Next Article in Journal
Symmetry Rules: How Science and Nature Are Founded on Symmetry. By Joe Rosen. Springer: Berlin. 2008, XIV, 305 p. 86 illus., Hardcover. CHF 70. ISBN: 978-3-540-75972-0
Previous Article in Journal
Asymmetry: The Foundation of Information. By Scott Muller. Springer: Berlin. 2007. VIII, 165 p. 33 illus., Hardcover. CHF 139.50. ISBN: 978-3-540-69883-8
Article Menu

Export Article

Open AccessOther
Entropy 2008, 10(2), 49-54; doi:10.3390/entropy-e10020049

A Paradox of Decreasing Entropy in Multiscale Monte Carlo Grain Growth Simulations

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
*
Author to whom correspondence should be addressed.
Received: 20 March 2008 / Revised: 9 June 2008 / Accepted: 14 June 2008 / Published: 16 June 2008
View Full-Text   |   Download PDF [512 KB, uploaded 24 February 2015]   |  

Abstract

Grain growth in metals is driven by random thermal fluctuations and increases the orderliness of the system. This random process is usually simulated by the Monte Carlo (MC) method and Cellular Automata (CA). The increasing orderliness results in an entropy decrease, thus leading to a paradoxical apparent violation of the second law of thermodynamics. In this paper, it is shown that treating the system as a multiscale system resolves this paradox. MC/CA simulations usually take into consideration only the mesoscale entropy. Therefore, the information entropy of the system decreases, leading to an apparent paradox. However, in the physical system, the entropy is produced at the nanoscale while it is consumed at the mesoscale, so that the net entropy is growing.
Keywords: grain growth; Monte Carlo simulation; Cellular Automata; multiscale modeling. grain growth; Monte Carlo simulation; Cellular Automata; multiscale modeling.
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Nosonovsky, M.; Esche, S.K. A Paradox of Decreasing Entropy in Multiscale Monte Carlo Grain Growth Simulations. Entropy 2008, 10, 49-54.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top