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Abstract: Recent advances in the microbial degradation of persistent organic pollutants have the
potential to mitigate the damage caused by anthropogenic activities that are harmfully impacting
agriculture soil ecosystems and human health. In this paper, we summarize the pollution charac-
teristics of neonicotinoid insecticides (NNIs) in agricultural fields in China and other countries and
then discuss the existing research on screening for NNI-degrading functional bacterial strains, their
degradation processes, the construction of microbial consortia, and strategies for their application.
We explore the current needs and solutions for improving the microbial remediation rate of NNI-
contaminated soil and how these solutions are being developed and applied. We highlight several
scientific and technological advances in soil microbiome engineering, including the construction
of microbial consortia with a broad spectrum of NNI degradation and microbial immobilization to
improve competition with indigenous microorganisms through the provision of a microenvironment
and niche suitable for NNI-degrading bacteria. This paper highlights the need for an interdisci-
plinary approach to improving the degradation capacity and in situ survival of NNI-degrading
strains/microbial consortia to facilitate the remediation of NNI-contaminated soil using strains with
a broad spectrum and high efficiency in NNI degradation.
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1. Introduction

Pesticides play a crucial role in agricultural production by protecting crops from hazardous
organisms and maintaining the safety of agricultural products and the environment [1]. The
development of the first neonicotinoid compound, imidacloprid (IMI), by Bayer in the
late 20th century marked the advent of a new generation of chemical insecticides. IMI
significantly enhanced crop resistance to pests and propelled the rapid development and
expansion of NNIs, making them one of the most widely used insecticide classes globally [2].
NNIs are commonly used to control pests affecting rice, maize, fruit trees, and vegetables [3].
After their introduction in the 1990s, NNIs rapidly occupied more than 25% of the global
market share of pesticides [4] and are registered for use in the production practices of
more than 140 crops in 120 countries, mainly in Asia, the Americas, and Europe [5]. China
has registered about 3400 NNI products, including a diverse range of 38 dosage forms.
Among these, wettable powders, emulsifiable concentrates, water-dispersible granules,
and suspensions are the most prevalent varieties, accounting for 62.3% of total pesticide
use [6]. Table 1 presents the information and physicochemical property parameters of seven
currently commonly used NNIs.
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Table 1. Chemical information and physicochemical property parameters of neonicotinoid insecti-
cides.

Name CAS Abbreviation CW WS VP DT50(d) log Koc log Kow

Imidacloprid 138261-41-3 IMI 255.70 610 4 × 10−7 104–228 2.19–2.9 0.57
Thiamethoxam 153719-23-4 THIA 291.72 4100 6.6 × 10−6 7–72 1.75 −0.13

Dinotefuran 165252-70-0 DIN 202.21 39,830 1.7 × 10−3 50–100 1.41 −0.64
Acetamiprid 135410-20-7 ACE 222.67 2950 1.73 × 10−4 2–20 2.3 0.80
Thiacloprid 111988-49-9 THI 252.72 184 3.0 × 10−7 9–27 3.67 1.26
Clothianidin 210880-92-5 CLO 249.68 340 2.8 × 10−8 13–1386 2.08 0.70
Nitenpyram 150824-47-8 NIT 270.71 590,000 1.1 × 10−3 1–15 1.78 −0.66
Imidaclothiz 105843-36-5 IMID 261.69 500 NA 3.1 NA NA

Notes: CW—chemical weight; WS—water solubility; VP—vapor pressure, DT50(d)—half-life. log Koc
represents the octanol-water partitioning coefficient; log Kow represents the soil organic carbon—water
partitioning coefficient.

This study searched scientific articles published by the end of 2023 using the Web
of Science (Thomson Reuters, New York, NY, USA) and Google Scholar (Google Inc.,
Mountain View, CA, USA) with the following search terms: (i) (neonicotinoid insecticides)
and [soil or agriculture soil], and (ii) (bacteria degradation or biodegradation or microbial
degradation) and [neonicotinoid insecticides].

When NNIs are applied, there are few air deposits because of their low volatility. Ad-
ditionally, only a small percentage, ranging from 1.6% to 28.0%, is absorbed by crops, while
the majority remains as residues in the soil. This accumulation of NNIs in the soil leads to
soil contamination [7,8]. Because of their high water solubility, the absorption of pesticide
molecules in the soil is susceptible to passive plant intake, resulting in a decrease in the
reproductive capacity and the massive death of non-target insects (bees, butterflies, etc.), a
sharp decline in the number of insect-eating birds, the death of aquatic organisms, and even
irreversible damage to the food chain and ecological environment [9–12]. At the same time,
the degradation behavior of new alkaline pesticide fumes in soil is also an important process
that leads to environmental regression, while the effectiveness of their degradation varies
significantly under the influence of different environmental factors [13,14]. Therefore, un-
derstanding the status of NNI pollution in agricultural soils throughout China is important
for the formulation of NNI pollution standards for agricultural soils and the development
of pollution control technologies.

A large variety of functional bacteria with the ability to degrade pesticides are present
in long-term pesticide-contaminated agricultural soils [15,16]. Currently, researchers have
isolated a large variety of functional bacteria with an efficient ability to degrade NNI in
contaminated agricultural soils, and their degrading characteristics, metabolic pathways,
and critical functional genes have been well studied. Studies have shown that the direct
application of functional bacteria into soil can effectively reduce the concentrations of NNIs
in soil. In this study, we explore the current situation of NNI pollution in soil ecosystems in
China. We also highlight current scientific and technological advances in the remediation
of NNI-contaminated soil via the application of NNI-degrading bacteria, which we classify
into three pillars: (1) the discovery and isolation of NNI-degrading bacteria; (2) advances
in the understanding of the mechanisms and pathways through which microbes degrade
NNIs; and (3) the development of efficient and persistent bioremediation technologies for
NNI-contaminated soil.

2. Current Status and Risks of Neonicotinoid Insecticide Pollution in Agricultural Soils

NNIs are water soluble, and their half-life varies significantly across different com-
pounds and soil types. More than 90% of the active ingredients of NNIs enter agricultural
soil, making such soil the primary sink for NNIs in the environment [17]. At present,
there are some differences in the residual concentrations of these compounds in agricul-
tural soils in different countries, but most concentrations fall within the pollution range
of ng g−1 [18]. Previous surveys have shown that the residual concentration of clothianidin
in corn-growing soils in Canada is 0.91 ng g−1 [19], compared with the concentration



Agrochemicals 2024, 3 31

of 7.00 ng g−1 in the soils of the same crop in the United States [20]. NNI pollution of
agricultural soils poses a threat to the environment and the quality of agricultural products
in China [21–23]. The results reported in relevant published papers show that agricultural
soils have been contaminated with NNIs to varying degrees in various parts of the country,
and there are major differences in NNI concentrations in different regions and provinces;
for example, the total NNI content in Hunan soils is 964.88 µg kg−1, while the total content
of NNI in Ningxia soils is only 33 µg kg−1. Moreover, the types and concentrations of
neonicotinoid pesticides found in farmland soils in China are higher than those in America
(2.3~4 µg kg−1), Germany (0.8~3.4 µg kg−1), and England (0.01~28.6 µg kg−1) [24–26]. The
main reasons for this phenomenon can be summarized as follows: First, these countries
have implemented a strict ban on the use of some neonicotinoid pesticides that are still
used in China. Second, China is a large agricultural country, with a wide crop-planting area,
resulting in a corresponding increase in the use of neonicotinoid pesticides. The detection
rates of various kinds of NNIs vary. Imidacloprid (IMI) and acetamiprid (ACE) were found
in the soils from 31 areas in China. IMI residues were discovered at levels greater than
those of ACE, reaching a maximum of 407 µg kg−1 in Hunan. The above findings indicate
that this pesticide is widely used for pest control and can remain in agricultural soils.

More seriously, NNIs that remain in soil can enter crop organisms through the soil–root
system, thus threatening the health of populations. An analysis by researcher on the
residues of NNIs in vegetables and fruits consumed by students at a school in Zhejiang,
China, indicated that all 123 samples contained at least one NNI. Commonly consumed
foods, such as carrots, green vegetables, baby cabbages, and apples, were found to contain
more than six NNIs. Although the estimated average daily intakes were below the current
chronic reference dose (cRfD) of imidacloprid, there is a possibility of future downward
revisions of the cRfD for NNIs [27]. The results of a study found that imidacloprid and
thiamethoxam were the most commonly detected neonicotinoids in fruits and vegetables,
with 66 and 51% detection rates in a study in Hangzhou, China, and 52 and 53% detection
rates in a U.S. Congressional Cafeteria study, respectively [28]. The researchers’ results
showed that NNIs were detected in a variety of fruits and vegetables, with a residual
concentration of 74 ng g−1 of thiamethoxam in cornflakes, 80 ng/g of imidacloprid in
mangoes, and 10 ng g−1 of imidacloprid in strawberries [29]. In a recent research study
carried out in 11 cities in Hainan, China, it was found that 31 novel transformation products
of neonicotinoids were generated via innovative methods or a mix of several transformation
processes. The average concentrations of neonicotinoids and nine of their transformation
products (using legitimate standards) ranged from 0.0824 to 5.34 ng g−1 and from 0.0636 to
1.50 ng g−1, respectively. The combined environmental degradation indices (EDIs) of the
measured byproducts of such transformation processes were generally lower than those of
the original neonicotinoid compounds, except for clothianidin desmethyl, which exhibited
a ratio of 1157% [30]. In addition, new alkaline pesticide fumes also pose a potential threat
to persons exposed to these pesticides for long periods of time [21]. The above results
indicate that NNIs enter and accumulate in crops, and their risks should be included in
regulatory management in the future.

In addition, NNIs that remain in crops can enter the human body through the food
chain and accumulate. Several studies have detected residues of NNIs in human urine [31].
For example, a study examining the urine samples from 35 symptomatic patients with un-
known histories in Japan and 50 non-symptomatic volunteers found that the concentration
of N-methyl-Citrate in the urine samples had a certain correlation with typical symptoms,
such as recent memory loss, finger tremors, fatigue, abdominal pain, headache, and chest
pain [32]. Recent research findings also show that pesticides and their metabolites can pass
freely through the human placenta. Studies have shown that NNIs pose risks of hepatotox-
icity, developmental toxicity, genetic toxicity, neurotoxicity, and carcinogenicity [33].

In May 2022, the General Office of the State Council in China issued the Program of
Action on Management of New Pollutants, which proposed that, with the production and
use of toxic and harmful chemicals as the main source of new pollutants, there is a need
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to improve the system of regulations on the management of environmental risks posed
by harmful and toxic chemical substances and to significantly enhance the capacity for
the management of new contaminants. As a new class of pollutants, NNIs are currently
insufficiently managed to effectively control their risks, causing certain risks in terms of
the ecological environment and the human body, and residues of NNIs in the environment
pose new challenges for environmental protection. China is currently the leading producer,
exporter, and consumer of NNIs [34]. However, research on the environmental contamina-
tion caused by NNIs is still in its early phases. There is an urgent need to strengthen the
identification of the pollution characteristics of NNIs in the environment, to study in depth
the laws that govern their migration and conversion, and develop removal techniques to
safeguard human health and the ecological environmental.

3. Neonicotinoid Insecticide–Degrading Bacteria

The reduction of NNIs in nature is divided into biological and non-biological reduction
processes, whereby the biological reduction process occurs predominantly via microbial
metabolism [35]. Microbial degradation is one of the main ways in which pesticides are
degraded in soil. Studies have shown that a large number of naturally domesticated
microorganisms with the ability to degrade NNIs are present in soils contaminated with
NNIs [36]. Bacteria are considered to be the main microorganisms that naturally degrade
NNIs in the environment. Currently, researchers in China studying NNI-degrading bacteria
have mainly conducted research on the enrichment, screening, and identification of high-
efficiency degrading strains; the construction of functional bacterial clusters for NNI
degradation; and the pathways and mechanisms underlying bacterial degradation. In
addition to the isolation of NNI-degrading bacteria from soil, some plant growth-promoting
rhizobacteria (PGPR) have also been found to have the ability to degrade NNIs. For
example, there are studies reported that the PGPR Ensifer. adhaerens TMX-23 isolated from
soybean plant degraded 37.5% of THIA after 25 days of incubation in a mineral salt medium
(MSM) containing glucose [37].

In recent years, researchers have isolated a large number of bacterial strains with
an NNI degradation function via the separation and purification of these species from
different environmental media (Table 2). Currently, the strains obtained via isolation are
mainly derived from bacterial genera such as Bacillus, Mycobacterium, Pseudoxanthomonas,
Rhizobium, Rhodococcus, and Stenotrophomonas. As shown in Table 2, different bacterial
genera exhibit different degrading effects and degradation spectra for NNIs.

Table 2. Neonicotinoid insecticide-degrading bacteria.

Microorganism Source Reaction Condition Degradation Rate References

Imidacloprid
Klebsiella pneumoniae BCH1 Agricultural soil, India 30 ◦C, pH 7, 7 d 50 mg L−1, 78% [38]

Pseudomonas sp. RPT52 Agricultural soil, India 37 ◦C, 200 r min−1, 24 h 128 mg L−1, 46.5% [39]
Pseudoxanthomonas indica

CGMCC 6648 Rhizosphere soil, Chian 28 ◦C, pH 7, 6 d 311 mg L−1, 70.1% [40]

Bacillus aerophilus Sugarcane field soils,
India Sandy loam soil, 60 d 150 mg kg −1, 96.1% [41]

Pseudomonas sp. 1G Soil, Australia 28 ◦C, microaerophilic 50 mg L−1, about 70% [42]
Rhizobium sp. Oil field soil, Malaysia 28 ◦C, 120 r min−1, 25 d 25 mg L−1, 45.48% [43]

Bacillus alkalinitrilicu Sugarcane field soils,
India 28 ◦C, 56 d 50 mg/kg, 98.02% [44]
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Table 2. Cont.

Microorganism Source Reaction Condition Degradation Rate References

Mycobacterium sp. MK6 Soil, Egypt 28 ◦C, 14 d 150 mg L−1, 99.7% [45]
epidibacillus decaturensis. ST1 Agricultural field, India 30 ◦C, 120 rpm, 20 d 200 mg L−1, 90% [46]

Ochrobactrum sp. BCL-1 Rhizosphere soil, China 30 ◦C, pH 8, 48 h 50 mg L−1, 67.67% [47]
Acetamiprid

Fusarium sp. CS-3 Soil, China 25–30 ◦C, pH 5–7, 96 h 50 mg L−1, 98% [48]
Ensifer meliloti CGMCC 7333 Rhizosphere soil, China 30 ◦C, pH 7.5, 220 r min−1 500 mg L−1, 65.1% [49]

Pigmentiphaga sp. AAP-1 Industrial soil, China 30 ◦C, pH 7, 2.5 h 100 mg L−1, 100% [50]

Pseudoxanthomonas sp.
AAP-7 Industrial soil, China 30 ◦C, pH 7, 60 h

200 mg L−1, 95%
300 mg L−1, 93%
400 mg L−1, 87%
600 mg L−1, 73%

Ensifer adhaerens
CGMCC 6315 Soil, China 30 ◦C, 12 h 200 mg L−1, 94.4% [51]

Ochrobactrum sp. D-12 Agricultural soil, China 30 ◦C, pH 7, 14 h ◦C 3000 mg L−1, 39.27% [52]

Rhodococcus sp. BCH-2 Contaminated soil,
India 35 ◦C, pH 7, 8 d 50 mg L−1, 84.65% [53]

Penicillium oxalicum IM-3 Soil, China 30 ◦C, 14 d 500 mg L−1, 41.6% [54]
Streptomyces canus

CGMCC 13662 Soil, China 30 ◦C, pH 7, 4 d 200 mg L−1, 87.6% [55]

Pseudomonos sp. FH2 Agriculture field soil,
China 30 ◦C, pH 7.0, 14 d 800 mg L−1, 96.7% [56]

Imidaclothiz
Stenotrophomonas maltophilia

CGMCC 1.1788 Soil, China 30 ◦C, 84 d 500 mg L−1, 36.2% [57]

Clothianidin
Pseudomonas stutzeri smk Agricultural Soil, China 30 ◦C, pH 7, 14 d 10 mg L−1, 62.0% [58]

Thiacloprid
Variovorax boronicumulans J1 Agricultural soil, China 30 ◦C, pH 7.2, 60 h 200 mg L−1, 62.5% [59]
Ensifer meliloti CGMCC 7333 Rhizosphere soil, China 30 ◦C, 60 h 200 mg L−1, 86.8% [60]

Microvirga flocculans
CGMCC 1.16731 Soil, China 30 h 159 mg L−1, 90.5% [61]

Rhodotorula mucilaginosa IM-2 Soil, China 30 ◦C, 20 d 200 mg L−1, 59.9% [62]
Thiamethoxam

Ensifer adhaerens TMX-23 Rhizosphere soil, China 30 ◦C, 10 d 200 mg L−1, 21.6% [63]
Bacillus aeromonas IMBL 4.1 Soil, India 37 ◦C, pH 6.0 ◦C–6.5, 15 d 50 mg L−1, 45.28% [64]

Pseudomonas putida IMBL 5.2 Soil, India 37 ◦C, pH 6.0 ◦C–6.5, 15 d 50 mg L−1, 38.23%

Acinetobacter sp.
Enterobacter sp. Bacillus sp. Agricultural soil, India 15 d

50 mg L−1, 94.72%
50 mg L−1, 90.78%
50 mg L−1, 82.06%

[65]

A strain of Ensifer adhaerens CGMCC 6315, which was isolated from NNI-contaminated
soil, was found to have the ability to degrade acetamiprid effectively; it degraded 94.4%
of 200 mg L−1 of ACE in 12 h and quickly eliminated 87.8% of 5 mg kg−1 of residual soil
ACE within 2 d [51]. After 72 h of incubation, a nitenpyram-degrading bacterium known
as Rhodococcus ruber CGMCC 17550, which was isolated from a sewage treatment tank, was
used for the degradation of nitenpyram. The nitenpyram degradation rate increased as the
biomass of resting Rhodococcus ruber CGMCC 17550 cells increased, reaching 98.37% at an
optical density of 600 (OD600) of 9 in a transformation broth that contained 100 mg L−1

of nitenpyram [65]. The above results show that long-term use of NNIs in soils can natu-
rally domesticate bacterial strains that can degrade NNIs and show soil bioremediation
potential. Soil contaminated with NNIs is an important source of microorganisms that
are capable of degrading these pollutants, and there are differences in degradation behav-
ior in contaminated soil, as well as differences in metabolic pathways and the resulting
metabolic intermediates.
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4. Neonicotinoid Insecticide-Degrading Bacterial Consortia

Currently, functional bacteria selected for separation are mainly selected for their
capacity to degrade one or a few NNIs, but in an actual polluted environment, there
is often a coexistence of several NNIs, the actual environmental conditions are more
complex, and indigenous bacterial clusters are more competitive; so, the efficacy of a single
degrading strain for NNI degradation is often not ideal [66]. Degrading bacteria often
exist in the natural environment in the form of consortia, using the synergies between
different bacteria to completely degrade organic pollutants in the environment, thereby
providing energy for their own growth and reproduction. Thus, researchers have attempted
to capitalize on the synergies of different strains of bacteria present in broad-spectrum
functional bacterial consortia to increase the efficiency of NNI degradation. As shown
in Table 3, some NNI-degrading consortia have been well studied. For example, an
NNI-degrading consortium named N1, consisting of bacterial strains from the genera
Paenibacillus, Rhodococcus, Microbacterium, Kocuria, Paraburkholderia, and Pseudoacidovorax,
and a yeast strain closely related to the genus Rhodotorula, was isolated from pesticide-
contaminated agricultural soil. Under optimal conditions, the degradation rate of N1/2 for
imidacloprid and thiamethoxam was 60.1% and 33.4%, respectively [67]. Researchers have
separated two NNI-degrading bacteria from contaminated soil, named Bacillus Aerophilus
and Bacillus Alkaninitricus. The combination of these two strains into a consortium resulted
in a higher capability for pollutant degradation. This consortium is particularly effective in
degrading imidacloprid in soil and can adapt to various degrees of soil pollution [68]. It
is evident that bacterial consortia can somewhat overcome problems such as incomplete
and narrow spectrum degradation inherent in the use of single bacterium. Therefore, the
construction of more effective bacterial consortia is expected to economically increase the
efficient removal of NNIs from agricultural soil, with a wider application prospect.

Table 3. Neonicotinoid insecticide-degrading bacterial consortia.

Name Source Reaction Condition Degradation Rate References

N1/2 Contaminated soil,
Costa Ric

Imidacloprid, thiamethoxam,
160 rpm, 25 ◦C, 5 d

50 mg L−1, 60.1%
(imidacloprid), 33.4%
(thiamethoxam)

[67]

/ Sugarcane growing
soils, India Imidacloprid, 25 ± 2 ◦C, 56 d

50 mg kg−1 soil, 93.6%
100 mg kg−1 soil, 94.2%
150 mg kg−1 soil, 93%

[68]

SCAH Contaminated soil, China Clothianidin, 150 rpm, 30 ◦C, 15 d 500 mg L−1, 79.3% [69]

ACE-3 Acetamiprid-
contaminated soil, China

Acetamiprid, pH 6.0–8.0, 20–42 ◦C,
144 h 50 mg L−1, 100% [70]

/ Wastewater disposal
site, Greece Thiabendazole, 28 d

5 mg kg−1 soil, 100%
50 mg kg−1 soil, 100%
100 mg kg−1 soil, 100%

[71]

5. Neonicotinoid Insecticide Degradation Pathway

To date, the majority of functional degrading bacteria obtained from the environment
have been used to catalyze biological degradation processes, and the efficiency of these
microbes depends on a variety of factors, such as the pesticide type used, the soil microbes
present, and the soil water content [72,73]. The process of microbial degradation of NNIs can
be classified according to the type of reaction and the group of effects occurring during the
process of transformation of substances, such as (mixed-circle) opening, (de)methylation,
side-chain rupture/hydrolysis, (re)nitration, and dechlorination (carbon) [74]. In these
processes, mercury hydroxylase and P450 ca-oxygenase are two known key enzymes, which
have been speculated to play the functions of water-resistant antioxidant cluster molecules
[-C≡N] and hybrid oxidation openings (mercury, micoxylate, etc.), respectively [75].

The pathways of and the products generated from microbial degradation of NNIs vary
depending on the structure of the pesticides used and the metabolic activity of degrading
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microbes. Imidacloprid is the earliest and most comprehensively studied NNI to date.
In 2007, researchers first reported the biological degradation of imidacloprid by different
strains of bacteria [76]. There are two main pathways of IMI microbial degradation. In
the first pathway, IMI is first converted to 5-Hydroxy IMI and then to Olefin-IMI via the
action of dehydratase; olefin-IMI contains unsaturated double bonds, which makes it
more easily degraded and eventually converted to carbon dioxide. The second pathway
involves 2-Nitroxy restorative (IMI) action generated through IMI (Nitroso), guanidine,
and urea (Figure 1). Both pathways produce 6-chlorofluorocarbic acid and 6-phosphate-
based phosphoric acid, which are easily degradable organic substances that are oxidized to
produce H2O and CO2 [77]. Amidase and its encoding genes, such as aceA and aceB, play a
leading role in imidacloprid degradation [78].

Agrochemicals 2024, 3, FOR PEER REVIEW 7 
 

to produce H2O and CO2 [77]. Amidase and its encoding genes, such as aceA and aceB, 
play a leading role in imidacloprid degradation [78]. 

 
Figure 1. Microbial degradation pathways of imidacloprid. 

As research progresses, the pathways of acetamiprid biodegradation are better un-
derstood (Figure 2). Generally, the C≡N of acetamiprid is produced through the oxidation 
breakdown of N-amide derivatives, which are dissolved asymmetrically to produce two 
intermediates, with one intermediate rapidly producing 6-chlorophyllic acid and eventu-
ally being mineralized to H2O and CO2 [51]. Rhodococcus sp. BCH-2 can degrade acetam-
iprid to Ac-4 and rapidly oxidize it to produce 6-chloropyric acid, which is eventually 
mineralized to CO2 and H2O after multi-stage oxidation [53]. Furthermore, studies have 
demonstrated that acetamiprid does not produce an intermediate in some microbial deg-
radation processes, i.e., it is directly dechlorinated and de-methylated to the final product 
[79], and that micro-organisms cannot convert this final product into other products, alt-
hough studies have found that it can continue to be degraded in animal and plant systems 
[80]. During the degradation of acetamiprid, genes like anhA, anhC, anhB, anhD, and anhE 
play important roles [55]. 

 
Figure 2. Microbial degradation pathways of acetamiprid. 

Figure 1. Microbial degradation pathways of imidacloprid.

As research progresses, the pathways of acetamiprid biodegradation are better under-
stood (Figure 2). Generally, the C≡N of acetamiprid is produced through the oxidation
breakdown of N-amide derivatives, which are dissolved asymmetrically to produce two in-
termediates, with one intermediate rapidly producing 6-chlorophyllic acid and eventually
being mineralized to H2O and CO2 [51]. Rhodococcus sp. BCH-2 can degrade acetamiprid to
Ac-4 and rapidly oxidize it to produce 6-chloropyric acid, which is eventually mineralized
to CO2 and H2O after multi-stage oxidation [53]. Furthermore, studies have demonstrated
that acetamiprid does not produce an intermediate in some microbial degradation pro-
cesses, i.e., it is directly dechlorinated and de-methylated to the final product [79], and that
micro-organisms cannot convert this final product into other products, although studies
have found that it can continue to be degraded in animal and plant systems [80]. During
the degradation of acetamiprid, genes like anhA, anhC, anhB, anhD, and anhE play important
roles [55].

Thiamethoxam can be degraded by microorganisms in a variety of ways, one of which
is through the nitro-reduction metabolic pathway to produce nitroso, guanidine, and urea.
This pathway is the main pathway for microbial degradation of thiamethoxam. It can also
be converted to methyl-thiamethoxam via the demethylation pathway [74]. (Figure 3).
In a recent study, a thiamethoxam degrading functional strain Ensifer adhaerens TMX-23
was isolated via screening from rhizosphere soil bacteria, could biotransform 96% of
thiamethoxam in soil samples [37], thereby accelerating the degradation of thiamethoxam
residues in the soil.
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6. Application of NNI-Degrading Bacteria in the Remediation of Polluted Soil

As research continues to deepen, researchers have verified the effectiveness of func-
tional microorganisms in controlling soil NNI pollution. In a previous study, the remedi-
ation effect of a highly efficient degrading bacterial strain D-2 (Pigmentiphaga sp.) in soil
contaminated by acetamiprid and its influencing factors were studied. The results showed
that the degradation effect of this strain in unsterilized soil was slightly better than in steril-
ized soil; with the addition of 2 × 108 cfu g−1 of this degrading strain in contaminated soil
at 20 to 40 ◦C, under the conditions of weak alkalinity (pH 7.5), this strain could effectively
degrade 1 to 200 mg kg−1 of acetamiprid in the soil, and 4 days later, acetamiprid could be
completely eliminated [79]. Researchers have isolated five clothianidin-degrading bacterial
strains from the vegetable soil in a greenhouse in Tianshui, Gansu province, which were
identified as Ochrobactrum anthropic, Enterobacter sp., Acinetobacter johnsonii, Pseudomonas
putida, and Stenotrophomonas maltophilia. The combination of these five strains was used to
form an NNI-degrading microbial consortium named SCAH. When adding this consortium
into a mineral salt medium containing clothianidin (500 mg L−1) as the only source of
carbon, the degradation rate of clothianidin reached 79.3% after 15 days of cultivation.
More importantly, the microbial consortium performed well in reducing the NNI content
in the soil. After adding SCAH and nutrients to the contaminated soil, a degradation rate



Agrochemicals 2024, 3 37

of 95.7% was exhibited, resulting in the near-complete removal of clothianidin from the soil
over 45 days [69].

Generally speaking, bacterial strains or consortia that are currently domesticated from
soil have a greater potential for application in the remediation of NNI-polluted soil [81].
However, it is regrettable that most of the existing studies have been conducted only in the
laboratory. Thus, the application of functional bacteria in actual agricultural soil pollution
management is unclear, and there are still many constraints. For example, nutrients are
an essential factor in microbial growth, and in the process of using microbes to repair
polluted agricultural soil, although some of the pollutants can be exploited by microbes,
they still cannot satisfy the energy required for the growth of microbes, which affects the
reproduction and survival of bacteria. In addition, under purely cultivated conditions, the
strains of compound bacteria can work together, but the competitiveness of indigenous
microorganisms in in situ soil is stronger. This has a greater impact on the stability of the
added exogenous bacteria, which may even be eliminated due to their disadvantage in
the competition with indigenous microbes. Furthermore, under in situ conditions, the
interaction of exogenously applied microbes in polluted soil varies greatly under climatic
conditions, which also poses limitations and challenges to using bacteria for insecticide-
contaminated soil remediation.

With the rapid development of genetic engineering and molecular biology technolo-
gies, the biodegradation efficiency of NNIs can be improved through the application of
gene editing or synthetic biology technology. For example, based on genome sequencing
and using comparative genomics and comparative transcriptomics, the specific genetic
architecture of nicotine metabolism in the nicotine-degrading bacterial strain JY-Q was
resolved [80]. However, in a complex of tobacco waste water extract, the effect of JY-Q on
nicotine degradation was poor due to the lack of bacterial tolerance and nicotine conver-
sion ability. To break through this bottleneck, researchers first identified the regulatory
factors and promoters of the three modules (upper, middle, and downstream) of the nico-
tine metabolism in JY-Q and then applied metabolic engineering strategies for combined
replacement of the endogenous promoters, and the nicotinic degradation rate of the mod-
ified bacterial strains increased by 67% and 69%, respectively, compared with the wild
type [82,83].

7. Summary and Outlook

This paper provides a summary of NNIs’ pollution status, the degradation ability
of functional bacteria, and their application in agricultural soil. NNI-degrading bacteria
that are richly filtered from NNI-polluted agricultural soil have different degradation char-
acteristics. Compared to single functional strains, naturally domesticated or artificially
constructed functional consortia have higher NNI degradation efficiency, a broader spec-
trum, and wider prospects of application in actual polluted agricultural soil remediation.
In the future, research will be needed in the following areas:

(1) At present, most research studies on bacterial degradation of NNIs have been con-
ducted in the laboratory setting, rather than on the remediation of real polluted
agricultural soil. Since the environment in agricultural soil is very complex, the use of
NNI-degrading bacteria for the remediation of real farm soil needs more testing.

(2) Composite consortia are a research hotspot for the degradation of NNIs using bacteria.
In the future, modern molecular biology methods, such as high-flow sequencing,
stable isotope tracing, macro-genomics, and macro-transcriptomics, can be used
to clarify the mechanisms underlying the synergistic interaction between different
strains of bacteria in bacterial groups and to filter such strains for the construction
of bacterial consortia with targeted and efficient NNI degradation for application in
actual agricultural soil remediation.

(3) In the future, NNI-degrading functional bacteria or consortia can be prepared as
immobilized bacterial agents to improve the survival rate of degrading bacteria under
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in situ conditions and harsh climatic conditions, promote the biodegradation of NNIs,
and achieve efficient and safe remediation of NNI-contaminated soil.

Therefore, in future research, it is necessary for microbiologists, bio-geochemists,
agronomists, soil scientists, and modelers to engage closely in interdisciplinary cooper-
ation and continue in-depth research for a better understanding of the environmental
adaptability of NNI-degrading bacteria, their degradation enzymes, and the synergies
of degrading bacterial strains and genes, as well as to combine engineering, high-flow
sequencing, and genomics methods to establish the appropriate quantitative models to
build functional bacteria with strong environmental adaptation, broad degrading spectra,
and better degradation ability. In summary, the use of functional bacteria to control NNI
pollution in agricultural soils is a low-cost, green, and feasible method that can provide
an important technical reference for the resourcing and reuse of polluted farm soils, while
ensuring the safety of agricultural products and human health.
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