
m∑
j=1

p(Bj)
n∑
i=1

(p(AiBj)/p(Bj)) log(1/p(Bj|Ai))

≤
m∑
j=1

p(Bj) log
n∑
i=1

(p(Ai)/p(Bj)) = H(β)

because
∑n
i=1(p(AiBj)/p(Bj)) = 1. (Here I have been rather cavalier in assuming p(Bj|Ai) and p(Bj)

are strictly positive but it is not difficult to fill in the details.)
It follows from H(β|α) ≤ H(β) that

I(β|α) ≥ 0 , (14)

i.e. the information is positive. But then using the identity (11) one deduces that

H(αβ) ≤ H(α) +H(β) . (15)
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This is a generalization of the property of subadditivity f(x + y) ≤ f(x) + f(y) for functions of a real
variable. It is subsequently of fundamental importance.

Finally we note that the information is increasing in the sense that

I(βγ|α) ≥ I(β|α) (16)

or, equivalently,
H(αβγ)−H(βγ) ≤ H(αβ)−H(β) . (17)

The latter property is established by calculating that

H(αβγ)−H(αβ)−H(βγ) +H(β) = −
∑
i,j,k

p(AiBjCk) log
p(AiBjCk)p(Bj)

p(AiBj)p(BjCk)

≤
∑
i,j,k

p(AiBj)p(BjCk)

p(Bj)

(
1− p(AiBjCk)p(Bj)

p(AiBj)p(BjCk)

)

=
∑
i,j,k

(
p(AiBj)p(BjCk)

p(Bj)
− p(AiBjCk)

)
= 0

where we have used the bound −x log x ≤ 1 − x. This property (17) is usually referred to as strong
subadditivity as it reduces to the subadditive condition (15) if β is the trivial process with only one
outcome.

Example There are two cities, for example Melbourne and Canberra, and the citizens of one always
tells the truth but the citizens of the other never tell the truth. An absent-minded mathematician forgets
where he is and attempts to find out by asking a passerby, who could be from either city. What is the
least number of questions he must ask if the only replies are ‘yes’ and ‘no’? Alternatively, how many
questions must he pose to find out where he is and where the passerby lives?

Since there are two towns there are two possible outcomes to the experiment α of questioning. If
the mathematician really has no idea where he is then the entropy H(α) = log 2 represents the total
information. Then if one uses base 2 logarithms H(α) = 1. So the problem is to ask a question β
that gives unit information, i.e. such that I(α, β) = H(α) = 1 or, equivalently, Hβ(α) = 0. Thus the
question must be unconditional. This could be achieved by asking ‘Do you live here?’.

Alternatively to find out where he is and to also decide where the passerby lives he needs to resolve
the outcome of a joint experiment α1α2 where α1 consists of finding his own location and α2 consists of
finding the residence of the passerby. But then the total information isH(α1α2) = H(α1)+Hα1(α2) > 1.
Hence one question will no longer suffice but two clearly do suffice: he can find out where he is with
one question and then find out where the passerby lives with a second question. This is consistent with
the fact that H(α1α2) = log 22 = 2.

This is all rather easy. The following problem is slightly more complicated but can be resolved by
similar reasoning.

Problem Assume in addition there is a third city, Sydney say, in which the inhabitants alternately tell
the truth or tell a lie. Argue that the mathematician can find out where he is with two questions but needs
four questions to find out in addition where the passerby lives.
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5. Dynamical systems

Let (X,B) denote a σ-finite measure space, i.e. a set X equipped with a σ-algebra B of subsets of X .
Further let µ denote a probability measure on (X,B). Then (X,B, µ) is called a probability space. A
finite partition α = (A1, . . . , An) of the space is a collection of a finite number of disjoint elements Ai of
B such that

⋃n
i=1Ai = X . Given two partitions α = (A1, . . . , An) and β = (B1, . . . , Bm) the join α ∨ β

is defined as the partition composed of the subsets Ai ∩Bj with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
If α = (A1, . . . , An) is a partition of the space then 0 ≤ µ(Ai) ≤ 1 and

∑n
i=1 µ(Ai) = 1 because µ is

a probability measure. Thus the µ(Ai) correspond to the probabilities introduced earlier and α ∨ β now
corresponds to the joint process αβ. Therefore we can now use the definitions of entropy, conditional
entropy, etc. introduced previously but with the replacements p(Ai) → µ(Ai), αβ → α ∨ β etc. Note
that since µ(Ai ∩Bj) = µ(Bj ∩ Ai) one automatically has p(AiBj) = p(BjAi).

Next let T be a measure-preserving invertible transformation of the probability space (X,B, µ). In
particular TB = B and µ(TA) = µ(A) for all A ∈ B. Then (X,B, µ, T ) is called a dynamical system.
In applications one also encounters dynamical systems in which T is replaced by a measure-preserving
flow, i.e. a one-parameter family of measure preserving transformations {Tt}t∈R such that TsTt = Ts+t,
T−s = (Ts)

−1 and T0 = I is the identity. The flow is usually interpreted as a description of the change
with time t of the observables A. The single automorphism T can be thought of as the change with unit
time and T n is the change after n-units of time.

The entropy of the partition α = (A1, . . . , An) of the probability space is given by

H(α;µ) = −
n∑
i=1

µ(Ai) log µ(Ai)

and we now define the mean entropy of the partition of the dynamical system by

H(α ;µ, T ) = lim
n→∞

n−1H(α ∨ Tα . . . ∨ T nα;µ) (18)

where Tα = (TA1, . . . , TAn). Then the mean entropy of the automorphism T is defined by

H(µ, T ) = sup
α
H(α ;µ, T ) (19)

where the supremum is over all finite partitions.
It is of course necessary to establish that the limit in (18) exists. But this is a consequence of subad-

ditivity. Set
f(n) = H(α ∨ Tα . . . ∨ T n−1α;µ)

then

f(n+m) = H((α ∨ Tα . . . ∨ T n−1α;µ) ∨ T n(α ∨ Tα . . . ∨ Tm−1α;µ)

≤ H(α ∨ Tα . . . ∨ T n−1α;µ) +H(T n(α ∨ Tα . . . ∨ Tm−1α);µ) = f(n) + f(m)

for all n,m ∈ N where we have used (15) and the T -invariance of µ. It is, however, an easy consequence
of subadditivity that the limit of n−1f(n) exists as n→∞.
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The entropyH(µ, T ) was introduced by Kolmogorov and Sinai and is often referred to as the Kolmogorov–
Sinai invariant. This terminology arises since H(µ, T ) is an isomorphy invariant. Two dynamical sys-
tems (X1,B1, µ1, T1) and (X2,B2, µ2, T2) are defined to be isomorphic if there is an invertible measure
preserving map U of (X1,B1, µ1) onto (X2,B2, µ2) which intertwines T1 and T2, i.e. which has the
property UT1 = T2U . If this is the case then H(µ1, T1) = H(µ2, T2). Thus to show that two dynam-
ical systems are not isomorphic it suffices to prove that H(µ1, T1) 6= H(µ2, T2). Of course this is not
necessarily easy since it requires calculating the entropies. This is, however, facilitated by a result of
Kolmogorov and Sinai which establishes that the supremum in (19) is attained for a special class of
partitions. The partition α is defined to be a generator if

∨∞
k=−∞ T

kα is the partition of X into points.
Then

H(µ, T ) = H(α ;µ, T ) (20)

for each finite generator α.
Another way of formulating the isomorphy property is in Hilbert space terms. Let H = L2(X ;µ).

Then it follows from the T -invariance property of µ that there is a unitary operator on H such that
Uf = f ◦ T−1 for all f ∈ Cb(X). Now the two dynamical systems (X1,B1, µ1, T1) and (X2,B2, µ2, T2)

are isomorphic if there is a unitary operator V from H1 to H2 which intertwines the two unitary repre-
sentatives U1 and U2 of the maps T1 and T2. Since one has U1 = V U2V

−1 the spectra of U1 and U2 are
also isomorphy invariants. The Kolgmogorov–Sinai entropy was the first invariant which was not of a
spectral nature.

The mean entropy has another interesting property as a function of the measure µ. The probability
measures form a convex subset of the dual of the bounded continuous functions Cb(X). Now if µ1 and
µ2 are two probability measures and λ ∈ [0, 1] then

H(α;λµ1 + (1− λ)µ2) ≥ λH(α;µ1) + (1− λ)H(α;µ2) . (21)

The concavity inequality (21) is a direct consequence of the definition of H(α;µ) and the concavity of
the function x 7→ −x log x. Conversely, one has inequalities

− log(λµ1(Ai) + (1− λ)µ2(Ai)) ≤ − log λ− log µ1(Ai)

and
− log(λµ1(Ai) + (1− λ)µ2(Ai)) ≤ − log(1− λ)− log µ2(Ai)

because x 7→ − log x is decreasing. Therefore one obtains the ‘convexity’ bound

H(α;λµ1 + (1− λ)µ2) ≤ λH(α;µ1) + (1− λ)H(α;µ2)− λ log λ− (1− λ) log(1− λ) . (22)

Now replacing α by α ∨ Tα . . . ∨ T n−1α in (21), dividing by n and taking the limit n→∞ gives

H(α ;λµ1 + (1− λ)µ2, T ) ≥ λH(α ;µ1, T ) + (1− λ)H(α ;µ2, T ) .

Similarly from (22), since −(λ log λ+ (1− λ) log(1− λ))/n→ 0 as n→∞, one deduces the converse
inequality

H(α ;λµ1 + (1− λ)µ2, T ) ≤ λH(α ;µ1, T ) + (1− λ)H(α ;µ2, T ) .
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Hence one concludes that the map µ 7→ H(α ;µ, T ) is affine, i.e.

H(α ;λµ1 + (1− λ)µ2, T ) = λH(α ;µ1, T ) + (1− λ)H(α ;µ2, T ) (23)

for each partition α, each pair µ1 and µ2 of probability measures and each λ ∈ [0, 1].
Finally it follows from the identification (20) that the mean entropy is also affine,

H(λµ1 + (1− λ)µ2, T ) = λH(µ1, T ) + (1− λ)H(µ2, T ) (24)

for each pair µ1 and µ2 of probability measures and each λ ∈ [0, 1]. This is a somewhat surprising and
is of great significance in the application of mean entropy in statistical mechanics.

6. Mean entropy and statistical mechanics

The simplest model of statistical mechanics is the one-dimensional ferromagnetic Ising model. This
describes atoms at the points of a one-dimensional lattice Z with two degrees of freedom which we
label as 0, 1 and which we think of as a spin orientation. Thus X = {0, 1}Z and a point x ∈ X is a
doubly-infinite array of 0s and 1s. The labels indicate whether a particle at a given point of the lattice
has negative or positive spin orientation. Two neighbouring atoms with identical orientation are ascribed
a negative unit energy and neighbouring atoms with opposite orientation are ascribed a positive unit
of energy. Therefore it is energetically favourable for the atoms to align and provide a spontaneous
magnetism. Since the configurations x of particles are doubly infinite the total energy ascribed to each x
is usually infinite but the mean energy, i.e. the energy per lattice site is always finite.

The model generalizes to d dimensions in an obvious way. Then X = {0, 1}Zd and a point x ∈ X
corresponds to a d-dimensional array of 0s and 1s. If one now assigns a negative unit energy to each
pair of nearest neighbours in the lattice Zd with similar orientations and positive unit energy to the pairs
with opposite orientation then the energy of a configuration of particles on a cubic subset of Zd with side
length L grows as Ld, i.e. as the d-dimensional volume. Therefore the energy per lattice site is again
finite.

The group Zd of shifts acts in an obvious manner on X . Let T1, . . . , Td denote the unit shift to in each
of the d directions. Further let µ denote a Zd-invariant probability measure over X . Then the energy
E(µ) per lattice site is well defined, it has a value in [−1, 1] and µ 7→ E(µ) is an affine function. Now
consider the entropy per lattice site.

Let α denote the partition of X into two subsets, the subset A0 of configurations with a 0 at the origin
of Zd and the subset A1 of configurations with a 1 at the origin. Then

∨∞
k1=−∞ . . .

∨∞
kd=−∞ T

k1
1 . . . T kd

d =

X and the partition α is a generator of X . Now the previous definition of the mean entropy generalizes
and

H(µ) = lim
L1,...,Ld→∞

(L1 . . . Ld)
−1H(

L1∨
k1=0

. . .
Ld∨
kd=0

T k11 . . . T kd
d α : µ) (25)

exists by an extension of the earlier subadditivity argument to the d-dimensional setting.
The Boltzmann–Gibbs approach sketched earlier would designate the equilibrium state of the system

at fixed mean energy as the measure which maximizes the functional

µ 7→ H(µ)− β E(µ) .
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This resembles the earlier algorithm but there is one vital difference. Now the supremum is taken over
the infinite family of invariant probability measures µ over X . There is no reason that the supremum is
uniquely attained. In fact this is not usually the case.

There is a competition between two effects. Assuming β > 0 the energy term −βE(µ) is larger if
E(µ) is negative and this requires alignment of the spins, i.e. ordered configurations are preferred. But
the entropy term H(µ) is largest if the the system is disordered, i.e. if all possible configurations are
equally possible. If β is large the energy term tends to prevail but if β is small then the entropy term
prevails. In fact β is interpretable as the inverse temperature and there is a tendency to ordering at low
temperatures and to disorder at high temperatures. Since there are two possible directions of alignment
of the spins this indicates that there are two distinct maximising measures at low temperature and only
one at high temperatures. The advantage of this description is that it reflects reality. The Ising model,
with d ≥ 2, indeed gives a simple description of a phase transition for which there is a spontaneous
magnetization at low temperatures.

Although we have described the model with a nearest neighbour interaction which favours alignment
of the model atoms the same general features pertain if the interaction favours anti-parallel alignment,
i.e. if the alignment of neighbours has positive energy and the anti-alignment negative energy. Then it
is still energetically favourable to have an ordered state but the type of ordering is different. The model
then describes a phenomenon called anti-ferrogmagnetism.

The description of the invariant equilibrium states as the invariant measures which maximize the
mean entropy at fixed mean energy has many other positive aspects. Since µ 7→ H(µ) − β E(µ) is an
affine function it tends to attain its maximum at extremal points of the convex weakly∗ compact set of
invariant measures E. In fact if the maximum is unique then the maximizing measure is automatically
extremal. If, however, the maximum is not uniquely attained then the maximizing measures form a face
∆β of the convex set E and each µ ∈ ∆β has a unique decomposition as a convex combination of
extremal measures in ∆β . This indicates that the extremal measures correspond to pure phases and in
the case of a phase transition there is a unique prescription of the phase separation. This interpretation
is corroborated by the observation that the extremal invariant states are characterized by the absence of
long range correlations.

The foregoing description of the thermodynamic phases of macroscopic systems was successfully
developed in the 1970s and 1980s and also extended to the description of quantum systems. But the
latter extension requires the development of a non-commutative generalization of the entropy.

7. Quantum mechanics and non-commutativity

The Ising model has a simple quantum-mechanical extension. Again one envisages atoms at the
points of a cubic lattice Zd but each atom now has more structure. The simplest assumption is that the
observables corresponding to the atom at the point x ∈ Zd are described by an algebra A{x} of 2 × 2-
matrices. Then the observables corresponding to the atoms at the points of a finite subset Λ ⊂ Zd are
described by an algebra AΛ of 2|Λ| × 2|Λ|-matrices where |Λ| indicates the number of points in Λ. Thus

AΛ =
∏⊗

x∈Λ
A{x}
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where the product is a tensor product of matrices. A quantum-mechanical state ωλ of the subsystem Λ is
then determined by a positive matrix ρΛ with TrΛ(ρΛ) = 1 where TrΛ denotes the trace over the matrices
AΛ. The value of an observable A ∈ AΛ in the state ωλ is then given by

ωΛ(A) = TrΛ(ρΛA)

Now if Λ ⊂ Λ′ one can identify AΛ as a subalgebra of AΛ′ and for consistency the matrices ρΛ that
determine the state must satisfy the condition

ρΛ = TrΛ′\Λ(ρΛ′) . (26)

The natural generalization of the classical entropy is now given by the family of entropies

HΛ(ω) = −TrΛ(ρΛ log ρΛ) (27)

as Λ varies over the bounded subsets of Zd. The previous mean entropy should then be defined by

H(ω) = lim
Λ→Zd

HΛ(ω)/|Λ|

if the limit exists. The existence of the limit is now a rather different problem than before. Nevertheless
it can be established for translation invariant states by a extension of the earlier subadditivity argument
which we now briefly describe.

First if ρ and σ are two positive matrices both with unit trace then the entropy of ρ relative to σ is
defined by

H(ρ|σ) = −Tr(ρ log ρ− ρ log σ)

in direct analogy with the earlier definition (6). The key point is that one still has the property H(ρ|σ) ≤
0. This is established as follows. Let ρi and σi denote the eigenvalues of ρ and σ. Further let ψi denote
an orthonormal family of eigenfunctions of ρ corresponding to the eigenvalues ρi. Then

−Tr(ρ log ρ− ρ log σ) = −
∑
i

(ρi log ρi − ρi(ψi, log σψi))

≤ −
∑
i

(ρi log ρi − ρi log(ψi, σψi))

= −
∑
i

(ψi, σψi)(ρi/(ψi, σψi)) log(ρi/(ψi, σψi))

≤
∑
i

(ψi, σψi)(1− ρi/(ψi, σψi)) = 1− 1 = 0

where we have used convexity of the logarithm and the inequality −x log x ≤ 1− x.
Now suppose that Λ1 and Λ2 are two disjoint subsets of Zd. Set ρ = ρΛ1∪Λ2 and σ = ρΛ1 ⊗ ρΛ2 . Then

it follows from the foregoing that

−TrΛ1∪Λ2

(
ρΛ1∪Λ2 log ρΛ1∪Λ2 − ρΛ1∪Λ2 log(ρΛ1 ⊗ ρΛ2)

)
≤ 0 .

But using (26) and the identity

log(ρΛ1 ⊗ ρΛ2) = log(ρΛ1)⊗ 11Λ2 + 11Λ1 ⊗ log(ρΛ2)
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one immediately deduces that

HΛ1∪Λ2(ω) ≤ HΛ1(ω) +HΛ2(ω) .

This corresponds to the earlier subadditivity and suffices to prove the existence of the mean entropy.
These simple observations on matrix algebras are the starting point of the development of a non-

commutative entropy theory.
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