
Citation: Guo, Y.; Liang, H.; Zhu, L.;

Gai, K. Zk-SNARKs-Based

Anonymous Payment Channel in

Blockchain. Blockchains 2024, 2, 20–39.

https://doi.org/10.3390/

blockchains2010002

Academic Editor: Faisal Jamil

Received: 29 December 2023

Revised: 23 January 2024

Accepted: 29 January 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Zk-SNARKs-Based Anonymous Payment Channel in Blockchain
Yunwei Guo 1, Haochen Liang 2,*, Liehuang Zhu 2 and Keke Gai 2

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
3220211008@bit.edu.cn

2 School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
liehuangz@bit.edu.cn (L.Z.); gaikeke@bit.edu.cn (K.G.)

* Correspondence: 3220221492@bit.edu.cn

Abstract: Payment channels serve as an effective solution to the scalability problem of cryptocur-
rencies, which significantly increase transaction rates by allowing users to conduct large-scale offline
transactions off-chain without posting everything to the blockchain. However, the existing payment
channels lack privacy protection for the transaction amount and the linking relationship between the
two parties to the transaction. Therefore, in order to address the scalability and privacy issues of cryp-
tocurrencies such as Bitcoin, this paper proposes a zk-SNARKs-based anonymous payment channel
(zk-APC), which supports an unlimited number of off-chain payments between the payer and the
payee and protects the privacy of the participants. Specifically, the proposed scheme achieves relational
anonymity and amount privacy for both on-chain and off-chain transactions in the payment channel
through utilizing zero-knowledge proof (zk-SNARKs) and commitment schemes. This paper proves
that the proposed method is more effective than similar schemes through a performance evaluation.

Keywords: payment channel; blockchain; zk-SNARKs; privacy

1. Introduction

The origins of blockchain technology can be traced back to Satoshi Nakamoto, the
creator of the Bitcoin system [1]. Bitcoin, proposed by Nakamoto, is the first widely ap-
plied decentralized digital currency system, revolutionizing the traditional digital currency
model that relied on trust in a third-party trusted center. The revolutionary aspect of
blockchain technology [2–6] lies in the construction of a new trust model, where trust
among users is not dependent on a single node but based on trust in the entire system.
In Bitcoin, every transaction is recorded in the blockchain, a public ledger maintained
by a group of decentralized nodes, ensuring its security. This public ledger establishes a
reliable trust foundation for the Bitcoin system. As long as the blockchain meets the security
assumptions of the entire system, its trust model can continue to operate. However, despite
the advantages of decentralization, security, and traceability brought by blockchain tech-
nology [7,8], its low transaction speed and long transaction time pose scalability challenges.
For instance, Bitcoin supports only 6 to 7 transactions per second, and Ethereum [9,10] up
to 20 transactions per second, in stark contrast to Visa, which can handle up to 47,000 trans-
actions per second. This low transaction throughput is insufficient for daily high-frequency
trading needs, let alone executing complex smart contracts. Therefore, addressing the
scalability issues of blockchain technology is crucial to its further proliferation.

Among the technologies addressing the scalability issues of decentralized cryptocur-
rencies [11–13], payment channel technology is one of the favored solutions. This technol-
ogy increases the transaction speed of cryptocurrencies and aims to enable high-frequency
daily offline transactions globally, achieving almost instantaneous transaction completion.
The core idea of payment channel schemes [14,15] is to conduct transactions off-chain
and submit the final state to the blockchain, thereby reducing the load on the blockchain.
Payment channel technology divides the process between the transaction parties into three

Blockchains 2024, 2, 20–39. https://doi.org/10.3390/blockchains2010002 https://www.mdpi.com/journal/blockchains

https://doi.org/10.3390/blockchains2010002
https://doi.org/10.3390/blockchains2010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/blockchains
https://www.mdpi.com
https://doi.org/10.3390/blockchains2010002
https://www.mdpi.com/journal/blockchains
https://www.mdpi.com/article/10.3390/blockchains2010002?type=check_update&version=2

Blockchains 2024, 2 21

main stages: establishing the payment channel, off-chain transactions, and closing the
payment channel. In the establishment phase, the initiator locks the estimated transaction
funds on the blockchain, controlled jointly by both parties, to prevent misappropriation.
Then, during the off-chain transaction phase, each off-chain transaction results in the
initiator reallocating funds within the payment channel.Finally, in the closing phase, the
receiver submits the latest off-chain transactions to the blockchain for verification. The
benefit of this technology is that users can securely conduct large-scale offline transactions,
without frequently interacting with the blockchain. This allows scaling blockchain theory
to unlimited transactions, thus supporting daily high-frequency offline transactions for
billions of users worldwide.

However, while payment channel technology offers a solution to the scalability issues
of blockchain, it inherits many of the well-known weaknesses of blockchain technology, the
most prominent being the leakage of private information [16,17]. The current use scenarios
of payment channel technology need more protection for two types of private information:
the transaction amount, and the relationship between the transaction parties. First, in the
existing payment channel model, although transactions are conducted off-chain, the final
records on the blockchain ledger still reveal the payment amount. Additionally, establishing
and closing payment channels may expose the relationship between the transaction parties.
In response to the privacy issues inherent in blockchain technology, recent studies have
proposed some solutions, such as ZCash [18], Blockmaze [19], and Monero [20], which
have partially resolved these two types of privacy issues of blockchain. However, these
privacy mechanisms do not directly address the privacy issues in the payment channel
setup. Therefore, while payment channels offer a partial solution to the scalability issues of
blockchain, privacy remains a challenge that urgently needs to be addressed.

Our contribution. To resolve the privacy issues in payment channels without affecting
their regular use, we propose a zk-SNARKs-based anonymous payment channel, utilizing
technologies including zk-SNARKs and verifiable timed commitments [21,22] to achieve
privacy protection and fair transactions in payment channels. This scheme ensures reg-
ular operation during transactions between parties through the payment channel, while
guaranteeing participants’ privacy, including the privacy of transaction amounts and the
unlinkability of transaction parties. Our contributions are summarized as follows:

• We present the details of a zk-SNARKs-based anonymous payment channel, which
retains all the advantages of the original payment channel schemes while being
more robust and secure. Specifically, we achieve privacy protection by integrating
blockchain systems with zero-knowledge proofs and commitment schemes and ensure
fair transactions using verifiable timed commitments.

• Experimental validation of the zk-SNARKs-based anonymous payment channel was
conducted, including testing the three stages of the payment channel transaction
process and related tests of zk-SNARKs within the entire system.

The remainder of this paper is organized as follows: Section 2 reviews related methods,
and Section 3 describes the preparatory work related to zk-SNARKs. Section 6 introduces
the relevant concepts and definitions of the scheme, Section 5 details the complete zk-
SNARKs-based anonymous payment channel, and Sections 6 and 7 discuss related issues
and analyze the performance. Section 8 concludes the paper.

2. Related Work

The purpose of payment channels is to reduce transaction costs and enable rapid pay-
ments in cryptocurrency, aiming to increase transaction rates and decrease the transaction
fees in current cryptocurrency systems, while potentially penalizing malicious recipients.
Hearn and Spilman initially proposed payment channel technology and informally intro-
duced a unidirectional micropayment protocol for the Bitcoin system [23], facilitating small
off-chain Bitcoin payments. Subsequently, Ying proposed a novel unidirectional payment
channel protocol, xLumi [24], which ensures the security of payment channel funds through
a set of simple mathematical rules, significantly reducing the complexity of establishing

Blockchains 2024, 2 22

payment channels, thereby enabling easy implementation on any blockchain with the
necessary infrastructure. Xu introduced a new unidirectional payment channel protocol,
Super [25], allowing off-chain one-way payments between a payer and multiple payees
and penalizing double-spending, thus greatly expanding the applicability of unidirectional
payment channels.

Although the advent of payment channels has enhanced the scalability of blockchain
systems, they still possess numerous weaknesses regarding protecting privacy. Conse-
quently, many specific payment channels have been designed for cryptocurrency systems,
to address these privacy concerns. Green and Miers proposed a payment channel scheme,
Bolt [26], capable of anonymous transactions on Zcash. In this scheme, the transaction
parties in the payment channel can achieve privacy-protected off-chain variable-amount
payments through hiding transaction amounts and using blind signatures to validate chan-
nel updates. However, Bolt faces several issues, including using blind signature algorithms
that are incompatible with Bitcoin. Zhang et al. introduced a privacy-protecting payment
channel named Z-Channel [27], utilizing zero-knowledge proofs to safeguard user privacy,
thereby avoiding the problems associated with blind signatures. However, it still employs
the relative time-lock technique common in most payment channels, hindering its wider
adoption. Moreover, Moreno and others proposed a payment channel protocol for Monero,
DLSAG [28], enabling privacy-protected off-chain transactions through payment channels
built on Moreno. However, their solution requires a hard fork and significant changes to
Monero’s transaction scheme, and it is not backward-compatible. Hence, Thyagarajan et al.
proposed a new Monero-specific payment channel protocol, PayMo [29], which requires no
changes to Monero’s transaction scheme nor additions to the scripting language. Further-
more, any PayMo-related transactions published on the blockchain are indistinguishable
from any other regular transactions in Monero. Thus, the PayMo payment channel protocol
is now usable within Monero, without system-wide modifications. However, compared to
other payment channel schemes, PayMo and DLSAG are custom-designed proposals for
Monero that support unidirectional off-chain small payments.

3. Preliminaries
3.1. Blockchain

The blockchain concept was first proposed in 2008 and in essence is a new type
of distributed ledger. Blockchain is a decentralized infrastructure that uses encrypted
blockchain structures to validate and store data, distributed node consensus algorithms
to generate and update data, and smart contracts to program and manipulate data. It is
widely used in finance, agriculture, healthcare, the charity sector, and the Internet of things.
The blockchain system architecture generally includes six layers: a data layer, network
layer, consensus layer, incentive layer, contract layer, and application layer. The data,
network, and consensus layers are the three indispensable layers of the standard blockchain
framework. Below, we describe the concept and function of each layer in detail.

• The application layer mainly encapsulates blockchain application scenarios, such as
finance, supply chain, transportation, medical care, insurance, etc. Blockchain technol-
ogy can solve some difficult points that cannot be solved using existing information
technology. In addition, blockchain’s empowerment of traditional industries can
further enhance their competitiveness.

• The contract layer mainly encapsulates self-executing code scripts and smart contracts,
so that the ledger has programmable features. The emergence of smart contracts has
accelerated the application of blockchain technology in various industries and fields.
At present, most blockchain applications are DAPPs based on smart contracts.

• The incentive layer integrates an issuance and distribution mechanism and encourages
the nodes in the blockchain network to actively participate in the consensus and
reward the nodes that verify the safety through the incentive mechanism.

• The consensus layer includes various consensus algorithms, such as PoW, PBFT, etc.,
which are used for packaging transactions into blocks and blockchains.

Blockchains 2024, 2 23

• The network layer includes the networking mode of nodes, network transmission
protocol, data security transmission mechanism, etc.; the network layer is used to
realize communication between nodes.

• The data layer includes data block storage, blockchain storage structure encryption
technology, etc., to realize data storage and ensure data security.

3.2. zk-SNARKs

Zero-knowledge proofs can prove the correctness of statements without leaking any
additional information, and they are a widely used privacy-preserving technique. As a
kind of zero-knowledge proof, zk-SNARK’s [30–32] non-interactive zero-knowledge proof
scheme is the most widely used among the existing zero-knowledge proofs and can verify
the validity of a transaction without the verifying node knowing the specific contents.
Zk-SNARKs are often used in privacy protection scenarios and have excellent privacy
protection effects.

The basic method of zk-SNARK can be described by a set of polynomial time algo-
rithms Π = (Setup, KeyGen, Prove, Verify), specifically expressed as:

• pp← Setup(1λ): Input a security parameter λ, the algorithm outputs a public param-
eter list pp. pp is published to the public and can be accessed by any user, and the
algorithm is only executed once at the very beginning.

• (pk, vk)← KeyGen(C): Input a mathematical operation circuit C, the algorithm uses
public parameters pp and generates a key pair (pk, vk) for zero-knowledge proof,
where pk is the proof key for generating zero-knowledge proof, and vk is the verifica-
tion key for verifying a zero-knowledge proof key. The key pair are also exposed as a
public parameter.

• π ← Prove(pk, x, w): input circuit C zero-knowledge proof key, the normal input x
of circuit C, and the private input (auxiliary input) w of the circuit C, the algorithm
generates a x, w that satisfies the relationshipRC ’s non-interactive proof π, constructed
using the circuit C. x, π are public.

• b← Veri f y(vk, x, π): input circuit C zero-knowledge proof key, circuit C normal input
x, and the non-interactive proof π generated according to the circuit C, the algorithm
verifies the validity of the non-interactive proof π, and outputs the result b. If b = 0,
the non-interactive proof π is verified valid. Otherwise, the non-interactive proof π
is invalid.

Zk-SNARKs have the following properties:
Completeness: This means that an honest prover and a valid witness will always be

able to convince a verifier; that is, for any λ, mathematical operation circuit C and any
(x, w) ∈ RC , we have

Pr
[

Verify(vk, x, π) = 1| (pk, vk)← KeyGen(C)
π ← Prove(pk, x, w)

]
= 1.

Conciseness: An honest generated proof π hasOλ(1) bits, verifying that Verify(vk, x, π)
runs at time Oλ(|x|). (Here, Oλ hides a fixed polynomial factor in λ)

Non-interactive: The proof is a string that the prover sends to the verifier, and the
verifier can directly verify the prover without any back-and-forth interaction.

Proof of knowledge: If the verifier accepts the proof π of the bounded prover, this
shows that the prover recognizes the witness w of the given instance. For each PPT
adversary A, there is a PPT witness extractor E , namely:

Pr

 C(x, w) ̸= 0l

Verify(vk, x, π) = 1
|
(pk, vk)← KeyGen(C)
(x, π)← A(pk, vk)
w← ξ(pk, vk)

.

Zero-knowledge property: honestly generated proofs are perfectly zero-knowledge,
since a poly(λ)-size simulator S exists such that, for all stateful poly(λ)-size delimiters D,
the following two probabilities are equal:

Blockchains 2024, 2 24

Pr

 (x, w) ∈ RC
D(π) = 1

|
(pk, vk)← KeyGen(C)
(x, w)← D(pk, vk)
π ← Prove(pk, x, w)

,

Pr

 (x, w) ∈ RC
D(π) = 1

|
(pk, vk, trap)← S(C)
(x, w)← D(pk, vk)
π ← S(trap, x)

.

4. The Concepts and Definitions
4.1. System Model

In this paper, there are four entities involved, namely the certificate authority (CA),
users, miners, and trusted parties, and the descriptions of these entities are as follows:

• Certificate Authority: This is a trusted third party responsible for generating and
managing identity certificates for users or trusted parties.

• Users: The main participants in the payment system are users, who can either be payers
or receivers. Each user has an account comprising an address and a private key. The
user’s address serves as their identity and must be registered with the certificate authority
before they can participate in the system. On the other hand, a private key is used to
transfer coins from one address to another. Additionally, each user can have a long-term
address and any number of anonymous addresses to ensure anonymity.

• Miners: Miners are responsible for verifying the correctness of transactions and
maintaining the public ledger. If the transaction is valid and compliant with policies,
they will add it to the blockchain ledger. Otherwise, the miner will discard the
transaction, causing the transaction to fail.

• Trusted parties: Trusted parties are responsible for initializing the system and generat-
ing public parameters for users and miners.

Our system operates as follows: Certificate authorities are responsible for registering
and issuing valid transactions to the parties involved. Trusted parties are responsible for
initializing the system’s public parameters. Miners are responsible for maintaining a public,
append-only ledger LT . Users have the options to engage in regular on-chain transactions
or conduct off-chain transactions through payment channels.

4.2. Design Goal

Regarding the system model mentioned above, we primarily focus on the following
security objectives:

• Unlinkability: The connection between the parties involved in transactions through
the payment channel is unlinkable. This attribute ensures the public cannot link
the fund sender (consumer) with the corresponding receiver (provider) within the
payment channel.

• Privacy Preserving: The amount of funds transacted between parties within the
payment channel should only be known to those involved; this remains hidden from
the public. This means the public must be unaware of how much was spent or received
by the participants.

4.3. Threat Model

Regarding the proposed system model and objectives, we define our threat model
from the perspective of each entity in the zk-SNARK-based anonymous payment channel.

• Certificate Authority: We assume that the certificate authority is honest and trustwor-
thy and does not disclose any information.

• Users: Since many transacting users are in the system, they are arbitrarily malicious.
They will act in their own best interests and deviate from the intended protocol at will.

• Miners: We assume that miners implement a secure consensus algorithm to maintain
their blockchain and that our scheme trusts the blockchain as a trusted intermediary to

Blockchains 2024, 2 25

properly process transactions and smart contracts. However, the blockchain is public
to all entities and does not retain private data.

• Trusted party: We assume the trusted party is honest but curious. That is, the trusted
party will honestly follow the deployed protocols, but it is also interested in inferring
users’ details, such as identity and data information.

5. Proposed Model

In order to address the privacy preservation problem faced by payment channels, this
paper proposes a zk-SNARKs-based anonymous payment channel. The main idea of our
zk-SNARKs-based anonymous payment channel is to use zk-SNARKs and a verifiable
timed commitment scheme to ensure correctness and fairness, while preserving privacy and
guaranteeing unlinkability. The zk-SNARKs-based anonymous payment channel consists
of the following five operations: initialization, minting, payment channel establishment,
payment channel update, and payment channel closure.

The initialization operation is performed before all other operations, in which the
system’s zk-SNARK public parameters, signature public parameters, and verifiable timed
commitment scheme commitment public parameters are initialized. The minting operation
transforms a certain amount of plaintext currency into zero-knowledge currency, and the
payer performs this operation. The payer and the payee jointly perform the payment
channel establishment operation to establish a payment channel between the payee and
the payer, and this operation freezes a certain amount of zero-knowledge currency of the
payer. The payer and the payee perform the payment channel update operation to realize
the transfer of funds from the payer to the payee. During the payment channel closure
phase, the payee will close the payment channel.

5.1. Phase I: Setup Phase

The system public parameter list pp will be initialized during the setup phase through
the Algorithm 1 initialization algorithm. In the initialization algorithm, first, for a given
security parameter λ, we will generate the public parameter ppz using the initialization
algorithm in zk-SNARKs. Then, the KenGen algorithm in zk-SNARKs is used to generate
a key pair (pkzi, vkzi) for each specific circuit Ci required for zk-APC. These circuits are
CMint, CSetSend, CUpdate and CTrans f er, which will be used for the generation and verification
of transaction proofs in the payment channel. At the same time, we need to set the relevant
public parameter ppBLS of the BLS signature algorithm and the relevant public parameter
ppDLG of the discrete logarithm. Note that this phase is executed only once, to output the
list of public parameters. A trusted third party executes this phase at the beginning of the
ledger creation, and it is executed only once, and the output is made public to all users.

Algorithm 1 Initialization Algorithm
Input: Safety parameter λ
Output: The list of public parameters pp
1: Compute ppz = zk-SNARKs.SetUp(1λ)
2: for all i ∈(Mint, SetSend, Update, Transfer) do
3: Construct the circuit Ci corresponding to the required
4: Compute the public-private key pair (pkzi, vkzi) = zk-SNARKs.KenGen(Ci)
5: end for
6: Set PKz = (pkzMint, pkzSetSend, pkzUpdate, pkzTrans f er) VKz = (vkzMint, vkzSetSend, vkzUpdate,

vkzTrans f er)

7: Compute ppBLS = BLS.Setup(1λ)
8: Choose a suitable prime order N and corresponding cyclic group G, and choose a suitable

generator g. Set ppDLG = (N,G,g)
9: Output pp = {ppz, PKz, VKz, ppBLS, ppDLG}

The detailed procedure of Algorithm 1 is shown above.

Blockchains 2024, 2 26

5.2. Phase II: Minting Phase

Before engaging in transactions within the anonymous payment channel, the payer must
possess a specific quantity of zero-knowledge currency acquired through the Algorithm 2
mint algorithm. When payer Pi intends to convert their currency using the minting algorithm,
the following steps are followed: First, payer Pi must have at least one public address pki on
the blockchain, with an adequate amount of plaintext currency at that address. Subsequently,
user Pi employs the minting algorithm to generate a mint transaction txMint, facilitating
the conversion of a designated amount of plaintext currency into zero-knowledge currency.
The minting transaction txMint associated with user Pi’s public address pki comprises the
following variables:

• Address pki: this is the address of the transaction sender and the address of the
transaction receiver.

• Value vi: this is the value of minting transactions that need to be transformed from
plaintext currency into zero-knowledge currency.

• Commitment Value cmi: the commitment scheme COMM generates a fresh zero-
knowledge currency commitment value. This commitment value encapsulates the
hidden components, including the address pki, value vi, the newly generated random
number ri, and a unique string sni generated by the PRF function associated with this
specific commitment.

• The zero-knowledge proof is a proof generated by zk-SNARKs.GenProof that the
following conditions apply to the circuit of CMint:

(1) cmi = COMM (pki, vi, sni, ri)
(2) sni = PRF (ski, ri)

• Signature σMint :User Pi signs the above (πMint, cmi,vi) with private key ski.

The detailed procedure of the user Pi minting algorithm is shown below.

Algorithm 2 Mint Algorithm
Input: The list of public parameters pp, the coin value to be converted vi and address pki
Output: A zero-knowledge currency ci and a mint transaction txMint

1: Randomly sample a random number ri
2: Compute a new serial number sni = PRF(ski, ri)
3: Compute a new commitment cmi = COMM(pki, vi, sni, ri)
4: Set the information that needs to be disclosed to generate a zero-knowledge proof x : =

(cmi, vi, pki) and hidden evidence w : = (sni, ski, ri)
5: Compute πMint = zk-SNARKs.GenProof(pkzMint, x, w)
6: Set zero-knowledge currency ci : = (cmi,pki,vi,sni,ri)
7: Set m : = (πMint, cmi, vi)
8: Generate a signature on m using private key ski σMint = BLS.Sign(m, ski)
9: Set txMint: = (m, pki, σMint)

10: Output zero-knowledge currency ci and mint transaction txMint

5.3. Phase III: Payment Channel Establishment Phase

Once the payer of the payment channel Pi has a certain amount of zero-knowledge
currency, they can enter the payment channel establishment phase. In this phase, the payer
Pi needs to freeze a certain amount of zero-knowledge currency vi. The purpose of freezing
the currency is to prevent the payer Pi from using the same currency to transact with
different receivers, which may result in unfair transactions. In order to lock the payer Pi’s
funds in the payment channel established with the payee Pj, it is necessary to convert the
payer Pi’s zero-knowledge currency into a new zero-knowledge currency, which is still
owned by the payer Pi but in which a discrete logarithmic value Y corresponding to the
secret value y chosen by the payee Pj is hidden and can be used only when the the payer
Pi can spend the new zero-knowledge currency, and only if the correct secret value y is

Blockchains 2024, 2 27

provided. Thus, in this way the payer Pi cannot spend the funds frozen in the payment
channel at will.

However, while protecting the rights and interests of the payee Pj, we need to consider
the possibility that the payee Pj may go offline after establishing the payment channel. If
this happens, it will result in the payer Pi’s funds being locked in the payment channel
forever. Therefore, to prevent such a situation, we must also guarantee that the payer
Pi can retrieve the funds after a fixed period T (negotiated off-chain between the two
parties). In order to unfreeze the funds locked in the payment channel by the payer Pi, the
payee Pj generates a discrete logarithmic value Y and its corresponding verifiable timed
commitment, so that the payer Pi unfreezes the funds after time T.

The payment channel establishment operation is performed by the Algorithm 3 pay-
ment channel establishment algorithm, through which a payment channel establishment
transaction txSetSend is generated. The payment channel establishment transaction locks
the zero-knowledge currency of the payer Pi involved in the transaction into the payment
channel. The txSetSend transaction contains the following variables：

• Merkle tree root rt: This is the proof that the commitment cmold
i exists in the ledger;

• Commitment serial number snold
i : A unique string associated with the commit-

ment cmold
i .

• Commitment value cmpc: This value is generated by the commitment scheme COMM,
and the content implied in the commitment includes the Payer’s address pki, the
Payee’s address pk j, the transferred value vi, commitment serial number snold

i , and
the serial number snpc

i associated with this commitment value generated by the PRF
function and discrete logarithmic value Y.

• Zero-knowledge proof πSetSend: This zero-knowledge proof is a proof generated by
zk-SNARKs.GenProof that the following conditions apply to the circuit of CSetSend:

(1) cmold
i = COMM(pki, vi, snold

i , rold
i)

(2) snold
i = PRF(ski, rold

i)
(3) cmpc = COMM(pki, pk j, vi, snold

i , snpc
i , Y)

(4) snpc = PRF(pki, rnew)
(5) The path pathi from cmold

i to the rt saved on the ledger is correct

Algorithm 3 Payment Channel Establishment Algorithm
Input: The list of public parameters pp, Merkle root rt, path pathi, Zero-knowledge

currency cold
i and address pk j

Output: Zero-knowledge currency cpc and payment channel establishment transactions
txSetSend

1: Parse cpc
i :=(cmold

i , pki, vi, snold
i , rold

i , ski)
2: Randomly sample a random number rnew and compute serial number snpc =

PRF(pki, rnew)
3: Compute the new commitment cmpc = COMM(pki, pk j, vi, snold

i , snpc, Y)
4: Set cpc : = (cmpc, pki, pk j, vi, snold

i , snpc, Y, rnew)
5: Set the information that needs to be disclosed to generate a zero-knowledge proof x : =

(rt,cmpc,snold
i)

6: Set hidden evidence w : = (pathi, cmold
i , pki, pk j, vi,snpc, rold

i , rnew, ski, Y)
7: Compute πSetSend = zk-SNARKs.GenProof(pkzSetSend, x, w)
8: Set txSetSend: = (rt, cmpc, snold

i , πSetSend)
9: Output zero-knowledge currency cpc and payment channel establishment transactions

txSetSend

Blockchains 2024, 2 28

The detailed procedure of the payment channel establishment algorithm is shown above.
In the payment channel establishment algorithm, the payee Pj calculates the discrete

logarithmic value Y by randomly selecting the secret value y and computing it using Y = gy

mod N (where g and N are public parameters). Concurrently, Pj generates a verifiable
timed commitment (CVTD, πVTD) = VTD.Commit(y, T) based on the time T and y. Pj sends
this verifiable time commitment and the discrete logarithm value Y to Pi. Subsequently, the
payer Pi initiates the payment channel establishment operation after successful verification
via VTD.Verify(Y, CVTD, πVTD). Meanwhile, Pi begins running VTD.ForceOp(Ci) until
time T has elapsed, computing y to unlock the currency in the payment channel. Upon
successfully initiating the payment channel establishment transaction using Pi, this sends
all the values concealed in the newly generated promise cmpc to Pj to verify the correct
discrete logarithmic value Y hidden within it. Consequently, these operations establish a
payment channel between the payer Pi and the payee Pj.

5.4. Phase IV: Payment Channel Update Phase

After the formal establishment of the payment channel, the transacting parties Pi
and Pj proceed to the subsequent phase: the payment transactions between them. In this
phase, the payer Pi redistributes the zero-knowledge currency locked within the payment
channel based on the transactions between both parties, reallocating it with each transaction
until completion. The fund allocation within the payment channel is executed using the
Algorithm 4 payment channel update algorithm, generating a payment channel update
transaction txUpdate. The txUpdate transaction contains the following variables：

• Merkle tree root rt: the proof that the commitment cmpc exists in the ledger;
• Serial numbers snpc : strings associated with commitment commitment cmpc;
• Commitment values cmnew

i and cmnew
j : these are also generated by the commitment

scheme COMM. The contents implicit in the cmnew
i commitment are the address

pki, the address pk j, the explicit value vnew
i , serial number snnew

i associated with
this commitment value generated by the PRF function, and the serial number snpc;
the contents implicit in the cmnew

j commitment are the address pki, the address pk j,
the explicit value vnew

j , serial number snnew
j associated with this commitment value

generated by the PRF function, and the serial number snpc;
• Address pki: the address of the payer;
• Zero-knowledge proof πUpdate: this zero-knowledge proof is a proof generated by

zk-SNARKs.GenProof, which is suitable for the circuit of CUpdate.

(1) cmpc = COMM(pk j, pk j, vold, snold, snpc, Y)
(2) snpc = PRF(pki, rold)
(3) cmnew

j = COMM(pki, pk j, vnew
j , snpc, snnew

j)

(4) snnew
j = PRF(pk j, rnew

j)

(5) cmnew
i = COMM(pk j, pki, vnew

i , snpc, snnew
i)

(6) snnew
i = PRF(pki, rnew

i)

(7) vold = vnew
j + vnew

i

(8) The path path from cmpc to the rt saved on the ledger is correct

• Signature σUpdate: signature of the above (rt, πUpdate, cmnew
i , cmnew

j ,snpc) using the
private key ski.

• Discrete logarithmic value Y and secret value y: Y = gymodN (where g is the common
parameter).

Blockchains 2024, 2 29

Algorithm 4 Payment Channel Update Algorithm
Input: The public parameter list pp, cpc, Merkle tree root rt, path path, Private key ski

owned by Pi, plaintext values vnew
j and vnew

i
Output: Zero-knowledge currency cnew

i and cnew
j , payment channel update transaction

txUpdate

1: Parse cpc :=(cmpc, pk j, pki, vold, snold, snpc, Y, rold)
2: Compute the random numbers rnew

i and rnew
j , and compute serial number snnew

j =

PRF
(

pk j, rnew
j

)
and snnew

i = PRF
(

pki, rnew
i

)
3: Compute the new commitment value cmnew

i =COMM (pk j, pki, vnew
i , snpc, snnew

i) and
cmnew

j = COMM (pki, pk j, vnew
j , snpc, snnew

j)
4: Set cnew

i :=(cmnew
i , pk j, pki, vnew

i , snpc, snnew
i , rnew

i) and cnew
j := (cmnew

j , pki, pk j, vnew
j ,

snpc, snnew
j , rnew

j)

5: Set the information that needs to be disclosed to generate a zero-knowledge proof
x :=(rt, cmnew

j , cmnew
i , pki, snpc, Y)

6: Set hidden evidence w :=(path, cmpc, pk j, vold, vnew
j , vnew

i , snnew
j , snnew

i , snold, rnew
j , rnew

i ,

rold)
7: Compute πUpdate = zk-SNARKs.GenProof (pkzUpdate,x, w)

8: Set m = (rt, πUpdate, cmnew
j , cmnew

i , snpc, Y)
9: The signature σUpdate = BLS.Sign(m, ski) is generated for message m using the private

key ski.
10: Set txUpdate = (m, pki, σUpdate)
11: Output cnew

i , cnew
j and txUpdate.

The detailed procedure of the payment channel update algorithm is shown above.
After the payer Pi completes the payment channel update algorithm, they are required

to send the new zero-knowledge currency cnew
j and the payment channel update transaction

txUpdate to the payee Pj. Upon receiving this information, the payee Pj first verifies the
correctness of the signature σUpdate included in the payment channel update transaction
txUpdate. Subsequently, utilizing the secret value y, they perform the complete payment
channel update transaction txUpdate. Following this process, the payee Pj has the capability
to close the payment channel at any time.

5.5. Phase V: Payment Channel Closure Phase

After both parties of a payment channel have completed their transaction, the payee
can close the channel by posting the latest updated transaction without communicating
with the payer . When the payee Pj posts the latest payment channel update transaction
txUpdate, they can immediately receive the due currency. At the same time, the payer Pi
can also obtain the remaining money immediately. However, since the zero-knowledge
currency owned by the payee Pj that has been promised to be generated by the payer Pi,
this also needs to be transferred immediately from the zero-knowledge currency to a new
address, in order to protect the security of the payee’s funds. This is accomplished using the
Algorithm 5 transfer algorithm that generates a transfer transaction txTrans f er that transfers
the zero-knowledge currency cold

j received by the payee Pj to a new address pknew
j , where

the txTrans f er transaction consists of the following variables:

• Merkle tree root rt: This is the proof that the commitment cmold
j exists in the ledger;

• Commitment serial number snold
j : A unique string associated with the commit-

ment cmold
j ;

• Commitment value cmnew
j : This value is generated by the commitment scheme COMM,

and the content implied in the commitment includes the address pknew
j , the transferred

Blockchains 2024, 2 30

value vj, new random numbers rnew
j , and the serial number snnew

j associated with this
commitment value generated by the PRF function;

• Address pk j: the address of user Pj ;
• Zero-knowledge proof πTransfer: this zero-knowledge proof is a proof generated by

zk-SNARKs.GenProof that the following conditions apply to the circuit of CTransfer:

(1) cmold
j =COMM(pki, pk j, vj, snpc, snold

j , Y)

(2) snold
j =PRF(pk j, rold

j)

(3) cmnew
j =COMM(pknew

j , vj, rnew
j , snnew

j)

(4) snnew
j =PRF(sknew

j , rnew
j)

(5) The path pathj from cmold
j to the rt saved on the ledger is correct

• Signature σTransfer:Signature of the above (πTransfer, rt, cmnew
j , snold

j) using the payment
channel private key sk j.

Algorithm 5 Transfer Algorithm

Input: The public parameter list pp, cold
j , Merkle tree root rt and path pathj, public key pk j

of Pj , new public key pknew
j of Pj and new private key sknew

j of Pj

Output: New zero-knowledge currency cnew
j ,transfer transaction txTransfer

1: Parse cold
j := (cmold

j , pki, pk j, vj, snpc, snold
j , rold

j)

2: Select new random number rnew
j and compute serial number snnew

j = PRF(sknew
j , rnew

j)

3: Compute new commitment value cmnew
j = COMM(vj, pknew

j , snnew
j , rnew

j)

4: Set cnew
j := (cmnew

j , pknew
j , vj, snnew

j , rnew
j , sknew

j)

5: Set the information that needs to be disclosed to generate a zero-knowledge proof x: =
(rt, cmnew

j , pk j, snold
j ,)

6: Set hidden evidence w: = (pathj, cmold
j , pki, pknew

j , vj, snpc, snnew
j , rold

j , rnew
j , sknew

j)

7: Compute π = zk-SNARKs.GenProof(pkzTransfer,x, w)
8: Set m := (πTransfer, rt, cmnew

j , snold
j)

9: User Pi uses private key sk j to generate signature σTransfer =BLS.Sign(m, sk j) for m.
10: Set txTransfer := (m, pk j, σTransfer)
11: Output zero-knowledge currency cnew

j ,transfer transaction txTransfer

The detailed procedure of transfer algorithm is shown above.

6. Analysis

In this section, we analyze how this anonymous payment channel scheme based on
zk-SNARKs achieves the design goals presented in Section 4.3.

Unlinkability: In Section 4.3, we designed unlinkability to address the lack of
linkability between the two parties involved in the payment channel establishment send
transaction, the payment channel update transaction, and the transfer transaction men-
tioned in the aforementioned scheme. To prove the unlinkability of this scheme, we conduct
a formal security proof by executing the game GUL.

We abstract the blockchain network within the payment channel as an oracle X ,
providing an interface to interact with the operations defined in zk-APC. The blockchain
ledger L that stores and manages all transactions is overseen by X . Assume a probabilistic
polynomial-time adversary A capable of querying X during the game GUL. X responds
to each query with L until A submits a transaction tuple (tx, tx∗) ∈ L satisfying conditions
(a) tx and tx∗ being of the same type, i.e., all three transaction types mentioned earlier,
(b) tx ̸= tx∗, and (c) A are not involved in either tx or tx∗. If one of the following holds:
(a) for payment channel establishment transactions, both tx and tx∗ involve the same
sender and receiver; (b) for payment channel updating transactions or transfer-transactions,
tx and tx∗ involve the same sender and recipient; or (c) for payment channel renewal

Blockchains 2024, 2 31

transactions or transfer-transactions, tx and tx∗ do not involve the same recipient, X
outputs 1, indicating that A has won the game GUL. Consequently, we can formalize the
following proposition:

Theorem 1. The zk-APC scheme preserves transaction unlinkability because, for any probabilistic
polynomial time adversary A, the following probability is negligible under security parameter λ:

Pr[GUL(λ,A)] = 1

Proof. (a) Assume that A outputs a tuple of payment channel establishment transactions
(txSetSend,tx′SetSend) where txSetSend satisfies that

txSetSend := (rt, cmpc, snold
i , πSetSend)

cmpc = COMM(pki, pk j, vi, snold
i , snpc, Y)

cmold
i = COMM(pki, vi, snold

i , rold
i)

and txSetSend
′ satisfies that

tx′SetSend := (rt′, cmpc ′, snold
i
′
, π′SetSend)

cmpc ′ = COMM(pk′i, pk′j, v′i, snold
i
′
, snpc ′, Y′)

cmold
i
′
= COMM(pki

′, vi
′, snold

i
′
, rold

i
′
)

To win the game GUL experiment, A finds a set of transactions (txSetSend , tx′SetSend)
for which the receiver pk j = pk′j and the sender pki = pk′i.

To achieve the goal of finding identical receivers, A can determine whether pk j and
pk′j are equal in two ways:

(a) Obtaining the recipient’s address pk j (or pk′j) from cmpc (or cmpc ′).
(b) Extracting pk j (or pk′j) from zk-SNARK proof πSetSend (or π′SetSend).
For (a)Amust distinguish the (pk j,pk′j) contained in (cmpc,cmpc ′) without knowing the

secret values of the (cmpc,cmpc ′), which would imply that the hidden nature of the COMM
is destroyed, something which corresponds to A is impractical. For (b), since A cannot
break the zero-knowledge property of zk-SNARKs mentioned in Section 3, the receiver
address cannot be obtained from the zero-knowledge proof either.

To achieve the objective of finding the same sender, A can also determine it in three
ways: (a) distinguishing sender addresses from the zk-SNARKs proof; (b) A initially,
searching for commitment values (cmold

i , cmold
i
′
) used in the SetSend transaction from its

view, then distinguishing the sender utilizing the Mint transaction associated with cm;
(c) distinguishing the sender addresses from cmpc or (cmpc ′).

For mode (a), A has to distinguish (pki,pki
′) from the different zero-knowledge proofs

(πSetSend ,π′SetSend), which implies that mathcalA needs to destroy the zero-knowledge
property of zk-SNARK.

For method (b), A can differentiate the sender (pki, pki
′) without knowledge of the

other secret values in (cmold
i , cmold

i
′
) through examining previous transactions (txMint,

tx′Mint) that include (cmold
i , cmold

i
′
). However, as cmold

i and cmold
i
′

are not visible in txSetSend

and tx′SetSend, A must obtain cmold
i and cmold

i
′

through two means: (1) Merkle tree root;
(2) zk-SNARK proof. For method (1),A needs to extract (cmold

i , cmold
i
′
) from the Merkle tree

root (rt, rt′), requiring a breach in the collision-resistant hash (CRH) property. For method
(2), A must extract (cmold

i , cmold
i
′
) from the zk-SNARKs proof (πSetSend, π′SetSend), which

implies a breach in the zero-knowledge property of zk-SNARKs. Regarding method (c), for
the same reasons mentioned, this violates the hiding property of COMM. Therefore, the

Blockchains 2024, 2 32

commitment scheme, hash function, and zk-SNARKs security features guarantee that the
sender and receiver of a transaction cannot be distinguished in a txSetSend transaction.

(b) Assume that A outputs a tuple of (txUpdate,tx′Update), where txUpdate satisfies that

txUpdate = (rt, πUpdate , cmnew
j , cmnew

i , pk j, snpc, Y, σUpdate)

cmpc = COMM
(

pk j, pki, vold , snold , snpc, Y
)

cmnew
j = COMM

(
pki, pk j, vnew

j , snpc, snnew
j

)
cmnew

i = COMM
(

pk j, pki, vnew
i , snpc, snnew

i
)

and tx′Update satisfies that

tx′Update = (rt′, π′Update , cmnew′
j , cmnew′

i , pk′i, snpc′ , Y′, σ′Update)

cmpc′ = COMM
(

pk′j, pk′i, vold′ , snold′ , snpc′ , Y′
)

cmnew′
j = COMM

(
pk′i, pk′j, vnew′

j , snpc′ , snnew′
j

)
cmnew′

i = COMM
(

pk′j, pk′i, vnew′
i , snpc′ , snnew′

i

)
To win the GUL experiment, Amust identify a set of transactions (txUpdate, tx′Update)

with the recipient pk j = pk′j. To achieve this goal, A can also make determinations through
two methods: (a) Distinguishing the recipient’s address from the zk-SNARKs proofs.
(b) Discerning the recipient’s address from cmnew

j , cmnew
i (cmnew

j), and (cmnew′
i).

For (a), Amust distinguish (pk j, pk′j) from different zero-knowledge proofs (πUpdate ,
π′Update), which implies that A needs to break the zero-knowledge property of zk-SNARK.

For (b), for the same reasons mentioned earlier, this would violate the hiding property
of the commitment scheme (COMM). Therefore, due to the security properties of the
commitment scheme, hash functions, and zk-SNARK, this ensures that in the txUpdate
transactions, it is impossible to determine the receiver of the transactions. The same applies
to the corresponding transfer transactions of the same type.

Therefore, Theorem 1 is proved to be correct.

Privacy Preserving: In the scheme proposed within this paper, each user involved
in a transaction adopts anonymous addresses, and the verification only involves these
anonymous addresses. This prevents the disclosure of users’ real identities, as no rele-
vant identity information can be obtained from transactions by anyone other than these
anonymous addresses. Therefore, the scheme proposed in this paper ensures users’ identity
privacy. The zk-SNARKs-based anonymous payment channel also safeguards the privacy
of transaction amounts for both parties involved in the payment channel establishment,
sending transactions, payment channel updating transactions, and transfer transactions
mentioned in this paper: on one hand, the substantial collision hash property of commit-
ments keeps the transaction amount hidden from outsiders; on the other hand, due to the
zero-knowledge nature of zk-SNARKs, attackers cannot extract any information about the
transaction values from the zero-knowledge proofs. Additionally, this scheme protects the
privacy of users’ balance values. Each user’s balance can be split into a plaintext balance
and a zero-knowledge balance. Attackers could obtain the plaintext balance through ledger
inspection. However, the zero-knowledge balance is secretly stored using hash key-value
pairs on the blockchain’s Merkle tree. Upon revealing its serial number, the zero-knowledge
balance is consumed and replaced by a new zero-knowledge balance, consequently re-
placing its balance commitment with a new commitment. Due to the substantial collision
resistance property of the balance commitment’s hash function, attackers cannot deduce
specific amounts from the balance commitment and the disclosed serial number. Therefore,
attackers cannot obtain the user’s current balance values.

Blockchains 2024, 2 33

7. Experiment and the Results

In this section, we describe our comprehensive evaluation of the zk-SNARK-based
anonymous payment channel and present experimental results to demonstrate the feasibil-
ity and performance of the scheme.

7.1. Experiment Configuration

To benchmark the protocol’s performance, we implemented our protocol using the
C++ programming language, the Libsnark library, and the GMP library, where Libsnark is
a library for implementing zk-SNARKs schemes in C++.

To implement zk-SNARKs in the zk-SNARKs-based anonymous payment channel,
we utilized the Libsnark library [33] to develop functions for generating and verifying
zk-SNARK proofs. For zk-SNARKs implemented based on the Libsnark library, we chose
ALTBN128 as the default elliptic curve and used various zero-knowledge proof schemes,
including Groth16 [34], GM17 [35], and PGHR13 [36]. Each blockchain node generated and
pre-installed the key pair (pk, vk) for zk-SNARK proof generation/verification. Addition-
ally, the hash function COMM for constructing Merkle trees and generating commitments,
the hash function, and the pseudo random function (PRF) we used were instantiated using
the SHA-256 hash function. To implement BLS signatures [37], we developed and imple-
mented a BLS signature algorithm based on the GMP library. According to the workflow
of the zk-SNARKs-based anonymous payment channel, we conducted a comprehensive
evaluation, primarily including the following components:

• We conducted a performance evaluation of the zk-SNARKs circuits for the Mint,
SetSend, Update, and Trans f er aspects of the zk-SNARKs-based anonymous pay-
ment channel;

• We compared the zk-SNARKs-based anonymous payment channel with similar proto-
cols, such as Blockmaze, Zerocash, and DMC [38];

• We evaluated the performance of the three phases of the payment channel, payment
channel establishment, payment, and payment channel closure, and compared them
with DMC.

All experiments in this paper were conducted on an Ubuntu Linux 16.04 LTS machine,
equipped with an AMD Ryzen 7 5800H @ 3.20GHz CPU and 16 GB RAM.

7.2. Experiment Results
7.2.1. zk-SNARKs Performance Evaluation

To determine the most suitable zk-SNARKs scheme for zk-APC, this paper evalu-
ated the performance of PGHR13, Groth16, and GM17 schemes regarding computation
and storage. Figure 1 shows a performance comparison of these three schemes for the
Mint, SetSend, Update, and Trans f er circuits regarding five aspects: setup time, size of
proof/verification keys, proof generation time, and verification time. As seen in Figure 1,
Groth16 had significant advantages over PGHR13 and GM17, especially regarding the
proof verification time, size of proof/verification keys, and setup time. In the Mint circuit,
the proof verification time for the GM17 scheme was 4.9-times that of Groth16, and for
the PGHR13 scheme, it was 7.3-times that of Groth16. In the Update circuit, the proof key
size for GM17 was 2.4-times that of Groth16, and for PGHR13, it was 1.45-times that of
Groth16. In the SetSend circuit, the verification key size for GM17 was 2.4-times that of
Groth16, and for PGHR13, it was 1.45-times that of Groth16. In the Trans f er circuit, the
proof generation time for Groth16 and PGHR13 was almost the same, while for GM17,
it was twice that of Groth16. Overall, the Groth16 scheme was the most suitable for the
computation time and space requirements. Hence, all subsequent experiments in this paper
utilized the Groth16 scheme.

Blockchains 2024, 2 34

(a) Setup time (b) Proof generation time

(c) Proof verification time (d) Proving key size

(e) Verification key size

Figure 1. The performance of zk-SNARKs used in zk-APC.

Blockchains 2024, 2 35

7.2.2. Comparison with Blockmzae, Zerocash, and DMC

Figure 2 illustrates a comparison of our privacy protection scheme with other pri-
vacy protection schemes regarding five aspects: setup time, size of proof/verification
keys, proof generation time, and verification time for zk-SNARKs. Although Blockmaze,
Zerocash, and DMC differ from our scheme in certain scenarios, they all employ similar
methods, specifically zk-SNARKs, for privacy protection. From an algorithmic function-
ality perspective, the Mint operation in zk-APC corresponds to Blockmaze’s Mint, and
zk-APC’s SetSend, Update, and Trans f er are similar to Blockmaze’s Deposit. zk-APC’s
Mint, SetSend, Update, and Trans f er are akin to Zerocash’s Pour, and zk-APC’s Mint is
comparable to DMC’s Deposit. zk-APC’s SetSend and Trans f er are analogous to DMC’s
OpenChannel, and zk-APC’s Update is similar to DMC’s O f f chainTrans f er. Compared to
these three schemes, our zk-APC scheme demonstrated advantages over Blockmaze for
Mint regarding setup time, size of proof/verification keys, and proof generation time. In
the comparison of SetSend, Update, Trans f er, and Deposit, Update and Trans f er showed
inferior performance for the proof verification time. Compared to Zerocash, our Mint
required zero-knowledge operations, which were unnecessary in Zerocash. However, our
SetSend, Update, and Trans f er had significant computational and storage cost advantages
over Zerocash’s Pour, with the Pour circuit’s proof generation time being 2.02-times that
of the Update circuit. Compared to DMC, our SetSend circuit corresponding to DMC’s
OpenChannel, Trans f er to DMC’s OpenChannel, and Update to DMC’s O f f chainTrans f er
had minor differences in the five aspects mentioned above. However, the Mint circuit,
corresponding to DMC’s Deposit, required more time for setup, proof key size, and proof
generation. Specifically, zk-APC’s Mint circuit setup time was 2.13-times that of DMC’s
Deposit, and the proof generation time for zk-APC’s Mint was 2.4-times that of DMC’s
Deposit, with the proof key size being double. Although there were certain disadvantages
for these three aspects, they are typically only required for the initial setup or performed
offline, having a minimal impact on the overall scheme. In summary, compared to Block-
Maze, Zerocash, and DMC, zk-APC exhibited notable efficiency in the computational and
storage costs of various zero-knowledge proof operations.

(a) Setup time (b) Proof generation time

Figure 2. Cont.

Blockchains 2024, 2 36

(c) Proof verification time (d) Proving key size

(e) Verification key size

Figure 2. Comparison with Blockmaze, Zerocash, and DMC.

7.2.3. Payment Channel Performance Evaluation

Comparison with DMC. Table 1 compares our scheme with other existing schemes in
terms of on-chain storage overheads during the establishment and updating of payment
channels, as well as off-chain communication costs. Compared to the similar scheme
DMC, during the channel establishment process, the transaction size to be stored on-
chain in our scheme was 0.78-times that of DMC. However, our scheme requires off-chain
communication overheads, while DMC’s scheme needs almost no off-chain communication.
In the payment channel updating process, the off-chain communication cost of our scheme
was 2.4-times that of DMC’s.

Table 1. On-chain Storage Overhead and Off-chain Communication Overhead.

Channel Opening
(On-Chain)

Channel Opening
(Off-Chain) Channel Update

zk-APC 224B 5062B 634B

DMC 288B - 256B

Blockchains 2024, 2 37

Computation cost. For the three stages of the payment channel, we evaluated the
time consumed in each stage. In the zk-APC scheme, each stage incurred significant
time costs due to zero-knowledge proofs and time-bound verifiable commitments. Our
measurement of time disregarded communication time. According to our measurements,
the initiator needed 36.1 seconds for the payment channel establishment process. In the
payment channel updating process, each update took 31.5 s. Compared to similar Zcash
shielded transactions with 6.6 tps, if our scheme was used, the transaction throughput per
second could be increased to 0.032D tps, where D is the number of channels opened on the
blockchain. If there are 10,000 payment channels open on the blockchain, our scheme can
provide a transaction throughput of 32 tps per second.

8. Conclusions

In this paper, we proposed a zk-SNARKs-based anonymous payment channel, which
solves the privacy problem during off-chain transactions between payers and payees
through utilizing commitment schemes, zk-SNARKs, and timed verifiable commitments.
Specifically, our approach achieves on-chain and off-chain amount privacy during pay-
ment channel transactions and unlinkable relationships between payers and payees, while
ensuring the fairness of the transaction process. In this paper, we provided a concrete con-
struction of the zk-SNARKs-based anonymous payment channel and performed security
analysis and experimental verification.

Author Contributions: Conceptualization, Y.G.; methodology, Y.G. and K.G.; software, Y.G.; valida-
tion, Y.G.; formal analysis, H.L.; investigation, H.L.; resources, H.L.; writing — original draft, Y.G.;
writing — review and editing, H.L., L.Z. and K.G.; supervision, L.Z. and K.G.; Funding acquisition,
K.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Defense Basic Scientific Research program of
China under grant number JCKY2020602B008.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: No new data were created or analyzed in this study. Data are contained
within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, PP, 1.
2. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018,

14, 352–375. [CrossRef]
3. Zhang, Y.; Gai, K.; Xiao, J.; Zhu, L.; Choo, K.K.R. Blockchain-empowered efficient data sharing in Internet of Things settings.

IEEE J. Sel. Areas Commun. 2022, 40, 3422–3436. [CrossRef]
4. Monrat, A.A.; Schelén, O.; Andersson, K. A survey of blockchain from the perspectives of applications, challenges, and

opportunities. IEEE Access 2019, 7, 117134–117151. [CrossRef]
5. Gao, W.; Hatcher, W.G.; Yu, W. A survey of blockchain: Techniques, applications, and challenges. In Proceedings of the 2018

27th international conference on computer communication and networks (ICCCN), Hangzhou, China, 30 July–2 August 2018;
pp. 1–11.

6. Gai, K.; She, Y.; Zhu, L.; Choo, K.K.R.; Wan, Z. A blockchain-based access control scheme for zero trust cross-organizational data
sharing. ACM Trans. Internet Technol. 2023, 23, 1–25. [CrossRef]

7. Gai, K.; Wang, S.; Zhao, H.; She, Y.; Zhang, Z.; Zhu, L. Blockchain-Based Multisignature Lock for UAC in Metaverse. IEEE Trans.
Comput. Soc. Syst. 2022, 10, 2201–2213. [CrossRef]

8. Liang, H.; Guo, Y.; Gai, K. A Blockchain-Based Hierarchical Storage Method for Supply Chain Data. In Proceedings of the 2023
IEEE 8th International Conference on Smart Cloud (SmartCloud), Tokyo, Japan, 16–18 September 2023; pp. 105–110.

9. Tikhomirov, S. Ethereum: State of knowledge and research perspectives. In Foundations and Practice of Security, Proceedings of the
10th International Symposium, FPS 2017, Nancy, France, 23–25 October, 2017, Revised Selected Papers 10; Springer: Nancy, France,
2018; pp. 206–221.

10. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
11. Yang, D.; Long, C.; Xu, H.; Peng, S. A review on scalability of blockchain. In Proceedings of the 2020 the 2nd International

Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; pp. 1–6.

http://doi.org/10.1504/IJWGS.2018.095647
http://dx.doi.org/10.1109/JSAC.2022.3213353
http://dx.doi.org/10.1109/ACCESS.2019.2936094
http://dx.doi.org/10.1145/3511899
http://dx.doi.org/10.1109/TCSS.2022.3226717

Blockchains 2024, 2 38

12. Kim, S.; Kwon, Y.; Cho, S. A survey of scalability solutions on blockchain. In Proceedings of the 2018 International Conference on
Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 1204–1207.

13. Gai, K.; Hu, Z.; Zhu, L.; Wang, R.; Zhang, Z. Blockchain meets dag: A blockdag consensus mechanism. In Algorithms and
Architectures for Parallel Processing, Proceedings of the 20th International Conference, ICA3PP 2020, New York, NY, USA, 2–4 October
2020; Proceedings, Part III 20; Springer: Copenhagen, Denmark, 2020; pp. 110–125.

14. Papadis, N.; Tassiulas, L. Blockchain-based payment channel networks: Challenges and recent advances. IEEE Access 2020,
8, 227596–227609. [CrossRef]

15. Malavolta, G.; Moreno-Sanchez, P.; Kate, A.; Maffei, M.; Ravi, S. Concurrency and privacy with payment-channel networks. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017; pp. 455–471.

16. Gai, K.; Wu, Y.; Zhu, L.; Zhang, Z.; Qiu, M. Differential privacy-based blockchain for industrial internet-of-things. IEEE Trans.
Ind. Inform. 2019, 16, 4156–4165. [CrossRef]

17. Gai, K.; Tang, H.; Li, G.; Xie, T.; Wang, S.; Zhu, L.; Choo, K.K.R. Blockchain-based privacy-preserving positioning data sharing for
IoT-enabled maritime transportation systems. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2344–2358. [CrossRef]

18. Sasson, E.B.; Chiesa, A.; Garman, C.; Green, M.; Miers, I.; Tromer, E.; Virza, M. Zerocash: Decentralized anonymous payments
from bitcoin. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014;
pp. 459–474.

19. Guan, Z.; Wan, Z.; Yang, Y.; Zhou, Y.; Huang, B. BlockMaze: An efficient privacy-preserving account-model blockchain based on
zk-SNARKs. IEEE Trans. Dependable Secur. Comput. 2020, 19, 1446–1463. [CrossRef]

20. Wijaya, D.A.; Liu, J.K.; Steinfeld, R.; Liu, D.; Yu, J. On the unforkability of monero. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, Auckland, New Zealand, 9–12 July 2019; pp. 621–632.

21. Thyagarajan, S.A.K.; Bhat, A.; Malavolta, G.; Döttling, N.; Kate, A.; Schröder, D. Verifiable timed signatures made practical. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, 9–13 November
2020; pp. 1733–1750.

22. Zhou, X.; He, D.; Ning, J.; Luo, M.; Huang, X. Efficient Construction of Verifiable Timed Signatures and Its Application in Scalable
Payments. IEEE Trans. Inf. Forensics Secur. 2023, 18, 5345–5358. [CrossRef]

23. Hearn, M.; Spilman, J. Bitcoin Contracts. 2015. Available online: https://en.bitcoin.it/wiki/Contracts (accessed on 8 Octo-
ber 2015).

24. Ying, N.; Wu, T.W. Xlumi: Payment channel protocol and off-chain payment in blockchain contract systems. arXiv 2021,
arXiv:2101.10621.

25. Xu, S.; Yuan, J.; Li, Y.; Liu, X.; Zhang, Y. Super payment channel for decentralized cryptocurrencies. In Proceedings of the 2019
IEEE Conference on Dependable and Secure Computing (DSC), Hangzhou, China, 18–20 November 2019; pp. 1–8.

26. Green, M.; Miers, I. Bolt: Anonymous payment channels for decentralized currencies. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 473–489.

27. Zhang, Y.; Long, Y.; Liu, Z.; Liu, Z.; Gu, D. Z-channel: Scalable and efficient scheme in zerocash. Comput. Secur. 2019, 86, 112–131.
[CrossRef]

28. Moreno-Sanchez, P.; Blue, A.; Le, D.V.; Noether, S.; Goodell, B.; Kate, A. DLSAG: Non-interactive refund transactions for
interoperable payment channels in monero. In Financial Cryptography and Data Security, Proceedings of the 24th International
Conference, FC 2020, Kota Kinabalu, Malaysia, 10–14 February 2020; Revised Selected Papers 24; Springer: Kota Kinabalu, Malaysia,
2020; pp. 325–345.

29. Thyagarajan, S.A.; Malavolta, G.; Schmidt, F.; Schröder, D. Paymo: Payment channels for monero. Cryptol. ePrint Arch. 2020.
Available online: https://eprint.iacr.org/2020/1441 (accessed on 28 December 2023).

30. Pinto, A.M. An introduction to the use of zk-SNARKs in blockchains. In Mathematical Research for Blockchain Economy, Proceedings
of the 1st International Conference MARBLE 2019, Santorini, Greece, 6–9 May 2019; Springer: Santorini, Greece, 2020; pp. 233–249.

31. Groth, J.; Kohlweiss, M.; Maller, M.; Meiklejohn, S.; Miers, I. Updatable and universal common reference strings with applications
to zk-SNARKs. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2018;
pp. 698–728.

32. Fuchsbauer, G. Subversion-zero-knowledge SNARKs. In Public-Key Cryptography–PKC 2018, Proceedings of the 21st IACR
International Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, 25–29 March 2018; Proceedings, Part I
21; Springer: Atlanta, GA, USA, 2018; pp. 315–347.

33. Ben-Saason, E.; Chiesa, A.; Genkin, D.; Kfir, S.; Tromer, E.; Virza, M. Libsnark: C++ Library for zkSNARK Proofs, 2014. Available
online: https://github.com/clearmatics/libsnark (accessed on 28 December 2023).

34. Groth, J. On the size of pairing-based non-interactive arguments. In Advances in Cryptology–EUROCRYPT 2016: Proceedings of
the 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, 8–12 May 2016;
Proceedings, Part II 35; Springer: Lyon, France, 2016; pp. 305–326.

35. Groth, J.; Maller, M. Snarky signatures: Minimal signatures of knowledge from simulation-extractable SNARKs. In Proceedings
of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 20–24 August 2017; pp. 581–612.

36. Parno, B.; Howell, J.; Gentry, C.; Raykova, M. Pinocchio: Nearly practical verifiable computation. Commun. ACM 2016, 59, 103–112.
[CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3046020
http://dx.doi.org/10.1109/TII.2019.2948094
http://dx.doi.org/10.1109/TITS.2022.3190487
http://dx.doi.org/10.1109/TDSC.2020.3025129
http://dx.doi.org/10.1109/TIFS.2023.3306107
https://en.bitcoin.it/wiki/Contracts
http://dx.doi.org/10.1016/j.cose.2019.05.012
https://eprint.iacr.org/2020/1441
https://github.com/clearmatics/libsnark
http://dx.doi.org/10.1145/2856449

Blockchains 2024, 2 39

37. Boneh, D.; Lynn, B.; Shacham, H. Short signatures from the Weil pairing. In Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security, Guangzhou, China, 6–10 December 2001; pp. 514–532.

38. Liu, S.; Wang, J. DMC: Decentralized Mixer with Channel for Transaction Privacy Protection on Ethereum. In Proceedings of the
CS & IT Conference Proceedings, Sydney, Australia, 24–25 December 2021; Volume 11.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Preliminaries
	Blockchain
	zk-SNARKs

	The Concepts and Definitions
	System Model
	Design Goal
	Threat Model

	Proposed Model
	Phase I: Setup Phase
	Phase II: Minting Phase
	Phase III: Payment Channel Establishment Phase
	Phase IV: Payment Channel Update Phase
	Phase V: Payment Channel Closure Phase

	Analysis
	Experiment and the Results
	Experiment Configuration
	Experiment Results
	zk-SNARKs Performance Evaluation
	Comparison with Blockmzae, Zerocash, and DMC
	Payment Channel Performance Evaluation

	Conclusions
	References

