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Abstract: This paper investigates the heat transfer performance of flow boiling in microchannels under
the dual effect of gravity and surface modification through both experimental studies and mechanistic
analysis. Utilizing a test bench with microchannels featuring surfaces of varying wettability levels
and adjustable flow directions, multiple experiments on R134-a flow boiling heat transfer under the
effects of gravity and surface modification were conducted, resulting in 1220 sets of experimental
data. The mass flux ranged from 735 kg/m2s to 1271 kg/m2s, and the heating heat flux density
ranged from 9 × 103 W/m2 to 46 × 103 W/m2. The experimental results revealed the differences in
the influence of different gravity and surface modification conditions on heat transfer performance.
It was found that the heat transfer performance of super-hydrophilic surfaces in horizontal flow is
optimal and more stable heat transfer performance is observed when gravity is aligned with the flow
direction. And the impact of gravity and surface modification on heat transfer has been explained
through mechanistic analysis. Therefore, two new dimensionless numbers, Fa and Conew, were
introduced to characterize the dual effects of gravity and surface modification on heat transfer. A
new heat transfer model was developed based on these effects, and the prediction error of the heat
transfer coefficient was reduced by 12–15% compared to existing models, significantly improving the
prediction accuracy and expanding its application scope. The applicability and accuracy of the new
model were also validated with other experimental data.

Keywords: micro devices; gravity; surface modification; dual effect; heat transfer model

1. Introduction

With the advancement of science and technology, there is an urgent need to address high
heat flux issues in electronic components [1–4], necessitating innovative cooling methods.
Microchannel cooling technology provides an efficient heat dissipation solution for these
compact, high-heat-flux components [5–9]. In the field of photovoltaic power generation,
concentrated photovoltaic (CPV) cells operate typically under 500–1000 times concentration,
resulting in extremely high heat flux densities and demanding heat dissipation requirements.
Moreover, the non-uniform temperature distribution significantly degrades the photovoltaic
performance of CPV cells [10,11]. In the energy storage sector, during the charging and
discharging processes of energy storage batteries, the accumulation of reaction heat and
Joule heat over time leads to uneven heat accumulation within the battery due to stacking
issues. This temperature variation within the battery cell stack results in inconsistencies
in internal resistance and capacity among individual cells. Prolonged operation under
significant temperature differences can cause some cells to overcharge or over-discharge,
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thereby impacting the lifespan and performance of the energy storage system and potentially
posing safety hazards [12,13]. At the same time, small-sized, high-heat-flux computer
chips are also the most suitable application scenarios for microscale phase-change heat
dissipation. To address these challenges, microchannel phase-change cooling technology
offers advantages such as high heat dissipation capability, excellent thermal performance,
and constant temperature cooling. Hence, it finds applications in these domains. Due
to their size effects [14] and surface tension effects [15], microchannels can quickly reach
the nucleate boiling stage with the highest heat transfer coefficient, thereby improving the
average heat transfer coefficient throughout the flow process. Surface modifications have a
significant impact on heat transfer in the use of microchannels [16–18], and the orientation
of the heat exchanger can also cause gravity to play different roles in the flow process [19].

Regarding the influence of gravity, existing research has shown its effect on the heat
transfer process. First and foremost, it should be clarified that in order to alter the influence
of gravity in flow boiling, one can achieve this by changing the relationship between
the direction of working fluid flow and the direction of gravity within the microchannel.
Devahdhanush and Mudawar et al. [20] conducted flow boiling heat transfer experiments
under gravity in a vertical upward flow, summarizing the performance and key parameters
of the flow process under conditions such as single-sided and double-sided heating, high
subcooling and near-saturation at the inlet, and low and high mass fluxes. Visualization
showed the variations in bubble activity in the boundary layer, and changes in local and
average heat transfer coefficients as well as the onset of nucleate boiling under different
conditions were presented. Konishi et al. [21] explored the mechanism of critical heat
flux in flow boiling of working fluid FC-72 in a rectangular channel with a heated wall,
focusing on the triggering mechanisms for critical heat flux density under different flow
directions, mass fluxes, and inlet dryness. They pointed out that flow direction has a
greater influence on critical heat flux density at low mass flux, and less so at high mass
flux. Saisorn et al. [22] conducted flow boiling experiments using R134a in stainless steel
circular channels with a diameter of 1 mm, in horizontal, vertical upward, and vertical
downward flow directions. They found that the heat transfer coefficient was highest for
vertical downward flow, but it also resulted in the largest pressure drop. On the other
hand, the heat transfer coefficient was moderate for vertical upward flow, with the lowest
pressure drop. Gao et al. [23] investigated the flow boiling heat transfer coefficients in
horizontal and vertical downward flow directions in small-scale channel evaporators. They
found that when the mass flux was less than 264.3 kg/m2s and the heat flux was less than
3.0 W/cm2, the difference in heat transfer coefficients between vertical downward flow and
horizontal flow exceeded 10%. Some studies have also elucidated the relationship between
the differences in heat transfer coefficients in different flow orientations and bubble activity
during two-phase flow boiling [24–26]. Although the existing studies involve different
working fluids and various pipeline designs and operating conditions, they consistently
demonstrate significant differences in average heat transfer coefficients between horizontal
and vertical flow directions, indicating varying degrees of gravity influence. While there is
no definitive conclusion on which flow direction exhibits better heat transfer performance,
there is certainly a noticeable difference between the two that cannot be overlooked.

Surface modification techniques alter the structure of the channel surface, rendering
it hydrophobic, hydrophilic, or super-hydrophilic, thereby influencing two-phase flow
dynamics and affecting heat transfer performance. Li et al. [27] conducted experiments on
saturated flow boiling in a high-aspect-ratio, single-sided heated rectangular microchannel
using deionized water as the working fluid. They found that due to the capillary wetting
effects of hydrophobic ZnO micro-rod surfaces, there was no local dry-out or rewetting
in the experiments. Furthermore, these surfaces had numerous nucleation sites and led
to greater disruption of the annular flow liquid film by transient bubble flow, ultimately
resulting in severe heat transfer deterioration under high heat flux. Li et al. [28] and
Ren et al. [29] created a large number of micro-holes or micro-grooves on the surface of
microchannels, which improved the wettability of the channel surface. This maintained the
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integrity of the liquid film during flow boiling and facilitated high-frequency re-wetting.
Numerically, they observed average heat transfer coefficient enhancements of 208% and
72%, respectively, in their experiments. Additionally, they observed a decrease in the
pressure drop. These findings suggest that surface modification of the channels has a
positive impact on the heat transfer performance of microchannels. In our preliminary
research, Zhou et al. [30] mechanistically explained the differences between hydrophilic,
super-hydrophilic, and regular surface microchannels, stating that the structure of super-
hydrophilic surfaces can affect the forces acting on two-phase flows during flow boiling,
making the sum of surface tension and inertial forces greater than (or equal to) the sum
of evaporative momentum force and shear force, thus reducing the flow resistance and
avoiding drying. And Zhang et al. [31] improved the accuracy of pressure drop prediction
for microchannels with different wetting surfaces by introducing a flow order degree and
combining it with a pressure drop prediction model. Meanwhile, several studies have
also shown the promoting effects of super-hydrophilic surfaces on the flow process and
the enhancement of the average heat transfer coefficient, effectively suppressing dry-out
phenomena during boiling [32,33]. These studies all indicate that surface modification,
especially transforming surfaces into hydrophilic or super-hydrophilic ones, has a positive
impact on the heat transfer performance of flow boiling inside microchannels.

Existing research has shown us the individual effects of gravity and surface modifica-
tion on the heat transfer performance of microchannels. In short, hydrophilic surfaces can
enhance heat transfer performance by promoting flow, while the varying effects of gravity
can also influence heat transfer performance. Additionally, in practical applications, it is
unavoidable to use heat exchangers in tilted positions. In such cases, the degree of gravity’s
influence will also be altered. When both effects occur simultaneously, how the dual effect
affects the heat transfer performance of microchannels is an essential topic for research.
This paper focuses on designing experiments that incorporate extreme gravity conditions
and surface modification factors, attempting to reflect the dual effects of both factors in its
predictive model, which can indicate the magnitude of their influence mathematically.

2. Experiments and Results Analysis
2.1. Experimental Apparatus

Our experimental apparatus consists of a gas–liquid two-phase flow circulation sys-
tem. The system uses R134-a refrigerant as the working fluid. In the experimental process,
the working fluid first flows out of the storage tank and passes through a filter, then is
accelerated by a gear pump and flows through a volumetric flow meter. The gear pump
provides the necessary power and adjusts the flow velocity for the working fluid, while
the volumetric flow meter ensures that we can adjust the flow rate as required for the
experiment. After this, the working fluid enters a preheating section to adjust its inlet
vapor quality. Upon completing this process, the working fluid enters the microchannel test
section for heat exchange experiments, and temperature and pressure data are recorded.
Finally, the working fluid enters the condenser, where it is cooled to saturation or a sub-
cooling state before returning to the storage tank, completing one cycle. In the laboratory,
a constant temperature of 20 ◦C is maintained. Prior to the experiment, the experimental
system is evacuated using a vacuum pump to ensure that the air pressure within the
experimental circuit is maintained below 0.1 kPa. Then, saturated R134a from the reservoir
tank is introduced into the circuit, filling the entire loop, to prevent external temperature
changes and the presence of air within the circuit from affecting the experiment.

It is worth noting that both the preheating and testing sections use electric heating
methods, where the electric power to the heating wire is controlled. In the testing section,
temperature and pressure data are gathered using thermocouples and a differential pressure
transmitter connected to a data acquisition system. A high-speed camera is used to capture
visual images of the flow process. In the condenser section, a fully enclosed water-cooling
system is used, with the temperature set at 20 ◦C to control the working fluid’s temperature
below saturation.
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The microchannel test section is based on an aluminum substrate and has three
parallel channels distributed across it. The microchannel surfaces were corroded with a
mixed solution of 500 mL, 0.5 mol/L copper sulfate and sodium chloride for 60 s and
40 s respectively. Subsequently, they were rinsed with deionized water and cleaned using
an ultrasonic cleaner, followed by drying to obtain super-hydrophilic and hydrophilic
microchannel surfaces. The contact angle test images and SEM images of the hydrophilic
surface and super-hydrophilic surface obtained after corrosion, as well as the untreated
ordinary surface, are shown in Figure 1. From the figure, it can be observed that the ordinary
surface was relatively smooth and flat, while the hydrophilic and super-hydrophilic surfaces
were rough and had many uneven surface features. The dimensions of the test section are
presented in Table 1.
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Figure 1. Contact angle test images and SEM images for (a,d) ordinary surface, (b,e) hydrophilic
surface, and (c,f) super-hydrophilic surface.

Table 1. Dimension parameters of microchannel.

Parameter Dimensions

Number of channels 3

Channel length/mm 78

Channel width/mm 1.6

Channel depth/mm 0.6

Hydraulic diameter, Dh/mm 0.872

2.2. Methods of Controlling the Influence of Gravity

In order to vary the influence of gravity during the experiment, three extreme gravity
conditions were designed: vertical upward, horizontal, and vertical downward. When
the working fluid flowed in the vertical direction, the direction of gravity was collinear
with the flow direction. Gravity was aligned or opposed to the flow direction. When the
working fluid flowed in the horizontal direction, the direction of gravity was perpendicular
to the flow direction, and the influence of gravity was considered to be the weakest at this
point. Through this method, the extent of gravity’s influence on the two-phase flow became
variable. To maintain consistent data collection and visualization during the tilting process,
both the data acquisition instruments and the high-speed camera were rotated along with
the test section to preserve optimal contact and observation angles.
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For the horizontal experiments, the test bench was positioned horizontally, and the
recording equipment was vertically oriented for the purpose of capturing images. To set
up the vertical upward flow experiment, the test section was rotated in alignment with
the existing flow circuit of the test bench, ensuring that the fluid flowed in an upward
direction as it passed through the test section. Following the completion of the vertical
upward flow experiments, the test bench was modified to invert the test section, altering
the flow direction to downward. The data acquisition and imaging equipment were also
rotated correspondingly, and the system was calibrated for use.

The schematic diagram of the experimental system and the test section is shown in
Figure 2, with the test section located at the position of the evaporator in the refrigeration
cycle. A physical representation of the test section in different orientations is shown in
Figure 3, with the flow direction of the working fluid and the direction of gravity labeled.
In addition, the operating conditions of this experiment and the uncertainties of various
physical quantities are shown in Tables 2 and 3.
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Table 2. Operating conditions for single microchannel.

Parameter Range Unit

Mass flux 735–1271 × 103 g/
(
m2s

)
Heat flux density 9–46 × 103 W/

(
m2K

)
Inlet vapor quality 0.018–0.182 1

Table 3. Uncertainty of variables.

Parameter Uncertainty

Pressure 0.7%

Pressure drop 1.0%

Wall temperature 0.5 ◦C

Fluid temperature 0.5 ◦C

Heat flux 0.5%

Mass flux 0.5%

Vapor quality 7.2%

Local heat transfer coefficient 12.5%

Average heat transfer coefficient 12.5%

2.3. Experimental Data Processing Method

In the experimental section, we conducted a total of five experiments: horizontal flow
with ordinary surface, horizontal flow with hydrophilic surface, horizontal flow with super-
hydrophilic surface, vertical upward flow with super-hydrophilic surface, and vertical
downward flow with super-hydrophilic surface. The working fluid that flowed out of the
storage tank was considered to be in a saturated state. The heat transfer and pressure drop
between the initial pressure measurement location and the pump outlet were negligible;
therefore, the working fluid in this segment was also considered to be saturated. The pump
speed and ambient temperature between the initial pressure measurement location and the
entrance to the pre-heating section were constant, leading to a fixed mass flow rate in the
test section. By adjusting the power input to the pre-heating section, the vapor quality at
the entrance of the microchannel could be controlled.

According to the principle of energy conservation, the inlet vapor quality can be
calculated as follows:
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xin =
h f ,res +

P.
m
− h f ,in

h f g,in
(1)

where h f ,res is the saturated liquid enthalpy based on the pressure in the storage tank, h f ,in
is the saturated liquid enthalpy at the microchannel inlet, and h f g,in is the latent heat of
vaporization at the inlet. All enthalpies are in units of kJ/kg. P is the heating power at the
pre-heating section, and

.
m represents the mass flow rate.

Upon entering the microchannel test section, the working fluid absorbed heat, which
further increased the vapor quality. We assumed a uniform pressure drop within the test
section, and thereby used the inlet pressure to calculate the pressure at each position within
the test section. Based on the principle of thermal equilibrium, the local vapor quality at
each position was calculated as follows:

xz = xin +
Qtest
.

mh f g,z
× Z

L
(2)

where Qtest is the heating power within the test section and h f g,z is the latent heat of
vaporization at a given position. The latent heat was determined using the saturated
pressure at that location. The saturated pressure at the position can be expressed as:

Psat,in = Psat,in − ∆P
Z
L

(3)

where Psat,in represents the saturated pressure at the inlet.
The local heat transfer coefficient was then calculated using the following formula:

hz =
q

Tw,z − Tsat,z
(4)

where Tw,z denotes the local wall temperature; q represents the effective heat flux density, ac-
cording to preliminary measurements q = 0.5Qtest; and Tsat,z is the saturation temperature
based on the local saturation pressure.

Therefore, the average heat transfer coefficient could be calculated as:

h =
1
L

∫ L

0
h(z)dl (5)

2.4. Experimental Results and Discussion
2.4.1. Experimental Results

In the results analysis section, we will utilize the average heat transfer coefficient to
characterize the heat transfer performance. Figure 4 illustrates the variation in the average
heat transfer coefficient with heat flux density under different experimental conditions at
an inlet vapor mass flow rate of 740 kg/m2s. In Figure 4a–d, line 1 represents the horizontal
ordinary surface, line 2 represents the horizontal hydrophilic surface, and line 3 represents
the horizontal super-hydrophilic surface. Regarding the effect of surface modification, we
initially observed that, in terms of the average heat transfer coefficient, line 1 was lower
than line 2, which was lower than line 3. The average heat transfer coefficient of the super-
hydrophilic surface was about 130% higher than that of the hydrophilic surface and 310%
higher than that of the ordinary surface. In terms of the trend of heat transfer performance,
the microchannel of the ordinary surface represented by line 1 showed a relatively small
change in the average heat transfer coefficient with the variation in heat flux density,
maintaining its heat transfer performance at a relatively low level. The microchannel of
the hydrophilic surface represented by line 2 exhibited a trend of first decreasing and then
increasing with regard to the average heat transfer coefficient, while the microchannel of
the super-hydrophilic surface represented by line 3 maintained an upward trend in the
average heat transfer coefficient with the increase in heat flux density, which remained
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stable under different inlet vapor qualities (except for the condition with an inlet vapor
quality of 0.04; there was a singular point present under this condition). Therefore, super-
hydrophilic surfaces exhibited the strongest surface modification effects among various
modified surfaces, significantly surpassing other surface types in their impact on heat
transfer, thus holding promise for practical applications.
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To investigate the influence of gravity on the surface modification effect under the
strongest condition, we conducted experimental studies on the super-hydrophilic surface
microchannel under two extreme gravity conditions. Their relationships between the aver-
age heat transfer coefficient and heat flux density are shown in lines 4 and 5 of the figures,
representing upward vertical flow and downward vertical flow, respectively. Compared
with the horizontal flow represented by line 3, the average heat transfer coefficient of line
4 decreased by about 140%, while line 5 decreased by about 130%. When gravity was in-
volved, the enhanced effect of super-hydrophilicity was weakened, resulting in a decrease
in heat transfer performance. In the two vertical flow situations, at 740 kg/m2s and differ-
ent inlet vapor qualities, the average heat transfer coefficient of downward vertical flow
was 5% higher than that of upward vertical flow, and both maintained a high dependency
on heat flux density, with a relationship close to linear. Therefore, when considering the
effect of gravity, the enhancing effect of surface modification was weakened, especially in
the case of super-hydrophilic surfaces.

Figure 5 shows the variation in the average heat transfer coefficient, with the inlet
vapor quality at different conditions, at a fixed mass flux of 740 kg/m2s and a constant heat
flux density. This reflects the instability of the average heat transfer coefficient caused by
the variation in the inlet vapor quality at different heat flux densities. At a heat flux density
of 18 × 103 W/m2, as shown in Figure 5a, the fluctuation amplitude of the hydrophilic
surface in horizontal flow represented by line 2 was the largest, while the rest of the
conditions exhibited a relatively stable trend. The two vertical flow conditions represented
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by lines 4 and 5, where gravity was aligned with the flow direction, exhibited smaller
fluctuations in the average heat transfer coefficient with changes in the inlet vapor quality
compared to the super-hydrophilic surface microchannel in horizontal flow, which is
represented by line 3.
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When the heat flux density increased to 36 × 10³ W/m2, as shown in Figure 5b, both
the hydrophilic surface represented by line 2 and the ordinary surface represented by line 1
exhibited stable and relatively low average heat transfer coefficients. Meanwhile, Line
3, representing the horizontal super-hydrophilic surface microchannel, began to exhibit
significant fluctuations in the average heat transfer coefficient. The average heat transfer
coefficients of vertical flow represented by lines 4 and 5 also remained relatively low and
stable. The exception was in line 5, where the inlet vapor quality was minimal, resulting in
a significant drop in the average heat transfer coefficient. All experimental results will be
subjected to mechanistic analysis in the following Section 2.4.2.

Based on our analysis, in practical applications, the heat transfer performance of
surface-modified microchannels is superior to that of unmodified surfaces, with the super-
hydrophilic surface exhibiting the best performance. Regarding the influence of gravity, the
best heat transfer performance was observed when the microchannels were horizontally
oriented, without gravity affecting the flow direction. When vertically oriented, the heat
transfer performance of downward vertical flow was better than that of upward vertical
flow. Additionally, when the gravity direction aligned with the flow direction, it enhanced
the stability of the heat transfer performance.

2.4.2. Mechanism Analysis

Based on the experimental results demonstrating the differences in heat transfer
performance under different conditions, the following mechanistic analysis will explore
how gravity and surface modification influence heat transfer performance.

We introduce dimensionless numbers as discrimination criteria to gauge the relative
importance of different physical quantities. In these criteria, the degree to which each quan-
tity influences the system is presented in the form of dimensionless numbers, delineating
the regions where the effects are significant or negligible. The versatility of dimensionless
numbers allows them to be universally applicable and extended to a variety of fluids,
scales, and pipe materials. Therefore, the applicability of these discrimination criteria is
quite broad.

Here, we select the dimensionless Liftoff criterion [34]. The Liftoff criteria use the
relationship between the Jakob number Ja and the dimensionless flow parameter ψ to
categorize gravity-dependent and gravity-independent regions. The Ja characterizes the
ratio of sensible heat to latent heat during liquid phase change processes, while the ψ
reflects the relationship between surface tension, viscous forces, and buoyancy. The foun-
dation of the Liftoff criteria is the bubble detachment model, utilizing bubble dynamics
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to determine whether the flow boiling conditions are influenced by gravitational fields.
For each operating condition, the Jakob number and the dimensionless flow parameter ψ
are calculated. A curve defined by Ja = 21.975ln ψ + 82.748 serves as the boundary line to
ascertain whether the flow boiling conditions are dependent on gravitational variations.

By applying the Liftoff criterion to the data from the experiments with three different
levels of gravity influence on the super-hydrophilic surface on the Ja − ψ graph in Figure 6,
we found that over 80% of the data points were located in the gravity-dependent region.
This implies that, in most of the conditions examined in this study, gravity had a significant
influence on the heat transfer performance during flow boiling. As reflected in Figure 4, the
significant difference in the average heat transfer coefficients between the horizontal flow
represented by line 3 and the two vertical flows represented by lines 4 and 5 was primarily
caused by the influence of gravity.
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Subsequently, through two-phase flow pattern analysis, as shown in Figure 7a, for the
ordinary surface, intermittent drying began to appear in the annular flow region at 55 ms.
Then, at 85 ms, the interfacial shear stress between the gas and liquid phases increased,
leading to film rupture and entering the early drying stage. With the passage of time, at
115 ms, the drying area expanded, even entering a completely dry stage, indicating unstable
annular flow. From Figure 7b, it can be observed that compared to the ordinary surface
microchannels, the hydrophilic surface microchannels had reduced dry spots and decreased
dry areas on the surface, resulting in improved heat transfer performance. However,
localized dry-out phenomena were still present. For the super-hydrophilic surface, Figure 7c
indicates no drying phenomenon in the annular flow region. This can be attributed to
the excellent rewetting capability of the super-hydrophilic surface microchannels. As the
heated liquid film thinned, there was sufficient liquid replenishment to fill the gap between
the wall and gas bubble, ensuring continuous and uniform distribution of the liquid film
and effectively preventing drying. It was this rewetting phenomenon that prevented a
significant decrease in the average heat transfer coefficient of the super-hydrophilic surface
within the experimental conditions.

Through the above analysis, we figured out the influence of surface modification on
heat transfer performance. In Figure 4a–d, line 1 represents the ordinary surface microchan-
nel, which, due to early occurrence of local drying, resulted in the average heat transfer
coefficient remaining at a relatively low level as the heat flux density increased, unable to
improve. Therefore, under the same heat flux density, the average heat transfer coefficient
was able to stabilize at a low value under different inlet vapor qualities, as shown by
line 1 in Figure 5a,b. Hydrophilic surface microchannels underwent a transition of flow
patterns, exhibiting slug flow when the heat flux density was low, hindering flow and
causing deterioration of heat transfer, followed by the appearance of annular flow, leading



Processes 2024, 12, 1028 11 of 22

to a steady increase in the average heat transfer coefficient. However, as local drying still
occurred, the average heat transfer coefficient could not increase significantly, as shown
by line 2 in Figure 4a–d. When the heat flux density was low, being in the slug flow stage
led to an unstable heat transfer performance, resulting in fluctuations, as shown by line
2 in Figure 5a. Subsequently, with an increase in heat flux density, local drying occurred,
causing a stable decrease in the average heat transfer coefficient, as shown by line 2 in
Figure 5b. Super-hydrophilic surface microchannels, due to their excellent rewetting prop-
erties, can prevent the occurrence of local drying in a timely manner, resulting in a steady
increase in the average heat transfer coefficient within the experimental range without a
decreasing trend, as shown by Line 3 in Figure 4a–d. The superb rewetting properties of
super-hydrophilic surfaces stabilized the heat transfer performance, resulting in smaller
fluctuations, as shown by line 3 in Figure 5a,b.
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der G = 950 kg/m2s, xin = 0.07, q = 46 kW/m2 for (a) ordinary surface, (b) hydrophilic surface,
and (c) super-hydrophilic surface.

For the distribution and evolution of the gas–liquid interface within the horizontal
microchannels, as depicted in Figure 8a, it can be considered to primarily depend on
the interaction of six forces: surface tension Fσ, inertia Fi, shear stress Fτ , evaporation
momentum FM, gravity G, and buoyancy Fb. Both surface tension and inertia act in the
same direction as the flow, serving as the driving forces for two-phase flow and influencing
the merging and formation of bubbles. Shear stress and evaporation momentum act in the
opposite direction to the flow and serve as resistance to the two-phase flow. Gravity causes
heavier liquid to sink, while buoyancy causes lighter bubbles to rise, affecting the departure
of bubbles to complete the circulation of gas–liquid phases. In super-hydrophilic surfaces,
the effect of surface tension is more significant compared to ordinary and hydrophilic
surfaces. It can better overcome resistance and quickly rewet the surface. The greater surface
tension promotes bubble formation, which, under the influence of gravity and buoyancy,
leaves the surface more readily. Therefore, horizontal super-hydrophilic surface channels
exhibit better heat transfer performance than those in ordinary and hydrophilic surfaces.
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When microchannels are vertically oriented, the directions of gravity and buoyancy
align with the flow direction of the two-phase flow. At this time, the effect of surface
modification can still enhance the action of surface tension, promoting flow and formation
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of bubbles. However, at these orientations, gravity cannot bring the liquid to the wall,
and buoyancy cannot bring the bubbles to the middle of the channel. This inhibits the
departure of bubbles, acting as an obstacle. Consequently, it can be observed that the
average heat transfer coefficient of vertical flow is lower than that of horizontal flow.
Thus, the mechanism analysis validates the heat transfer performance reflected in the
experimental data.

Through the mechanism analysis of gravity and surface modification, we identified
their respective effects and the combined impact when both factors are in play on the flow
boiling heat transfer in microchannels. The existence of this dual effect renders traditional
heat transfer models, based on horizontal flow of ordinary surface microchannels, ineffec-
tive. These models also cannot mathematically express the interaction between these two
factors. Therefore, it is necessary to enhance existing heat transfer models.

3. New Heat Transfer Model Development and Evaluation
3.1. Evaluation of Existing Heat Transfer Models

Before establishing a new heat transfer model, it is crucial to evaluate existing models
using the experimental data collected in this study. We calculated the experimental average
heat transfer coefficient and compared it with the predicted average heat transfer coefficient
obtained from the existing models. The mean absolute error (MAE) served as an indicator
of the model’s accuracy and was calculated using the following equation:

MAE =

∣∣∣hexp − hpred

∣∣∣
hexp

× 100% (6)

In Table 4, some existing heat transfer models are given, complete with their respective
calculation correlations and predictive errors under three experiments utilizing the super-
hydrophilic surface. We will evaluate the performance of these models within the context
of the experimental data collected in this study.

Table 4. Existing models and MAEs.

Author (s) Model (s) MAE (Upward/Horizontal/Downward)

Lazarek and
Black [35]

htp =
(

30Re f o
0.857Bo0.714

)( k f
Dh

)
Re f o = GDh

µ

Bo = q
Gh f g

33.5%/73.2%/35.1%

Schrock and
Grossman [36]

htp = hnb + hcb
hnb

hsp, f o
= 7391.3Bo

hcb
hsp, f o

= F = 1.11
(

1
Xtt

) 2
3

hsp, f o = 0.023Re f o
0.8Pr f

1
3

k f
Dh

48.4%/59.5%/50.2%

Gungor and
Winterton [37]

htp = E + hnb
hsp, f

+ hcb
hsp, f

hnb
hsp, f

= 300EBo0.86

hcb
hsp, f

= F = 1.12E
(

xe
1−xe

)0.75( ρ f
ρg

)0.41

hsp, f = 0.023Re f
0.8Pr f

0.4 k f
Dh

For vertical flow, E = 1

74.9%/62.3%/76.2%

Kim and
Mudawar [38]

htp =
√

hnb
2 + hcb

2

hnb =

[
2345

(
Bo PH

PF

)0.7
PR

0.38(1 − x)−0.51
](

0.023Re f
0.8Pr f

0.4 k f
Dh

)
hcb =

[
5.2

(
Bo PH

PF

)0.08
We f o

−0.54 + 3.5
(

1
Xtt

)0.94( ρg
ρl

)0.25
](

0.023Re f
0.8Pr f

0.4 k f
Dh

) 36.2%/45.5%/32.6%
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Based on the evaluation, Table 4 shows evidence that the Kim and Mudawar model
performed the best under the channel characteristics and experimental conditions utilized
in this study. This model is categorized as a progressive model and has been derived con-
sidering a broad range of working fluids and channel dimensions. The prediction errors for
the average heat transfer coefficients of super-hydrophilic surface microchannels in upward
flow, horizontal flow, and downward flow were 36.2%, 45.5%, and 32.6%, respectively.

Figure 9 further provides details of the predictive outcomes of the Kim and Mudawar
model for the three different experiments. From the figure, it is evident that the model
tended to overestimate the average heat transfer coefficient for vertical upward and vertical
downward flows. Conversely, for horizontal flow, the model tended to underestimate
the average heat transfer coefficient. We believe that the model neglected the dual effect
of gravity and surface modification on two-phase flow, specifically in calculating the
heat transfer coefficient for nucleate boiling. It neglected the enhancing effect of surface
modification, leading to an underestimation of the predicted values, and ignored the
inhibiting effect of gravity, resulting in an overestimation of the predicted values. Therefore,
below, we will propose a new model.
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3.2. Introduction of New Physical Parameters

The Kim and Mudawar model does not explicitly account for the effects of gravitational
force and surface modification on nucleate boiling in two-phase flow boiling scenarios.
To adapt this model for more complex operating conditions, it becomes necessary to
introduce new parameters that capture the dual effect of gravity and surface modification
on two-phase flow boiling.

Firstly, we introduce the dimensionless number Fa, proposed by Fang [39], to char-
acterize the influence of gravitational force. Fa is a novel dimensionless number that
encompasses the ratio of gravitational, buoyancy, surface tension, and inertial forces. Its
expression is as follows:

Fa =

(
ρl − ρg

)
σ

G2Dh
=

(
ρl − ρg

)
gL3

ρgL3 × Lσ

ρV3L2 (7)

In the specific formulation of this dimensionless number, the first term represents the
ratio of buoyancy force to gravitational force, while the second term represents the ratio of
surface tension to inertial forces. In the context of flow boiling, these terms can shed light
on the bubble formation and detachment processes. As shown in Figure 10, we observed
that, for identical operating conditions with varying inclination angles, the Fa values for
vertical flow conditions are consistently higher than those for horizontal flow conditions.
This is attributable to the more significant roles played by buoyancy and gravitational
forces in the vertical direction compared to the horizontal scenario. This heightened impact
is ultimately reflected in the heat transfer coefficients.

Secondly, we introduce a modified confinement number, Conew, to characterize the
effects of surface modification. Conew is derived from the original confinement number Co,
which represents the ratio of liquid surface energy to gravitational potential energy. The
modification process involves altering the surface energy parameter γ, changing it from
the liquid surface energy parameter γl to the solid surface energy parameter γs, which can
characterize the channel surface structure [40]. The expression for γs is as follows:

γs =
γl
2

(√
1 + sin2 θ + cosθ

)
(8)
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In this context, θ represents the contact angle of channel surface. For super-hydrophilic
surfaces, θ = 0. For hydrophilic surfaces, θ = 43. For ordinary surfaces, θ = 70.

Therefore, the expression for Conew becomes:

Conew =

√√√√ γs

g
(

ρ f − ρg

)
D2

(9)

At this point, Conew represents the ratio of solid surface energy parameters to gravi-
tational potential energy. The solid surface energy parameter actually reflects the contact
angle of different wettable surfaces.

By integrating Fa and Conew, we identified two independent dimensionless numbers
that can individually characterize the effects of gravity and surface modification on the
flow process. However, the two individual dimensionless numbers alone cannot directly
reflect the coupled effects generated by the interaction between the two factors. Therefore,
it is necessary to combine these two dimensionless numbers with the heat transfer model.
Through a certain mathematical form of these two physical quantities, the dual effect of the
two actions can be manifested, and then we can develop a new comprehensive model for
heat transfer.

3.3. New Developed Heat Transfer Model

In the preceding sections of this chapter, we arrived at several conclusions: (1) Among
various existing models, the Kim and Mudawar model shows the best predictive accuracy
for the experimental data collected in this study. (2) The model tends to over-predict for
vertical flow conditions and under-predict for horizontal flow conditions. This discrepancy
is attributed to the lack of consideration of the interplay of two distinct factors during the
nucleate boiling stage. (3) The incorporation of the two new dimensionless numbers, Fa
and Conew, can better capture the effects of gravity and surface modification in the heat
transfer model.

Therefore, we employed Fa and Conew to modify the nucleate boiling heat transfer
coefficient hnb using the power function in the Kim and Mudawar model. The revised form
is as follows:

hnb,new = aFabConew
chnb (10)

In the current study, we first utilized 320 sets of data for vertical upward flow within
a mass flux range of 735 kg/m2s to 1271 kg/m2s, a heating heat flux density range of
9 × 103 W/m2 to 46 × 103 W/m², and an inlet vapor quality range of 0.018 to 0.182. Based
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on these conditions, we obtained the applicable values of a, b, and c for the current working
conditions as follows:

a = 6.02, b = 0.485, c = 0.12 (11)

Thus, building upon the Kim and Mudawar model as a foundation, we developed
a new heat transfer model that is more applicable under conditions influenced by the
dual effect of gravity and surface modification. Intended for engineering applications, its
correlation is as follows:

htp,new =
√

hnb,new
2 + hcb

2 (12)

hnb,new = 6.02Fa0.485Conew
0.12hnb (13)

hnb =

[
2345

(
Bo

PH
PF

)0.7
PR

0.38(1 − x)−0.51

](
0.023Re f

0.8Pr f
0.4 k f

Dh

)
(14)

hcb =

[
5.2

(
Bo

PH
PF

)0.08
We f o

−0.54 + 3.5
(

1
Xtt

)0.94(ρg

ρl

)0.25
](

0.023Re f
0.8Pr f

0.4 k f

Dh

)
(15)

3.4. Evaluation of the New Model

The predictive performance of the new model under vertical upward flow conditions
is shown in Figure 11: the model yielded a mean absolute error of 21.4%. The prediction
errors were reduced by 14.8% compared to the best existing Kim and Mudawar model.
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To assess the applicability of the new model, we validated it using experimental results
for horizontal flow and vertical downward flow. The predicted average relative errors were
33.7% and 20.9%, respectively, as illustrated in the following Figure 12. The prediction
errors were reduced by 11.8% and 11.6%, respectively, compared to the best existing Kim
and Mudawar model.

Meanwhile, when predicting the average heat transfer coefficients on horizontally
flowing microchannels with ordinary and hydrophilic surfaces, the prediction errors were
26.6% and 25.8%, respectively, as shown in Figure 13. These errors are relatively acceptable,
benefiting from the introduction of the two new dimensionless numbers, thus expanding
the applicability range of the new model.
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Finally, Figure 14 illustrates a comparison between the experimental and predicted
values of the average heat transfer coefficients for all conditions in this experiment using
the new model.
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The new model, formulated as a power function utilizing Fa and Conew, has enhanced
the accuracy of predictions and the applicability of the model in predicting nucleate boiling
heat transfer. However, there may exist limitations in the form of extreme values of Fa and
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Conew (such as Fa approaching 0), which could lead to significant prediction biases. From a
physical standpoint, Conew may not have extreme values, while Fa could. That is to say,
when surface tension approaches 0 (theoretically possible in certain special surface cases),
the predicted nucleate boiling heat transfer coefficient also approaches 0. Therefore, future
improvements in prediction work may involve refining the mathematical expressions to
further enhance the model’s applicability.

Nevertheless, the proposed new model represents a significant step forward in pre-
dicting flow boiling heat transfer in microchannels under complex conditions, laying the
groundwork for future research. Improving the model and extending its validation to a
broader and more complex range of conditions are crucial for enhancing its applicability in
future studies.

4. Conclusions

In this study, we combined experimental research with mechanistic analysis to predict
the heat transfer performance of flow boiling in microchannels under the dual effect of
gravity and surface modification.

The main conclusions are as follows:

1. By varying the influence of gravity and surface modification on heat transfer in
microchannels, the experimental results indicate that the optimal heat transfer per-
formance occurs during horizontal flow with a super-hydrophilic surface, and its
average heat transfer coefficients are about 130% and 310% higher than those of the
hydrophilic surface and the ordinary surface, respectively. Additionally, a more stable
heat transfer performance is observed when gravity is aligned with the flow direction.
However, the influence of gravity significantly weakens the surface modification
effect, especially for super-hydrophilic modified surfaces. For the super-hydrophilic
surface microchannels, their heat transfer performance decreased by about 140% and
130% compared to the horizontal flow condition.

2. Through mechanism analysis, it has been confirmed that, in the case of horizontal super-
hydrophilic surface microchannels, there is greater surface tension compared to normal
and hydrophilic surfaces, promoting fluid flow and bubble formation. Additionally,
under the influence of gravity and buoyancy, these bubbles detach from the surface.
Hence, it exhibits the best heat transfer performance. However, when vertically oriented,
the action of gravity and buoyancy cannot facilitate bubble detachment from the surface,
thus leading to a decline in heat transfer performance.

3. Among existing heat transfer models, the Kim and Mudawar models have the best pre-
diction accuracy. The prediction errors for the three experiments were conducted using
super-hydrophilic surface microchannels with varying degrees of gravity influence. The
vertical upward flow, horizontal flow, and vertical downward flow were 36.2%, 45.5%,
and 32.6%, respectively. In order to improve the prediction accuracy, we introduced
dimensionless numbers Fa and Conew to characterize the effects of gravity and surface
modification and established a new flow boiling heat transfer prediction model.

4. The new model can effectively predict the flow boiling heat transfer performance of
microchannels under different gravity and surface modification conditions. For the
super-hydrophilic surface in vertical upward, horizontal, and vertical downward flow,
the prediction errors were 21.4%, 33.7%, and 20.9%, respectively. Compared with the
best existing model, the prediction errors were reduced by 12–15%. The application
scope of the new model has also been expanded. Furthermore, there is still room for
improvement in the model expressed in power function form.

Author Contributions: Conceptualization, H.W. and S.Z.; data curation, H.W. and Y.Y.; formal
analysis, H.W.; methodology, H.W. and S.Z.; validation, H.W.; resources, D.W. and L.L.; investigation,
H.W. and Y.Y.; software, L.L.; visualization, H.M.; writing—original draft, H.W.; writing—review and
editing, H.W., D.W., L.L., H.M., and B.S.; supervision, D.W., L.L., and B.S.; funding acquisition, D.W.,
L.L., H.M., and B.S.; project administration, B.S.. All authors have read and agreed to the published
version of the manuscript.



Processes 2024, 12, 1028 20 of 22

Funding: This research was funded by the Natural Science Foundation of Guangdong Province of
China, grant number 2021A1515010608.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: Author Dongwei Wang was employed by the company China Shuifa Singyes
Energy Holdings Limited. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest. Authors Linglin Liu and Huijie Mao were employed by the companies Shuifa Energy
Engineering Co., Ltd. and Shuifa Singyes Energy (Zhuhai) Co., Ltd. The remaining authors declare
that the research was conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Nomenclature

Nomenclature

Bd =
(ρl−ρg)gDh

2

σ , Bond number [-]
Bo =

q′′
G , boiling number [-]

Co confinement number [-]
Dh hydraulic diameter [mm]
E E factor [-]
F F factor [-]
Fa Fang number [-]

Fr =
√

We
Bo , Froude number [-]

G mass flux [kg/m2s]
g gravitational acceleration [m/s2]
h average heat transfer coefficient [kW/m2K]
h f ,res fluid enthalpy in storage tank [kJ/kg]
h f ,in inlet fluid enthalpy [kJ/kg]
h f g,in inlet latent heat of vaporization [kJ/kg]
h f g,z latent heat of vaporization at a given position [kJ/kg]

Ja =
ρl Cpl ∆Tsat

ρgh f g
, Jacob number [-]

k thermal conductivity [W/m K]
L channel length [mm]
MAE mean absolute error [-]
.

m mass flow rate [kg/s]
P heating power in preheating section [W]
PF wetted perimeter of channel [m]
PH heated perimeter of channel [m]
PR reduced pressure [-]
Pr =

cpµ
k , Prandtl number [-]

Q heating power in test section [W]
q′′ effective heat flux density [kW/m2]
Re = GDh

µ , Reynolds number [-]
T Temperature [◦C]
We = G2Dh

ρσ , Webb number [-]
x vapor quality [-]
Xtt Lockhart–Martinelli parameter based on turbulent liquid-turbulent vapor flows [-]

Y =
(ρl−ρg)sin β(

dp
dz

)
f ,g

, Y parameter [-]

Z coordinate along microchannel [m]
ρ density [kg/m3]
µ dynamic viscosity [N·s/m2]
σ surface tension [N/m]
ψ = We

Re
ρl

ρl−ρg
, dimensionless flow parameter [-]

θ contact angle [◦]
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γ surface energy parameter [N/m]
Subscript
cb convective boiling dominant heat transfer
exp experimental
f saturated liquid
f o liquid only
g saturated vapor
in inlet
l liquid
new new modified
nb nucleate boiling dominant heat transfer
pred predicted
s solid
sat saturation
sp single-phase
test test section
tp two-phase
w wall
z coordinate along microchannel
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