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Abstract: We revise our former definition of graph operations and correspondingly adapt the con-
struction of graph term algebras. As a first contribution to a prospective research field, Universal Graph
Algebra, we generalize some basic concepts and results from algebras to graph algebras. To tackle
this generalization task, we revise and reformulate traditional set-theoretic definitions, constructions
and proofs in Universal Algebra by means of more category-theoretic concepts and constructions.
In particular, we generalize the concept of generated subalgebra and prove that all monomorphic
homomorphisms between graph algebras are regular. Derived graph operations are the other main topic.
After an in-depth analysis of terms as representations of derived operations in traditional algebras,
we identify three basic mechanisms to construct new graph operations out of given ones: parallel
composition, instantiation, and sequential composition. As a counterpart of terms, we introduce
graph operation expressions with a structure as close as possible to the structure of terms. We show that
the three mechanisms allow us to construct, for any graph operation expression, a corresponding
derived graph operation in any graph algebra.

Keywords: graph operation; graph algebra; graph term algebra; Lawvere theory; derived graph
operation; graph operation expression; universal graph algebra; string diagrams

1. Introduction

The paper is a relatively independent part of a broader long-term project to develop a
proper foundation of diagrammatic specification formalisms and diagrammatic logics. The
project is centered around and extends the concept of generalized sketches. We use the term
“diagrammatic” as a synonym for “graph-based” in a very broad sense including arbitrary
presheaf topoi.

One of the objectives of our project is to elevate traditional first-order logic to a wide
range of arbitrary categories. In [1], we only addressed predicates and showed how to
define corresponding first-order logics of statements in context without operations in arbitrary
categories. The present paper is also meant to be a first step towards an abstract notion of
an operation allowing us to define fully fledged first-order logics of statements in context, at
least, in arbitrary topoi.

Generalized sketches have been developed in the 1990s independently by Michael
Makkai, motivated by his work on an abstract formulation of completeness theorems in
logic [2], and a group in Latvia around Zinovy Diskin, motivated by their work on data
bases and data modeling [3–5]. Our concept of graph operation has its origins in the concept
of sketch operation. Sketch operations do not appear in the work of Makkai, but they have
been an integral part of Diskin’s pioneering work from the very beginning.

Graph operations (and their prospective generalizations) are vital in software engineer-
ing. Moreover, they provide a conceptual tool with many potential and useful applications
in mathematics, logic, and computer science.

Software models are often diagrammatic structures. To keep software models
comprehensible for humans, we should, however, avoid overloading them with auxiliary
items and redundant information. Nonetheless, to formulate and integrate relevant
constraints in software models, it is necessary to refer to items that are not present in a
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model but that can be derived, like the composition of references, for example. Graph
operations are an appropriate tool to refer to and reason about those derivable items in
diagrammatic artifacts.

Graph operations are also vital for the definition of query languages for diagrammatic
data models, for example. The crucial idea is to formalize queries as derived graph operations
built up from basic operations like the operations of Codd’s relational algebra, for example.
The potential to formalize query languages for diagrammatic data models was one of
Diskin’s main motivations to introduce sketch operations [4].

An example par excellence for the conceptual potential of graph operations in math-
ematics are categories. Categories can be described as graphs plus an identity and a
composition operation. It is not common yet, but quite natural, to consider these operations
as graph operations. The identity operation introduces, for each vertex in a graph, a loop,
while the composition operation generates, for any two successive edges in a graph, a
corresponding composite edge. Even statements like “we assume a category with chosen
pullbacks”, for example, can be adequately made precise by means of corresponding graph
operations. Ref. [6] seems to be the first paper outlining the potential of graph operations
in category theory. Since categories are nowadays widely used in computer science, logic,
mathematics, and physics, we will use them as our running example.

In traditional string-based formalisms and logics, terms are the standard tool used to
represent and reason about “derivable data”. At the same time, terms give us an adequate
tool at hand to represent derived operations, i.e., operations that can be built up from the
basic operations in an algebra. Therefore, we generalized in [7] the construction of terms
from traditional algebras to graph algebras. The construction of graph term algebras
and their characterization as a free construction is the main result in [7]. Unfortunately,
our expectation that graph terms would give us a universal and appropriate concept of
derived graph operations and substitutions at hand was naive. We realized that the strong
interconnection between the “representation of data” and the “representation of derived
operations” breaks down in the case of graph operations.

After Section 2, where we list some basic notations, concepts, conventions, and re-
sults, the paper presents a further development of the theory of graph operations and
graph algebras in two directions—model theory (including term algebras) and derived
graph operations.

Model theory: In [7], we coined the concept of graph algebra, introduced graph terms, and
showed that graph term algebras are free graph algebras. There was, however, no
model theory in the sense of traditional Universal Algebra. As a kind of “proof of
concept”, we therefore generalize some basic model-theoretic concepts and results
from traditional algebras to graph algebras. We concentrate on the concept of “gen-
erated subalgebra” and the related problem of characterizing monomorphic and
epimorphic homomorphisms.

To tackle this task, we make a substantial effort in Section 3 to revise and reformulate
traditional set-theoretic definitions, constructions and proofs in Universal Algebra by
means of more category-theoretic concepts and constructions. Relying on this refor-
mulation, we can in Section 4 smoothly transfer concepts, definitions and results from
traditional algebras to graph algebras. In particular, we prove that all monomorphic
homomorphisms between graph algebras are regular.

In [7], we adapted the original idea of sketch operations [4] and defined the arity
of a graph operation as a single graph inclusion. This definition does not allow
us, however, to consider projections as legal graph operations. To be closer to the
traditional concept of operation in Universal Algebra, and to be able to define an
appropriate concept of a derived graph operation, we therefore declare in this paper the
arity of a graph operation as a span of graph inclusions. In Section 4.2, we clarify the
relation between both versions and discuss to what extent they are equivalent.
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To prove that all monomorphic homomorphisms between graph algebras are regular,
we also introduce partial graph algebras in Section 4.4. We define a so-called term
completion procedure transforming partial graph algebras into total graph algebras.
This procedure provides for each signature a free functor from the corresponding
category of partial graph algebras to the corresponding category of graph algebras.
The construction of graph term algebras turns out to be just a special case of this
new procedure.

Derived graph operations: To understand why the strong interconnection between “rep-
resentation of data” and “representation of derived operations” breaks down in the
case of graph operations and to find out how to define derived graph operations in an
appropriate way, we include in the paper a more in-depth analysis of the concept
term and discuss substitution calculi in general in Section 3.4.

In Section 3.7, we recall the construction of syntactic Lawvere theories as it is described
in [8], for example. In Section 5.1, we discuss finite product categories and elucidate
that terms can be characterized as normal forms for finite product expressions; thus,
Lawvere’s original slogan “composition is substitution” can be turned into the slogan
“substitution is symbolic composition plus normalization”.

Reviewing the relationship between finite products and tensor products, we identify
copying in Section 5.2 as the cause of the problem. We argue that, in the case of graph
operations, “copying of data”, as a computation of its own, has to be replaced by the
“soldering” of input and (!) output ports of computations.

In such a way, we end up in Section 5.3 with three mechanisms to construct new
graph operations out of given ones: parallel composition, instantiation (“soldering”
of input and output ports), and sequential composition.

Finally, we introduce in Section 5.4 graph operation expressions with a structure as close
as possible to the structure of terms. We define their semantics, i.e., the derived graph
operations we have been looking for, by means of the three mechanisms of parallel
composition, instantiation and sequential composition.

We complete the paper with some remarks concerning Operations in Topoi in Section 6,
a discussion of Related Work in Section 7 and concluding remarks in Section 8.

2. Notations and Preliminaries

CObj denotes the collection of objects of a category C and CMor as the collection of
morphisms of C, respectively. C(A, B) is the collection of all morphisms from object A to
object B in C. If the category C is clear from the context, we will often use the more compact
notation BA instead of C(A, B). We use the diagrammatic notation f ; g : A → C for the
composition of morphisms f : A→ B and g : B→ C in C. C v D states that category C is a
subcategory of category D. A category C is small if the collection CMor, and thus also the
collection CObj, is a set. Cat is the category of all small categories. A category C is locally
small if C(A, B) is a set for all objects A and B in C. Set denotes the category of all sets and
all (total) maps. Cat and Set are not small but locally small.

A (directed multi) graph G = (GV , GE, scG, tgG) is given by a collection GV of vertices, a
collection GE of edges and maps scG : GE → GV , tgG : GE → GV assigning to each edge its
source and target vertex, respectively [9]. 0 = (∅, ∅, id∅, id∅) is the empty graph. A graph
G is small if GV and GE are sets. A graph homomorphism ϕ : G → H between two graphs
G = (GV , GE, scG, tgG) and H = (HV , HE, scH, tgH) is a pair (ϕV , ϕE) of maps ϕV : GV → HV ,
ϕE : GE → HE such that the following diagrams commute.
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GE GV

	

HE HV

scG

ϕE ϕV

scH

GE GV

	

HE HV

tgG

ϕE ϕV

tgH

The identity graph homomorphism idG on a graph G is the pair (idGV , idGE) of identity
maps and composition of graph homomorphisms ϕ : G→ H and ψ : H→ K is performed
componentwise, i.e., ϕ; ψ := (ϕV ; ψV , ϕE; ψE). Graph is the category of all small graphs and
all graph homomorphisms between them. The empty graph is the initial object in Graph.
For convenience and uniformity, we will often consider a set A as a graph without edges.

The category comprising finite and small graphs as well as the underlying graphs of
categories like Cat, Set, and Graph, for example, is denoted by GRAPH, while SET is the
category containing all the corresponding collections of vertices and edges, respectively.
Correspondingly, we denote the category with all small categories and categories like Cat,
Set, and Graph as objects by CAT.

gr(C) denotes the underlying graph of a category C, i.e., we have gr(C)V := CObj
and gr(C)E := CMor. Note that a functor F : C → D is just a graph homomorphism F :
gr(C)→ gr(D) also preserving identities and composition. In other words, the assignments
C 7→ gr(C), (F : C → D) 7→ (F : gr(C) → gr(D)) define a faithful forgetful functor
Gr : Cat→ Graph. It is well known that there is a functor Pth : Graph→ Cat left-adjoint to
Gr assigning to any graph G the corresponding path category P(G).

In practical applications, it is often more convenient to work with interpretation
categories instead of functor categories. An interpretation of a graph G in a category C,
denoted by ϕ : G→ C, is a graph homomorphism ϕ from G to gr(C). A natural transformation
µ : ϕ⇒ ψ between two interpretations ϕ : G→ C and ψ : G→ C is a family µv : ϕV(v)→
ψV(v), v ∈ GV of morphism in C such that ϕE( f ); µu = µv; ψE( f ) for all edges f : v→ u in
G. All interpretations of G in C and all natural transformations between them constitute
the interpretation category [G→ C] with composition as the vertical composition of natural
transformations. (In [10], interpretations ϕ : G→ C are called “models of G in C” and the
notation Mod(G, C) is used instead of [G → C]. For our purposes, the more neutral and
general term “interpretation” is more convenient). For any categories C, D the assignments
(F : C → D) 7→ (F : gr(C) → gr(D)) define a full embedding of the traditional functor
category [C→ D] into the interpretation category [gr(C)→ D].

Obviously, the category Graph is, by definition, isomorphic to the interpretation cat-

egory [MG → Set] with MG as the graph E
sc
((tg 66 V . On the other hand, the adjunction

Pth a Gr ensures that for any small graph G the interpretation category [G → C] is
isomorphic to the functor category [P(G)→ C] and thus a presheaf topos.

For any set I and any set A the set AI = {a : I → A} of all maps from I into
A is a categorical product in Set with the family (πi : AI → A | i ∈ I) of projections
defined by πi(a) := a(i) for all a ∈ AI . If I is finite with n elements (indices), AI is
therefore isomorphic to the n-ary Cartesian product An of A. If we equip a finite set
In = {i1, i2, . . . , in} with a fixed total order i1 < i2 < . . . < in, we can reuse the traditional
tuple notation for elements in the Cartesian product An to also represent the elements in
AIn : A map a : In → A is represented by the tuple (a(i1), a(i2), . . . , a(in)). In this paper, we
will often describe a map a : In → A by simply declaring a = (a1, a2, . . . , an), i.e., a(ij) = aj
for all 1 ≤ j ≤ n. If n = 0, we have I0 = ∅, and we will consequently represent the only
map a : I0 → A by the empty tuple (). For any finite set A we denote its cardinality by |A|.

For any inclusion A ⊆ B of sets, we denote by ιA,B : A ↪→ B the corresponding
inclusion map with ιA,B(a) = a for all a ∈ A. A graph G is a subgraph of a graph H, G v H in
symbols, if GV ⊆ HV , GE ⊆ HE and the inclusion maps ιGV ,HV : GV → HV and ιGE ,HE : GE → HE
establish a graph homomorphism ιG,H = (ιGV ,HV , ιGE ,HE) : G → H. ιG,H is also called an
inclusion graph homomorphism or graph inclusion, for short.
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A partial map f : A ◦−→B is given by a domain of definition dom( f ) ⊆ A and a total map
from dom( f ) into B. The composition f ; g : A ◦−→C of two partial maps f : A ◦−→B and
g : B ◦−→C is defined by

• dom( f ; g) := {x ∈ A | x ∈ dom( f ), f (x) ∈ dom(g)} and
• f ; g(a) := g( f (a)) for all a ∈ dom( f ; g).

We consider any (total) map f : A→ B as a partial map f : A ◦−→B with dom( f ) = A.

3. Algebras and Term Algebras

Traditional expositions of Universal Algebra are based on finite Cartesian products.
As a first step of a smooth transition from traditional algebras to graph algebras, we
reformulate in this section some very basic concepts and results of Universal Algebra
utilizing sets of maps AI instead of finite Cartesian products An.

In parallel, we try to lift the traditional set-theoretic definitions, constructions and
proofs in Universal Algebra to a more general and abstract level utilizing category-theoretic
concepts and constructions. The objective is to pave the way from traditional operations
and algebras via graph operations and graph algebras to operations and algebras in topoi.

3.1. Signatures, Algebras and Homomorphisms

To declare the arities of operation symbols, we use canonical finite indexing sets

I0 = ∅, In := {i1, i2, . . . , in} for all n ≥ 1 and O = {o}. (1)

For all n ≥ 2, we assume In to be equipped with a fixed total order i1 < i2 < . . . < in; thus,
we can reuse the tuple notation to represent maps a : In → A as discussed in Section 2.

Definition 3.1 (Signature). A signature Σ = (OP, ar) is given by

• A set OP of operation symbols,
• A map ar assigning to each operation symbol op as its arity a pair ar(op) = (Iop, Oop) of

finite sets with Iop = In for some n ∈ N, and Oop = O = {o}.
We say that op ∈ OP is an n-ary operation symbol if Iop = In. If Ic = I0 for c ∈ OP, and we
also say that c is a constant symbol.

Remark 3.1 (Sets as arities). There can be arbitrarily and finitely many disconnected inputs for an
algebraic operation. We have decided to work with explicit sets of names for the “input positions”. In
contrast to possibly multiple inputs, it is usually assumed that an algebraic operation has exactly one
single output. For conformity reasons, we also introduce a name for the single output position. This
brings us closer to graph algebras, where the single-output paradigm will be given up. The input as
well as the output arity of a graph operation can be an arbitrary finite graph (see Definition 4.1).

Definition 3.2 (Algebra). Let Σ be a signature. A Σ-algebra A = (A, OPA) is given by

• A set A, called the carrier of A, and
• A family OPA = (opA : AIop → AOop | op ∈ OP) of maps called operations.

We say that opA is an n-ary operation if Iop = In. If Ic = I0, we also say that cA is a constant
operation, or simply a constant.

In the case where the signature Σ has no constant symbols, the empty set constitutes a
Σ-algebra, called the empty Σ-algebra.

Now, we reformulate the traditional concept of homomorphism.

Definition 3.3 (Homomorphism). Let Σ be a signature. A Σ-homomorphism h : A → B
between two Σ-algebras A and B is a map h : A → B satisfying the following homomorphism
condition

(HC) opA(a); h = opB(a; h) for all op ∈ OP and all a ∈ AIop .
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Iop A Oop

B

a

a; h
h

	 	

opA(a)

opB(a; h)

AIop AOop

	

BIop BOop

opA

_ ; h _ ; h

opB

For any sets A, B and I each map h : A → B induces a map _ ; h : AI → BI and thus
we can, more abstractly but equivalently, express the homomorphism condition (HC)
with the requirement that the above right square of maps commutes. Note that, in the
case of constant symbols c ∈ OP with Ic = I0, the homomorphism condition turns into
the equation opA(); h = opB() if we apply our conventions in Section 2 concerning the
tuple notation.

Given any Σ-algebra A, the identity map on the carrier set idA : A → A induces
an identity Σ-homomorphism idA : A → A. Similarly, given any Σ-homomorphisms
f : A → B, g : B → C, the composition f ; g : A → C of the underlying maps induces a
Σ-homomorphism f ; g : A → C. This defines the category Alg(Σ) with all Σ-algebras as
objects and all Σ-homomorphisms as morphisms.

Proposition 3.1 (Forgetful Functor). The assignments A 7→ A for Σ-algebras and
( f : A → B) 7→ ( f : A→ B) for Σ-homomorphisms define a faithful forgetful functor

UΣ : Alg(Σ)→ Set. (2)

A characteristic for any incarnation of the concept algebra is that the corresponding
categories of algebras inherit all limits from the respective underlying category. For the
abstract concept of F-algebra for an arbitrary functor F : C→ C, for example, the category
of all F-algebras inherits all limits from the category C [11].

It is well-known that the category Alg(Σ) inherits all limits from the category Set.
Following our methodological intention to lift things up to a more categorical element-free
level, we demonstrate that the decision to work with sets of maps AI instead of Cartesian
products An enables us to give a pure categorical concise proof of this classical result. We
intend to carry out all later constructions and argumentations within Set, and thus we
restrict ourselves to small limits.

Theorem 3.1 (Limits). Alg(Σ) inherits any small limit from the category Set, i.e., the functor
UΣ : Alg(Σ)→ Set creates small limits. Alg(Σ) has therefore all small limits since Set does.

Proof. Let J be a small graph and δ : J→ Alg(Σ) be a diagram in Alg(Σ) where δv = Av =
(Av, OPAv) for all vertices v in JV . We have to show that any limit cone π : L⇒ δ; UΣ over
the translated diagram δ; UΣ : J → Set induces a limit cone π : L ⇒ δ over δ in Alg(Σ)
such that L is a Σ-algebra with L as its carrier.

To define the operations in L, we note that for any operation symbol op in OP and
any map l : Iop → L we obtain a commutative cone l; π : Iop ⇒ δ; UΣ in Set with
(l; π)v := l; πv : Iop → Av for all v in JV . Applying the respective operations opAv to
the maps l; πv gives us a new cone opδ(l; π) : Oop ⇒ δ; UΣ in Set with opδ(l; π)v :=
opAv(l; πv) : Oop → Av for all vertices v in JV . Now, for any edge e : v→ w in JE, we have
that δe : δv → δw is a Σ-homomorphism from Av to Aw and thus, by the homomorphism
condition and commutativity of π : L⇒ δ; UΣ, we have

opAv(l; πv); δe = opAw(l; πv; δe) = opAw(l; πw) (3)
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which encapsulates that the cone opδ(l; π) : Oop ⇒ δ; UΣ is commutative. By the universal
property of π, there is a unique map k : Oop → L which satisfies

k; πv = opAv(l; πv) (4)

for all v in JV . By defining opL(l) := k, we ensure that each map πv : L → Av induces a
Σ-homomorphism πv : L → Av for all v in Jv. Thus, we indeed obtain a commutative cone
π : L ⇒ δ in Alg(Σ).

It remains to show that π : L ⇒ δ is a limit cone, i.e., for any other commutative cone
p : X ⇒ δ in Alg(Σ), we have to show that there is a Σ-homomorphism κ : X → L such
that κ; πv = pv for all v in JV . Note that p induces a commutative cone p; UΣ : X ⇒ δ; UΣ
in Set with (p; UΣ)v := pv : X → Av for all v in JV . As π is a limit cone over δ; UΣ, there
exists a unique map κ : X → L such that κ; πv = pv for all v in JV . We claim that κ extends
to the desired Σ-homomorphism by showing that

opX (x); κ = opL(x; κ) (5)

for any op in OP and x : Iop → X. By definition, opL(x; κ) is the unique map such that
opL(x; κ); πv = opAv(x; κ; πv) holds for all v in JV . Indeed, the map opX (x); κ : Oop → X
also satisfies this equality for all v in JV as

opX (x); κ; πv = opX (x); pv = opAv(x; pv) = opAv(x; κ; πv).

By the uniqueness of mediating morphisms. we obtain (5), which shows that κ : X → L is
indeed a Σ-homomorphism from κ : X → L. Moreover, it is the unique homomorphism
such that κ; πv = pv and thus, π : L ⇒ δ is a limit cone.

Remark 3.2 (Hom-sets). The proof of Theorem 3.1 is based on the convention in Section 2 that we
consider AI as a shorthand notation for the collection (hom-set) Set(I, A) of all morphisms in Set
from I to A. Set(I, A) is a set since Set is locally small. Set(I, A) is isomorphic to a corresponding
exponential object in Set, but this isomorphism does not play any role in this paper.

3.2. Subalgebras

As in the traditional approach, we can define subalgebras by means of set inclusions.

Definition 3.4 (Subalgebras). Let Σ = (OP, ar) be a signature. A Σ-algebra A = (A, OPA) is
a Σ-subalgebra of a Σ-algebra B = (B, OPB), A v B in symbols, if A ⊆ B and for all op ∈ OP
and a : Iop → A the following diagram commutes:

Iop A Oop

B

a

a; ιA,B

ιA,B
	 	

opA(a)

opB(a; ιA,B)

Here, ιA,B : A ↪→ B is the corresponding inclusion map from A into B.

A comparison of Definitions 3.3 and 3.4 makes it, however, obvious that we also can
simply describe Σ-subalgebras as special kinds of Σ-homomorphisms.

Corollary 3.1 (Subalgebras as Inclusion Homomorphisms). For Σ-algebras A and B such
that A ⊆ B, we have that A is a Σ-subalgebra of B if, and only if, the inclusion map ιA,B : A ↪→ B
establishes a Σ-homomorphism ιA,B : A ↪→ B.
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Since one of our objectives is to lift the traditional set-theoretic exposition of Uni-
versal Algebra to a more category-theoretic one, we will use, from now on, the concepts
“Σ-subalgebra” and “inclusion Σ-homomorphism” interchangeably.

We know that the monomorphisms (epimorphisms) in Set are exactly the injective
(surjective) maps, respectively. Any faithful functor reflects monomorphisms and epimor-
phisms. The forgetful functor UΣ : Alg(Σ)→ Set is faithful, and thus, we obtain

Corollary 3.2 (Injective and surjective Homomorphisms). If the underlying map f : A→ B
of a Σ-homomorphism f : A → B is injective (surjective), then f : A → B is a monomorphism
(epimorphism) in Alg(Σ).

In the traditional set-theoretic approach to Universal Algebra, a preferred tool to
describe, construct and reason about subalgebras are subsets of the carrier which are closed
with respect to applications of the operations in the algebra.

Definition 3.5 (Closedness). Let B = (B, OPB) be a Σ-algebra. We say a subset A ⊆ B is
closed in B if for all op ∈ OP and a : Iop → A the result opB(a; ιA,B) : Oop → B of applying the
operation opB in B to the input a; ιA,B : Iop → B factors through the inclusion map ιA,B : A ↪→ B,
i.e., there exists a map ra : Oop → B such that the following diagram commutes:

Iop A Oop

B

a

a; ιA,B

ιA,B
	 	

ra

opB(a; ιA,B)

A is a Σ-subalgebra of B then the carrier A of A is obviously closed with respect to all the
operations in B. On the other hand, the inclusion map ιA,B : A ↪→ B is a monomorphism in
Set. Therefore the map ra : Oop → B in Definition 3.5 is unique if it exists. In such a way,
the assignments a 7→ ra define a total operation from AIop to AOop if A is closed, and we
obtain the following result.

Proposition 3.2 (Subalgebra ∼= Closed Subset). There is a one-to-one correspondence between
Σ-subalgebras of B and closed subsets of B.

Proposition 3.2 suggests that there may actually be no need for the auxiliary concept
closed subset in a more category-theoretic approach. This conjecture is supported by the
observation that we can reconstruct the standard result that closed subsets are closed with
respect to intersection, reformulated in terms of inclusion homomorphisms, as a special
case of Theorem 3.1. To see this, we have to realize that the intersection of subsets can be
described as a special limit construction, namely multiple pullbacks, in Set.

Remark 3.3 (Multiple Pullbacks). Let I be a set and M be an I-indexed family (Ai ⊆ B | i ∈ I)
of subsets of a set B. We can describe this situation witha diagram δ : MP(I) → Set with MP(I)
as a small graph given by MP(I)V := I ∪ {∗}, MP(I)E := {ei : i → ∗ | i ∈ I}, and δ defined by
δi := Ai for all i ∈ I, δ∗ := B and inclusion maps δei := ιAi ,B : Ai ↪→ B for all i ∈ I.

It is well known and straightforward to prove that the intersection ∩M :=
⋂

i∈I Ai together
with the inclusion maps ι∩M,Ai : ∩M ↪→ Ai, i ∈ I and ι∩M,B = ι∩M,Ai ; ιAi ,B : ∩M ↪→ B is a
limit cone of the diagram δ : MP(I)→ Set in Set.

Limits of this shape are also called multiple pullbacks and they reflect monomorphisms: For
any category C, any diagram δ : MP(I) → C and any limit cone p : L ⇒ δ, all the morphisms
pi : L → δi, i ∈ I are monomorphisms in C as as long as all the morphisms δei : δi → δ∗, i ∈ I
exist.
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Due to Remark 3.3, we can now replace and enhance the traditional statement

“If M is a family of closed subsets in B, then its intersection ∩M is closed as well”

by the following corollary of Theorem 3.1.

Corollary 3.3 (Intersection of Subalgebras). For any set I, any Σ-algebra B, and any diagram
δ : MP(I) → Alg(Σ) of Σ-subalgebras δei = ιAi ,B : Ai ↪→ B, i ∈ I of B there is a unique
Σ-subalgebra L = (L, OPL) of B with L =

⋂
i∈I Ai that is a Σ-subalgebra of Ai for all i ∈ I.

Moreover, the inclusion Σ-homomorphisms ιL,Ai : L ↪→ Ai, i ∈ I and ιL,B : L ↪→ B
constitutes a multiple pullback, i.e., a limit cone of the diagram δ : MP(I)→ Alg(Σ) in Alg(Σ).

We also call L = (L, OPL) the intersection of the I-indexed familyM = (Ai | i ∈ I) of
Σ-subalgebras of B and may use the notations

⋂M,
⋂

i∈I Ai or, simply,
⋂Ai to denote L.

Traditionally, the Σ-subalgebraR(A,B) of a Σ-algebra B generated by a subset A ⊆ B
can be defined as the Σ-subalgebra with the carrier R(A,B) constructed as the intersection
of the following family of closed sets in B:

R(A,B) := ∩{X ⊆ B | X closed in B and A ⊆ X}. (6)

Since the collection of all subsets of a set B is a set as well, this definition matches the pattern
of Corollary 3.3. We only have to choose for I the set {X ⊆ B | X closed in B and A ⊆ X}
itself or any isomorphic set.

Using this sleight of hand, we can take full advantage of the universal property of
the intersection of subalgebras in Alg(Σ), as stated in Corollary 3.3, and lift up the concept
“generated by a subset” to the concept “accessible via a map”.

Definition 3.6 (Subalgebra accessible via a Map). For any Σ-algebra B and any map f : A→
B, let M be the set of all Σ-subalgebras X of B such that f factors through the inclusion map
ιX,B : X ↪→ B, i.e., there exists a map fX : A→ X such that fX ; ιX,B = f .

We denote by R( f ,B) the intersection ofM, according to Corollary 3.3. In particular, the
carrier of R( f ,B) is the intersection R( f ,B) :=

⋂{X | X ∈ M} of sets. We call R( f ,B) the
Σ-subalgebra of B accessible (reachable) via f or the homomorphic image of A with respect
to f .

In the case of inclusion maps f = ιA,B : A ↪→ B, we also use the traditional notationR(A,B)
instead ofR(ιA,B,B) and also callR(A,B) the Σ-subalgebra of B generated by A.

Note that the map fX : A→ X in Definition 3.6 is unique if it exists, since the inclusion
map ιX,B : X ↪→ B is a monomorphism in Set.

Corollary 3.4 (Homomorphic image includes Image). For any Σ-algebra B and any map
f : A→ B, we have f (A) ⊆ R( f ,B) for the (set-theoretic) image f (A) := { f (a) | a ∈ A} of
A with respect to the map f .

Proof. This follows immediately from the observation that f (A) =
⋂{Y | Y ∈ N} for the

set N of all subsets Y of B such that f factors through the inclusion map ιY,B : Y ↪→ B and
that {X | X ∈ M} ⊆ N due to the definition ofM andR( f ,B) in Definition 3.6 and the
definition of N .

Remark 3.4 (Well-powered). In category theory, the adjective well-powered is used for cate-
gories C where for all objects A in C the collection of all subobjects of A is a set.

Of course, we do have the traditional concept of generated algebra and corresponding
results available.
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Definition 3.7 (Accessible and Generated Algebras). Let B be a Σ-algebra.

1. B is accessible via a map f : A→ B if R( f ,B) = B.
2. If B is accessible via an inclusion map ιA,B : A → B, i.e., if R(A,B) = R(ιA,B,B) = B,

we also say that B is generated by A.
3. B is said to be generated if it is generated by the empty set, i.e., accessible via the unique map

ι∅,B : ∅ ↪→ B from the initial object ∅ in Set to B.

Corollary 3.5. A Σ-algebra B is generated if, and only if, there are no proper Σ-subalgebras of B.

Corollary 3.6. If a signature Σ has no constant symbols, then the empty Σ-algebra is the only
generated Σ-algebra.

The concept accessible via a map can be utilized to find a characterization of epimor-
phisms in Alg(Σ). First, we observe that “accessible via a map” implies “epic”.

Lemma 3.1 (Accessible implies Epic). A Σ-homomorphism f : A → B is an epimorphism in
Alg(Σ) if B is accessible via the underlying map f : A→ B, i.e., if B = R( f ,B).

Proof. We consider arbitrary Σ-homomorphisms g, h : B → C such that f ; g = f ; h.
We know that the set X = {b ∈ B | g(b) = h(b)} ⊆ B together with the inclusion map

ιX,B : X ↪→ B is an equalizer of the maps g, h : B → C in Set. According to Theorem 3.1,
there is a unique Σ-algebra X = (X, OPX ) such that ιX,B : X ↪→ B becomes an inclusion
Σ-homomorphism ιX,B : X ↪→ B, which is, moreover, the equalizer of the Σ-homomorphisms
g, h : B → C. Assumption f ; g = f ; h ensures that there exists a unique map fX : A → X
with fX ; ιX,B = f . Due to the construction ofR( f ,B) in Definition 3.6, we have an inclusion
Σ-homomorphism ιR( f ,B),X : R( f ,B) ↪→ X .

Accessibility of B means B = R( f ,B), and thus we obtain, finally, X = B. This
means, however, that the equalizer of g and h is the identity on B thus, we have g = h as
required.

To show that, on the other hand, epic implies accessible, we can take advantage of the
following result.

Proposition 3.3 (Subalgebras are Regular Monos). For any Σ-subalgebra ιA,B : A ↪→ B of
a Σ-algebra B there exists a Σ-algebra C and parallel Σ-homomorphisms g, h : B → C such that
ιA,B : A ↪→ B is the equalizer of g and h.

Proof. We construct the pushout of the span B A B
ιA,B ιA,B of inclusion maps (see

the left diagram below). We set C := B +A B, g := κ1, and h := κ2. Since ιA,B is injective,
both maps κ1, κ2 : B→ B +A B are injective too, and, moreover, the pushout square is as
well a pullback square. This ensures, especially, that ιA,B : A ↪→ B is the equalizer of the
maps κ1, κ2 : B → B +A B in Set. The pushout property of the square provides a unique
map k : B +A B→ B such that

κ1; k = κ2; k = idB (7)
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A

B po B

	 B +A B 	

B

ιA,B ιA,B

κ1

idB

κ2

idB
k

Iop

A

B pb B

	 B +A B 	

B

a
b1 b2c

ιA,B ιA,B

κ1

idB

κ2

idB
k

Operations on C: We now extend C to a Σ-algebra C = (C, OPC) by defining for each op in
OP a corresponding operation opC : (B +A B)Iop → (B +A B)Oop . For any c : Iop → B +A B
in (B +A B)Iop , we do have four possible cases.

Case 1 c factors through κ1: There exists a map b1 : Iop → B such that b1; κ1 = c (see the
right diagram above). b1 is unique since κ1 is a monomorphism. We simply set

opC(c) = opC(b1; κ1) := opB(b1); κ1 (8)

Iop B Oop

B +A B

b1

c
κ1

	 	

opB(b1)

opC (c)

Case 2 c factors through κ2: Analogous to Case 1.

Case 3 Overlapping of Case 1 and 2: There exist maps b1, b2 : Iop → B such that b1; κ1 =
c = b2; κ1. Due to the pullback property of the square, there exists a unique
a : Iop → A such that b1 = a; ιA,B = b2. The homomorphism property of ιA,B
ensures opB(b1) = opB(a; ιA,B) = opB(b2) = opA(a); ιA,B and we obtain, finally,
opB(b1); κ1 = opA(a); ιA,B; κ1 = opA(a); ιA,B; κ2 = opB(b2); κ2. That is, in the
event of an overlapping, Case 1 and Case 2 define the same output opC(c) =
opB(b1); κ1 = opB(b2); κ2. Note that there will always be an overlapping for
constant symbols!

Case 4 c factors neither through κ1 nor through κ2: This can only happen if Iop = In with
n ≥ 2. Utilizing the operations in B to a maximal extent, Cases 1 and 2 define a
partial map from (B +A B)Iop to (B +A B)Oop . However, since we restrict ourselves
to total operations, we have to find an ad hoc totalization trick to turn opC into a
total operation. Employing (7), we may decide to utilize the operations in B to
produce outputs in the left copy of B in B +A B. We set

opC(c) := opB(c; k); κ1 (9)
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Iop B Oop

B +A B

c; k

c
κ1

	 	

opB(c; k)

opC (c)
k

The operations in C are defined by (8) exactly in a way that the maps κ1 and κ2 become
Σ-homomorphisms κ1, κ2 : B → C. Note that Case 4 has no relevance for the homomor-
phism property of κ1 and κ2! Theorem 3.1 ensures, finally, that the inclusion Σ-homo-
morphism ιA,B : A → B is the equalizer of the Σ-homomorphisms κ1, κ2 : B → C.

Regularity of Alg(Σ) entails that the concepts accessible and epic are equivalent.

Proposition 3.4 (Accessible ∼= Epic). For any Σ-homomorphism f : A → B, it holds that B is
accessible via the underlying map f : A→ B; i.e., in other words, B is equal to the homomorphic
imageR( f ,B) of A with respect to f , if, and only if, f : A → B is an epimorphism in Alg(Σ).

Proof. “Accessible implies epic” has been shown in Lemma 3.1. We now show that “epic
implies accessible”: We consider an arbitrary Σ-subalgebra X of B such that there exists a
map fX : A→ X with fX ; ιX,B = f . Due to Proposition 3.3, there exist Σ-homomorphisms
g, h : B → C such that ιX ,B : X → B is the equalizer of g and h. Due to the assumption
fX ; ιX,B = f , we obtain f ; g = f ; h and thus g = h since f is epic. This means, however,
X = B and, finally,R( f ,B) = B due to the construction ofR( f ,B) in Definition 3.6.

The axiom of choice is equivalent to the statement that all epimorphisms f : A → B
in the category Set are split; i.e., there exists a map g : B → A such that g; f = idB. As
a consequence, each homomorphism between Σ-algebras maps closed subsets to closed
subsets. In particular, we have

Lemma 3.2 (Closed Images). For any Σ-homomorphism f : A → B, the (set-theoretic) image
f (A) ⊆ B of the carrier A of A is closed in B. We denote by f (A) the unique Σ-subalgebra
of B with the carrier f (A) and call it the (set-theoretic) image of A with respect to the Σ-
homomorphism f .

Lemma 3.2 is the last brick we need to conclude that the epic Σ-homomorphisms are
exactly the surjective ones.

Corollary 3.7 (Epic ∼= Surjective). For any Σ-homomorphism f : A → B we have f (A) =
R( f ,B); thus, f : A → B is an epimorphism in Alg(Σ) if, and only if, the map f : A → B is
surjective.

Proof. By Corollary 3.4 we have f (A) ⊆ R( f ,B). Lemma 3.2 gives us the Σ-subalgebra
f (A) of B at hand and ensures f (A) ⊇ R( f ,B) due to the construction of R( f ,B) in
Definition 3.6. This gives us f (A) = R( f ,B) since two Σ-subalgebras of a Σ-algebra B
are equal if, and only if, they do have the same carrier. By Proposition 3.4 we obtain
f : A → B epic if, and only if, B = f (A) = R( f ,B). B = f (A), however, means that f is
surjective.

Remark 3.5 (Stepwise Generation of Closed Subsets). There is another, more constructive, way
to construct the closed sets R(A,B). We start with A and add all the elements from B that we can
reach by successively applying the operations in B to elements that have already been reached. A
categorical analysis, formalization, and generalization of this stepwise iterative construction can be
found in [12], for example.
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3.3. Terms and Term Algebras

We define terms as strings of symbols. To distinguish terms from metalevel expressions,
such as opA(a1, . . . , an), we will use angle bracket symbols ”〈”, ”〉”, instead of parentheses
”(”, ”)”, to build terms. Moreover, we will use delimiter signs p. . .q to indicate that the ex-
pression between the delimiters is a string. So the delimiter signs p. . .q are not constituents
of terms and we may just drop them if convenient. The following is a traditional inductive
definition of terms similar to [13,14]:

Definition 3.8 (Terms). The set TΣ(X) of all Σ-terms over a set X of variables is the smallest
set of strings of symbols such that

Variables: pxq ∈ TΣ(X), for all x ∈ X;

Constants: pc〈〉q ∈ TΣ(X), for all c ∈ OP with Ic = I0;

Operations: pop〈t1, . . . , tn〉q ∈ TΣ(X), for all op ∈ OP with Iop = In, n ≥ 1 and all maps
t = (pt1q, . . . , ptnq) in TΣ(X)In .

Note that the assignments x 7→ pxq, assigning to each variable the string consisting
only of a single symbol denoting this variable, define an injective map ηX: X → TΣ(X).
Note, moreover, that in case X = In = {i1, i2, . . . , in}, each operation symbol op ∈ OP is
reborn as the Σ-term pop〈i1, . . . , in〉q ∈ TΣ(In).

A term can be seen as a “tree-like computation scheme” and if we assign to variables
certain values in an algebra, we can compute a value in this algebra following this compu-
tation scheme. Terms are constructed inductively, and thus we can also define this kind of
evaluation of terms inductively.

Definition 3.9 (Evaluation of terms). For any set X of variables, any Σ-algebra A = (A, OPA)
and any map α : X → A (called a variable assignment), we can inductively define a map
α∗ : TΣ(X)→ A :

Variables: α∗(x) := α(x), for all pxq ∈ TΣ(X);

Constants: α∗(c〈〉) := cA()(o), for all pc〈〉q ∈ TΣ(X);

Operations: α∗(op〈t1, . . . , tn〉) := opA(α∗(t1), . . . , α∗(tn))(o), for all pop〈t1, . . . , tn〉q ∈ TΣ(X).

All three cases in Definition 3.9 are disjoint and terms are only equal if, and only if,
they are equal as strings and thus α∗ is uniquely defined.

There is no indication in Definitions 3.8 and 3.9 where the sets TΣ(X) of Σ-terms live
and where the evaluation of Σ-terms takes place. A very common and powerful practice
in Universal Algebra is to internalize Σ-terms as elements of carriers of Σ-algebras and to
encode term evaluation through Σ-homomorphisms. First, we observe that the stepwise
construction of terms in Definition 3.8 can be reflected by defining for each operation
symbol in OP a corresponding (constructor) operation on TΣ(X):

Definition 3.10 (Term algebra). For a set X of variables, we define the term Σ-algebra over X
TΣ(X) = (TΣ(X), OPTΣ(X)) by

Constants: cTΣ(X)()(o) := pc〈〉q, for all c ∈ OP with Ic = I0, and

Operations: opTΣ(X)(t)(o) := pop〈t1, . . . , tn〉q, for all op ∈ OP with Iop = In, n ≥ 1 and all
maps t = (pt1q, . . . , ptnq) in TΣ(X)In .

Note that the term Σ-algebra TΣ(X) is generated by ηX(X) ⊆ TΣ(X). This is implic-
itly ensured by the statement of TΣ(X) being the smallest set satisfying the conditions in
Definition 3.8. We say that the elements in ηX(X) are the generators of TΣ(X).

Second, we observe that the introduction of term Σ-algebras TΣ(X) allows us to
encode the defining equations for the cases Constants and Operations in Definition 3.9
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via the requirement that the map α∗ : TΣ(X) → A should establish a Σ-homomorphism
α∗ : TΣ(X)→ A:

Constants: α∗(c〈〉) = α∗(cTΣ(X)()(o)) = (cTΣ(X)(); α∗)(o) = cA()(o), for all pc〈〉q ∈
TΣ(X);

Operations: α∗(op〈t1, . . . , tn〉) = α∗(opTΣ(X)(t)(o)) = (opTΣ(X)(t); α∗)(o) = opA(t; α∗)(o)
= opA(α∗(t1), . . . , α∗(tn))(o), for all pop〈t1, . . . , tn〉q ∈ TΣ(X) where t is the map in
TΣ(X)In defined by t = (pt1q, . . . , ptnq).

The third case Variables in Definition 3.9 simply requires that the map α∗ : TΣ(X)→ A
is an extension of the map α : X → A and thus the statement “Definition 3.9 defines
α∗ : TΣ(X)→ A uniquely” is transformed into the statement that the term Σ-algebra TΣ(X)
is a Σ-algebra freely generated by X.

Proposition 3.5 (Term Algebras as Free Construction). Given a set X of variables, the Σ-term
algebra TΣ(X) has the following universal property: For any Σ-algebra A = (A, OPA) and any
map α : X → A, there exists a unique Σ-homomorphism α∗ : TΣ(X)→ A such that ηX ; α∗ = α.

Set X TΣ(X) TΣ(X) Alg(Σ)

A A

α

ηX

α∗
	

α∗

The universal property in Proposition 3.5 characterizes TΣ(X) uniquely up to isomor-
phism and the case X = ∅ gives us an initial Σ-algebra at hand.

Corollary 3.8. TΣ(∅) is initial in the category Alg(Σ).

It is a standard result for free constructions that the assignments X 7→ TΣ(X) and
( f : X → Y) 7→ (( f ; ηY)

∗ : TΣ(X)→ TΣ(Y)) define a (free) functor FΣ : Set→ Alg(Σ) that
is left-adjoint to the forgetful functor UΣ (see [15]).

Set Alg(Σ)

X TΣ(X) TΣ(X)

	

Y TΣ(Y) TΣ(Y)

FΣ

UΣ

f

ηX

( f ; ηY)
∗ ( f ; ηY)

∗

ηY

3.4. Substitutions

The very appealing advantage of internalizing terms as elements of carriers of algebras,
encoding term evaluations as homomorphisms and thus having the adjunction FΣ a UΣ at
hand, is that we obtain a fully fledged, well-defined, and well-behaved substitution calculus
for free relying on general results in Category Theory. We insert an informal exposition of
what we mean by a substitution calculus and what the expected features of such a calculus
could be. The advantages of the “internal view of terms” will be discussed afterwards.

3.4.1. Substitution Calculi

The concept substitution is a kind of conceptual descendant of the concept of variable.
A variable in an expression is a “free location” where we can put in expressions of a certain
kind. The basic constituent of a substitution calculus is its specific way to describe a
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(1) Substitution (declaration), i.e., an assignment of expressions to variables.

In Universal Algebra, we can formalize substitutions as maps σ : X → TΣ(Y). For finite
sets X = {x1, . . . , xn} we may simply declare a substitution by listing the corresponding
assignments {x1 7→ t1, . . . , xn 7→ tn}.

The second constituent of a substitution calculus is the specific mechanism for

(2) Substitution application, i.e., the replacement of occurrences of variables in a
given expression by the expressions assigned to the variables by a substitution.

A common practice in Universal Algebra [14] is to denote the resulting term in TΣ(Y) of
applying a finite substitution {x1 7→ t1, . . . , xn 7→ tn} to a term t in TΣ(X) by

t[x1/t1, . . . , xn/tn]. (10)

An obvious, but not always trivial, requirement for substitution application is

(3) Preservation of well formedness; i.e., replacing variables in a well-formed expres-
sion by well-formed expressions should result in a well-formed expression.

In the case of terms, “well-formedness” simply means that we consider only those strings
of symbols as terms that can be generated inductively by the three rules in Definition 3.8.

Let us assume that we have three collections of expressions and two linkable substitu-
tions. The first substitution replaces variables in expressions from the first collection with
expressions from the second collection, and thus its application produces expressions in the
second collection. Analogously, the second substitution replaces variables in expressions
from the second collection by expressions from the third collection and its application
results in expressions from the third collection. In this situation, we do have two possi-
bilities to transform expressions from the first collection into expressions from the third
collection. First, we can apply both substitutions successively. Second, we can compose
both “small step” substitutions into a single “big step” substitution. That is, we apply the
second substitution to all the expressions appearing in the definition of the first substitution
and obtain a new substitution replacing variables in expressions from the first collection by
expressions from the third collection. This puts another feature of substitution calculi on
the agenda:

(4) Composition of linkable substitutions.

The composition of the two linkable finite substitutions {x1 7→ t1, . . . , xn 7→ tn} from
X = {x1, . . . , xn} to TΣ(Y) and {y1 7→ r1, . . . , ym 7→ rm} from Y = {y1, . . . , ym} to TΣ(Z)
results, for example, in the finite substitution

{x1 7→ t1[y1/r1, . . . , ym/rm], . . . , xn 7→ tn[y1/r1, . . . , ym/rm]} (11)

from X to TΣ(Z).
Obviously, we would like that the application of the “big step” substitution always

produces the same result as the successive application of the two linkable “small step”
substitutions; i.e., for a substitution calculus, we require that

(5) The composition of substitutions is compatible with substitution application.

For the two linkable finite substitutions above, this requirement can be expressed by
the equation

t[x1/t1[y1/r1, . . . , ym/rm], . . . , xn/tn[y1/r1, . . . , ym/rm]] (12)

=(t[x1/t1, . . . , xn/tn])[y1/r1, . . . , ym/rm]

The compatibility of the composition of substitutions with substitution application
usually ensures another useful property:

(6) The composition of substitutions is associative.
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These are the six syntactic features we claim to be the essential characteristics of a
substitution calculus as such. If a substitution calculus is, however, part of a bigger logic
formalism where semantic structures are also considered, we will have some additional
features concerning the interplay of syntax and semantics.

In analogy to substitutions, we first have to choose a way to describe

(7) Variable assignments, i.e., assignments of semantic items to variables.

In Universal Algebra, we work exclusively with variables ranging over elements in sets,
and thus variable assignments can be defined as maps α : X → A from a set of variables
into the carrier set of a Σ-algebra A, as in Definition 3.9.

In analogy to the step from substitution (declaration) to substitution application, each
variable assignment should induce a corresponding

(8) evaluation of expressions, computing for each expression a unique semantic item
or truth value.

Definition 3.9 presents, for example, an inductive definition of the evaluation α∗ : TΣ(X)→
A of Σ-terms into elements in the carrier A of a Σ-algebra A induced by a variable assign-
ment α : X → A.

Since variable assignments establish a bridge from syntax to semantics, there is no
composition of variable assignments in a substitution calculus. We should, however, have

(9) The composition of substitutions with variable assignments as well as The composi-
tion of variable assignments with homomorphisms.

For both new kinds of composition, it is desirable to have

(10) Compatibility with respect to substitution application and/or evaluation.

Finally, it would be reasonable to require

(11) Associativity for the three new possible combinations of the four kinds of
composition, i.e., substitution–substitution–assignment, substitution–assignment–
homomorphism, and assignment–homomorphism–homomorphism.

3.4.2. Substitutions by Algebraic Extensions

We now discuss the specialties of the “internalization approach” in view of the informal
concept of a substitution calculus outlined in the last subsection.

Features (7) and (8): Variable assignments are formalized as maps α : X → A from a
set of variables into the carrier set A of a Σ-algebra A and the corresponding unique term
evaluations are inductively defined maps α∗ : TΣ(X)→ A according to Definition 3.9.

Introducing term Σ-algebras and realizing that the inductive definition of unique term
evaluations can be described as unique algebraic extensions α∗ : TΣ(X) → A of variable
assignments α : X → A, as stated in Proposition 3.5, has three immediate consequences.

Feature (1): Substitutions σ : X → TΣ(Y) simply become a special case of variable assign-
ments and

Feature (2): Substitution applications appear as a special case of term evaluations, namely
as algebraic extensions σ∗ : TΣ(X)→ TΣ(Y). Applying a substitution σ : X → TΣ(Y)
to a Σ-term t ∈ TΣ(X) means nothing but to compute the Σ-term σ∗(t) ∈ TΣ(Y). As
mentioned before, it is also common to use instead of σ∗(t) the more informative
notation in (10) in the case of finite sets of variables.

Feature (3): Preservation of well formedness is implicitly ensured by the fact that the structures
we define in Definition 3.10 (Term algebra) are indeed Σ-algebras.

Feature (9): The composition of a substitution σ : X → TΣ(Y) with a variable assign-
ment α : Y → A is the variable assignment σ; α∗ : X → A, while Feature (10), i.e., the
compatibility of substitution application and evaluation, is ensured by the uniqueness of
algebraic extensions: σ∗; α∗ = (σ; α∗)∗ (see the left diagram below).
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X TΣ(X)

Y TΣ(Y)

A

σ

ηX

σ∗

(σ; α∗)∗

	

α

ηY

α∗
	

	

X TΣ(X)

Y TΣ(Y)

TΣ(Z)

σ

ηX

σ∗

(σ; δ∗)∗

	

δ

ηY

δ∗
	

	

Feature (4), composition of linkable substitutions, becomes a special case of Feature (9):
The composition of a substitution σ : X → TΣ(Y) and a substitution δ : Y → TΣ(Z) is
the substitution σ; δ∗ : X → TΣ(Z). In this way, Feature (5), composition of substitutions
is compatible with substitution application, becomes a special case of Feature (10): σ∗; δ∗ =
(σ; δ∗)∗ (see the right diagram above), and 12 spells out this equation for the finite case.

The remaining part of Features (9) and (10) is also ensured by Proposition 3.5: The
composition of a variable assignment α : X → A with a Σ-homomorphism h : A → B,
for example, is the variable assignment α; h : X → B and the uniqueness of algebraic
extensions ensures compatibility: α∗; h = (α; h)∗.

Finally, all the compatibilities together with the associativity of composition of maps
also gives us the three kinds of associativity required by Feature (11). The proof of the asso-
ciativity

substitution ; (substitution ; assignment) = (substitution ; substitution) ; assignment,

for example, is simply given by the compatibility of substitution application and evaluation,
as well as associativity of map composition: σ; (δ; β∗)∗ = σ; (δ∗; β∗) = (σ; δ∗); β∗ for
arbitrary substitutions σ : X → TΣ(Y), δ : Y → TΣ(Z) and assignments β : Z → A.

Remark 3.6 (No Internalization). Of course, there is no need to utilize internalization of terms
and uniqueness of algebraic extensions to establish a fully fledged substitution calculus for Universal
Algebra! Instead, we could just separately work out each of the necessary definitions and proofs
based on the inductive definition of terms analogous to Definition 3.9 (Evaluation of Terms).
Internalization simply saves us a lot of work if it comes to substitutions!

On the other hand, internalization is obviously not helpful in establishing substitution calculi
for pure syntactic logic frameworks and/or for logic frameworks without operations. Also in logic
frameworks, where some variables may range over logic formulas, the internalization of terms will
be of restricted help.

As an example of a definition that is independent of Proposition 3.5, we give an explicit
inductive definition of substitution application.

Definition 3.11 (Substitution Application). For any sets X, Y of variables and any substi-
tution δ : X → TΣ(Y), we can inductively define a corresponding substitution application
δ∗ : TΣ(X)→ TΣ(Y) such that ηX ; δ∗ = δ:

Variables: δ∗(x) := δ(x), for all pxq ∈ TΣ(X);

Constants: δ∗(c〈〉) := c〈〉, for all pc〈〉q ∈ TΣ(X);

Operations: δ∗(op〈t1, . . . , tn〉) := op〈δ∗(t1), . . . , δ∗(tn)〉, for all pop〈t1, . . . , tn〉q ∈ TΣ(X).

Remark 3.7 (Kleisli Category). The composition of substitutions defined above, together with ηX
as the identity substitution for every set X, gives us a category of substitutions. In more abstract
categorical terms, this is exactly the Kleisli category of the adjunction FΣ a UΣ, which is equivalent
to the full subcategory of Alg(Σ) of all term Σ-algebras (see, for example, [15]).



Logics 2023, 1 199

3.5. Two Model-Theoretic Implications of the Existence of a Free Functor

Before we turn to our actual topic of “derived operations”, it is maybe worth rounding
up our discussion of monomorphisms and epimorphisms in Alg(Σ). We have already
mentioned in Corollary 3.2 that injective Σ-homomorphisms are monomorphisms in Alg(Σ)
since the functor UΣ : Alg(Σ)→ Set is faithful and therefore reflects monomorphisms. The
first observation is that the existence of the free functor FΣ : Set→ Alg(Σ) now provides the
implication in the other direction, since right-adjoint functors preserve monomorphisms.

Lemma 3.3 (Monic implies Injective). For every monic Σ-homomorphism f : A → B, the
underlying map f : A→ B is a monomorphism in Set, i.e., injective.

Proof. We consider an arbitrary set X and arbitrary maps g, h : X → A such that g; f = h; f .

X TΣ(X)

A

B

g

h

ηX

g; f=h; f

g∗ h∗

(g; f )∗=(h; f )∗

	

f

	

TΣ(X)

A

B

g∗ h∗

(g; f )∗=(h; f )∗
f

	

By the uniqueness of algebraic extensions, we have g∗; f = (g; f )∗ and h∗; f =
(h; f )∗ (Feature (10), compatibility of substitution application and evaluation), and thus
the assumption entails g∗; f = (g; f )∗ = (h; f )∗ = h∗; f . This implies g∗ = h∗ since
f : A → B is monic. By pre-composition with ηX, we obtain g = ηX; g∗ = ηX; h∗ = h as
required.

Second, the free functor helps to elucidate the intuition behind the choice of the
adjectives “accessible”/“reachable” in Definition 3.6, namely that each element in R( f ,B)
can be accessed/reached by first applying the map f and then successively applying the
operations in B.

Lemma 3.4 (Accessible via Map ∼= Accessible via Extension). For any Σ-algebra B and any
map f : A → B we have R( f ,B) = R( f ∗,B) for the algebraic extension f ∗ : TΣ(A) → B. In
such a way, B is accessible via f : A→ B if, and only if, B is accessible via f ∗ : TΣ(A)→ B.

Proof. Feature (10), compatibility of substitution application and evaluation, ensures for any
Σ-subalgebras X of B that f factors through ιX,B : X ↪→ B if, and only if, f ∗ factors through
ιX,B : X ↪→ B.

By Lemma 3.4, Proposition 3.4, and Corollary 3.7, we obtain the following equivalences.

Corollary 3.9. For any Σ-algebra B and any map f : A → B, the following statements
are equivalent:

1. B is accessible via f : A→ B.
2. B is accessible via f ∗ : TΣ(A)→ B.
3. f ∗ : TΣ(A)→ B is an epimorphism in Alg(Σ).
4. f ∗ : TΣ(A)→ B is an epimorphism in Set, i.e., surjective.

3.6. Terms and Derived Operations

For any set X and any Σ-algebra A the evaluation of Σ-terms over X in A is actually a
map from TΣ(X)× AX into A. In Definition 3.9, we fix an arbitrary element α ∈ AX and
define a corresponding map α∗ : TΣ(X) → A by varying inductively over TΣ(X). That
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is, we describe the map from TΣ(X)× AX into A through an AX-indexed family of maps
α∗ : TΣ(X)→ A. This kind of splitting is the basis for the internalization trick.

We can, however, also proceed the other way around. We can represent the map from
TΣ(X)× AX into A via a TΣ(X)-indexed family of maps from AX into A or AO. O = {o} is
the singleton used in Definition 3.1 to declare the output arity of operation symbols.

Definition 3.12 (Derived Operations). For any set X of variables, any Σ-algebra A and any
Σ-term t ∈ TΣ(X), we define a corresponding derived operation, i.e., the map

tA : AX → AO with tA(α)(o) := α∗(t) for all α ∈ AX .

We call the maps tA derived operations since they are built up from the basic operations
in OPA (compare Definition 3.14 below). Derived operations live on the same “external
level” as the basic operations, i.e., outside of carrier sets of algebras. Terms represent those
derived operations, and thus, it is opportune to also have a complementary external view on
terms and consider them as syntactic entities living together with operation symbols on the
same external level. In particular, we can consider terms as entities existing independent of
and prior to algebras.

To support and validate the external view on terms, we should avoid the sleight
of hand in Definition 3.12 and define derived operations, independent of Definition 3.9,
simply by constructing new maps from given maps.

The only two constructions we need for this purpose are available in any category with
finite products: the composition of maps (morphisms) and the tupling of maps (morphisms).
Since we use non-traditional finite products AI , instead of traditional Cartesian products
An, to define domains and codomains of operations, it is probably worth it to spell out the
corresponding version of tupling we will rely on.

Definition 3.13 (Tupling of Maps). For any family of maps f j : AX → AO with 1 ≤ n, 1 ≤ j ≤
n we can construct a map 〈〈 f1, . . . , fn〉〉 : AX → AIn , In := {i1, i2, . . . , in} defined by

〈〈 f1, . . . , fn〉〉(α)(ij) := f j(α)(o) for all α ∈ AX and all 1 ≤ j ≤ n.

For an empty family of maps, 〈〈 〉〉 : AX → AI0 denotes the constant map assigning to all α ∈ AX

the only element in AI0 represented by the empty tuple ().

Now, we are prepared to give an inductive definition of derived operations. The
base cases are projection maps, represented by variables and constant maps. The induc-
tion step is implicitly divided into two steps: first tupling and then composition with a
basic operation.

Definition 3.14 (Construction of Derived Operations). For any set X and any Σ-algebraA we
define inductively for all Σ-terms t ∈ TΣ(X) a corresponding derived operation tA : AX → AO

as follows:

Variables: for all pxq ∈ TΣ(X), the (projection) map xA : AX → AO is defined by xA(α)(o) :=
πx(α) = α(x) for all α ∈ AX ;

Constants: c〈〉A := 〈〈 〉〉; cA, for all pc〈〉q ∈ TΣ(X);

Operations: op〈t1, . . . , tn〉A := 〈〈tA1 , . . . , tAn 〉〉; opA, for all pop〈t1, . . . , tn〉q ∈ TΣ(X), n ≥ 1.

3.7. Syntactic Lawvere Theories

As long as we restrict ourselves to finite sets of variables, syntactic Lawvere theories
are the ultimate implementation of the external view on terms while also incorporating
the internal view, as we will soon see. We will not give a fully detailed exposition but just
enough to be prepared for the discussion and definition of derived graph operations in
Section 5 (the interested reader may consult [8] for more details).
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3.7.1. Construction of Lawvere Theories

Relying on the concept of Σ-term and a substitution calculus, as discussed in the last
section, we can define for any signature Σ = (OP, ar) a syntactic category L(Σ) as follows:

Objects: As objects, we choose canonical finite sets of variables

X0 = ∅ and Xn := {xn
1 , xn

2 , . . . , xn
n} for all n ∈ N with n ≥ 1 . (13)

For all n ≥ 2, we assume Xn to be equipped with a fixed total order xn
1 < xn

2 < . . . <
xn

n; thus, we can reuse the tuple notation to represent maps as discussed in Section 2.

Morphisms: Morphisms are all tuples (t1, . . . , tn) : Xm → Xn representing a substitution
(declaration) t : Xn → TΣ(Xm).

Identities: The identity on Xn is the tuple (xn
1 , . . . , xn

n) : Xn → Xn representing the substi-
tution ηXn : Xn → TΣ(Xn).

Composition: The composition of two tuples (r1, . . . , rm) : Xk → Xm and (t1, . . . , tn) :
Xm → Xn is the tuple (r∗(t1), . . . , r∗(tn)) : Xk → Xn representing the substitution
t; r∗ : Xn → TΣ(Xk) where r∗ : TΣ(Xm) → TΣ(Xk) is the application of the substitu-
tion r : Xm → TΣ(Xk) according to Definition 3.11 (compare also (11)).

Laws: Identity and associativity law are ensured by Feature (5), composition of substitutions
is compatible with substitution application (compare also (12)).

3.7.2. Properties of Lawvere Theories

The category L(Σ) has all finite products. We describe binary products as follows:

• The product of two objects Xn and Xm is defined by Xn×Xm := Xn+m with projections
π1 := (xn+m

1 , . . . , xn+m
n ) : Xn+m → Xn and π2 := (xn+m

n+1 , . . . , xn+m
n+m) : Xn+m → Xm.

• The tuple of two morphisms (t1, . . . , tn) : Xk → Xn and (r1, . . . , rm) : Xk → Xm in
L(Σ) is given by

〈〈(t1, . . . , tn), (r1, . . . , rm)〉〉 := (t1, . . . , tn, r1, . . . , rm) : Xk → Xn+m .

Remark 3.8 (Product versus Sum). The tentative reader has surely realized that Xn+m is not the
product but the sum of Xn and Xm in the category Set and that (t1, . . . , tn, r1, . . . , rm) represents the
cotuple [t, r] : Xn+m → TΣ(Xk) of the two maps t : Xn → TΣ(Xk) and r : Xm → TΣ(Xk) in Set.
However, by choosing the direction of morphisms (t1, . . . , tn) : Xk → Xn in L(Σ) in accordance
with the direction of their semantics, 〈〈tA1 , . . . , tAn 〉〉 : AXk → AXn , Xn+m indeed becomes the
categorical product of Xn and Xm in L(Σ). In other words, it is much more convenient for us to
describe L(Σ) as a category with finite products instead of a category with finite sums. In this way,
we avoid, especially, the needless use of opposite categories.

Nevertheless, the reader should keep in mind that syntactic entities are usually and most
conveniently constructed by colimits in Set while the semantics as interpretation paradigm
turns those colimits on the syntactic level into corresponding limits on the semantic level. We do
have, for example, the exponential law AXn+m ∼= AXn × AXm with “_ × _” denoting this time the
Cartesian product of sets.

The construction of syntactic Lawvere theories L(Σ) for signatures Σ is a free con-
struction on the “external meta-level”. More specifically, there is, for any signature Σ an
equivalence between the category Alg(Σ) and the category of all finite product-preserving
functors from L(Σ) into Set: for every finite product preserving functor H : L(Σ) → Set,
there is a corresponding Σ-algebra U (H) with carrier H(X1) and operations defined for
each n-ary operation symbol in OP by opU (H) := bn; H((op〈xn

1 , . . . , xn
n〉)); b with the iso-

morphisms bn : H(X1)
In → H(Xn), provided by the assumption that H preserves finite

products, and the obvious isomorphism b : H(X1)→ H(X1)
O.
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Conversely, for every Σ-algebra A the assignments X1 7→ A, Xn 7→ AIn for all n ≥ 2,
and (t1, . . . , tn) 7→ 〈〈tA1 , . . . , tAn 〉〉 give rise to a unique finite limit preserving functor FP(A) :
L(Σ)→ Set such that U (FP(A)) = A. This is ensured by Definitions 3.13 and 3.14.

Finally, L(Σ) comprises all finite term Σ-algebras in the following sense: it is well-
known that hom-functors preserve limits and thus, especially, finite products. In such
a way, for all n ∈ N the hom-functor L(Σ)(Xn, _) : L(Σ) → Set preserves finite limits.
According to the above equivalence of categories and the Yoneda Lemma, the corresponding
Σ-algebra U (L(Σ)(Xn, _)) satisfies the universal property stated in Proposition 3.5. This
means, however, nothing but the Σ-algebras U (L(Σ)(Xn, _)) and TΣ(Xn) being isomorphic.

4. Graph Algebras and Graph Term Algebras

Relying on the categorical reconstruction of concepts, the constructions and results of
traditional Universal Algebra in Section 3, we present in this section a generalization of
those concepts, constructions and results to graph algebras.

4.1. Graph Signatures, Graph Algebras, and Homomorphisms

We consider the composition of two morphisms in a category as a graph operation.
The arity of a corresponding operation symbol comp could be declared in the following way.

Icomp : iv1 iv2 iv3
ie1 ie2

Ocomp : iv1 iv3
oe1 (14)

Compared to traditional algebraic operations, we can presently infer some essential
differences [7]:

Two different kinds of input items. This is evident due to working with graphs that con-
sist of both vertices and edges. Instead of a single set, we therefore declare a graph as
the input arity.

Arbitrarily many output items. A single output is assumed for algebraic operations, but
graph operations can produce arbitrarily large finite graphs as output. Similar to the
input, the output arity is chosen to be a graph.

Output is often related to the input. In the case of the composition operation comp above,
the relation between the two arity graphs Icomp and Ocomp is clear from the labelling:
the output edge oe1 has the same source and target as the input edges ie1 and ie2,
respectively. Instead of always requiring coherent labeling, we introduce a third arity
graph Bcomp, called the boundary of comp, to encompass the connection between input
and output in a fitting way.

We summarize the previous discussion as the following definition.

Definition 4.1 (Graph signature). A graph signature Γ = (OP, ar) is given by

• A set OP of operation symbols,
• A map ar assigning to each operation symbol op in OP its arity span, i.e., a span ar(op) =

Iop
lop
←−↩ Bop

rop
↪−→ Oop of inclusion graph homomorphisms between finite graphs such that the

sets (Oop)V \ (Bop)V and (Iop)V as well as the sets (Oop)E \ (Bop)E and (Iop)E are disjoint.
The graphs Iop, Bop, and Oop are referred to as the input arity, boundary arity, and output
arity of op, respectively.

If Ic is the empty graph 0 for c ∈ OP, we also say that c is a constant symbol. Note that Bc = 0
in this case.

It is maybe worth mentioning that the disjointedness condition is equivalent to the
condition that Bop is the componentwise set intersection of the graphs Iop and Oop, i.e.,

(Bop)V = (Iop)V ∩ (Oop)V and (Bop)E = (Iop)E ∩ (Oop)E. (15)
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Remark 4.1 (Arity Renamings). In contrast to traditional operations, we use explicit names to
identify the input and output “positions” of a graph operation. Names can, however, be chosen
arbitrarily, and we should be prepared to rename, if necessary, the arities of a graph operation.

An arity renaming $ from an arity span I
l←−↩ B r

↪−→ O to another arity span I′
l′←−↩ B′ r′

↪−→ O′

is simply a triple of graph isomorphisms $I : I → I′, $B : Bop → B′, $O : O → O′ such that the
following diagram commutes.

I B O

	 	

I′ B′ O′

$I $B

l r

$O

l′ r′

Remark 4.2 (Notational Conventions). For all finite graphs J used in arity spans, we assume that
the corresponding sets JV and JE are equipped with a fixed total order. Relying on our conventions
in Section 2, this allows us to represent any graph homomorphism b = (bV , bE) : J→ G as a pair
of tuples bV = (bv1, . . . , bvn), bE = (be1, . . . , bem), where n = |JV |, m = |JE| and bvi (bej) the

image of the i-th (j-th) element in JV (JE), 1 ≤ i ≤ n, 1 ≤ j ≤ m. For any arity span I
l←−↩ B r

↪−→ O,
we assume that B inherits the order from I and O, respectively.

We impose the disjointness condition in Definition 4.1 to syntactically distinguish between
input items of a graph operation and the new output items produced by a graph operation. Another
objective is to be able to later infer the arity of a “graph operation expression” based only on the
expression itself and the arities of the operations symbols defined in the corresponding signature.

To achieve this goal, we will use “canonical arity spans” to describe the arities of operation
symbols and graph operation expressions. In a canonical arity span, we use canonical sets
IV = {iv1, . . . , ivnI} of input vertices and IE = {ie1, . . . , iemI} of input edges with nI = |IV |
and mI = |IE|. In the same way, we use canonical sets OV \ BV = {ov1, . . . , ovnO} of output
vertices and OE \ BE = {oe1, . . . , oemO} of output edges with nO = |OV \ BV | and mO = |OE \ BE|.

Example 4.1 (Signature for Categories). We define a signature Γcat with an operation symbol
comp to denote operations composing two edges and an operation symbol id to denote operations,
assigning to vertices corresponding identity edges.

As per Definition 4.1, we extend the arity of comp proposed in (14) to the span of graph
homomorphisms shown in Figure 1 with a boundary graph Bcomp consisting of only two vertices,
iv1 and iv3. This encapsulates exactly the desired requirements for a composition operation with
regards to sources and targets.

iv1 iv2 iv3

iv1 iv3

iv1 iv3

Bcomp

Icomp Ocomp

ie1 ie2 oe1

lcomp
rcomp

Figure 1. Arity declaration for the operation symbol comp.

Analogously, the arity of id, shown in Figure 2, encapsulates the requirements for an identity
operation with regard to sources and targets.
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iv1

iv1

iv1

Bid

Iid Oid

oe1

lid rid

Figure 2. Arity declaration for the operation symbol id.

Graph is a locally small category, and we employ here the same exponential notation
for hom-sets as we did for sets in Section 3. That is, for any graphs G and H, GH denotes the
set Graph(H, G) of all graph homomorphisms from H into G.

Graph operations are maps, i.e., morphisms in Set! Specifically, an operation opG on a
graph G should take as input a graph homomorphism in GIop and return as output a graph
homomorphism in GOop . This procedure needs to respect the boundary, which is ensured by
requiring the resulting square being commutative.

Definition 4.2 (Graph Algebra). Let Γ = (OP, ar) be a graph signature. A (graph) Γ-algebra
G = (G, OPG) is given

• By a graph G, called the carrier of G, and
• By a family OPG = (opG : GIop → GOop | op ∈ OP) of maps such that the following diagram

commutes for all op in OP and all graph homomorphisms b ∈ GIop .

Bop

Iop 	 Oop

G

lop rop

b opG (b)

(16)

The maps in OPG are referred to as graph operations.

In the specific case where Iop is the empty graph 0, the set GIop becomes a singleton,
as there is exactly one graph homomorphism 0G : 0→ G, represented by a pair of empty
tuples 0G = ((), ()). Thus, for any constant symbol c in OP, with Ic = 0, the corresponding
graph operation cG returns a subgraph of G, i.e., it returns the image of Oc under cG(0G).

In the case where the signature Γ has no constant symbols, the empty graph constitutes
a Γ-algebra, called the empty Γ-algebra.

Example 4.2 (Categories as Graph Algebras). We consider the graph signature Γcat in
Example 4.1.

Bcomp

Icomp 	 Ocomp

gr(C)

lcomp rcomp

b compC (b)

Obviously, any small category C gives rise to a Γcat-algebra C = (gr(C), OPC) with the under-
lying graph gr(C) of C as carrier: the graph operation compC : gr(C)Icomp → gr(C)Ocomp is defined
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by the single equation (compC(b))E(oe1) := bE(ie1);C bE(ie2) for all b ∈ gr(C)Icomp where “_ ;C _”
denotes the composition in C. For the two vertices in Ocomp, the images with respect to compC(b) are
always fixed due to the commutativity condition in Definition 4.2: (compC(b))V(iv1) = bV(iv1)
and (compC(b))V(iv2) = bV(iv2).

Not every Γcat-algebra, however, can be seen as a category, since it may fail to satisfy the
identity and/or the associativity law. In [7], we presented some ideas concerning equations for graph
algebras, but the development of a full equational calculus is a topic for future research.

Example 4.3 (Chosen Pullbacks). Graph algebras can serve as a conceptual tool to give a precise
meaning to statements like “let C be a category with chosen pullbacks”.

We define the arity of an operation symbol pb as the span of inclusion graph homomorphisms
shown in Figure 3. To choose pullbacks for a small category C then means nothing but to define
a graph operation pbC : gr(C)Ipb → gr(C)Opb assigning to each cospan b : Ipb → gr(C) in C a
corresponding pullback span pbC : Opb → gr(C).

iv1 iv3 iv2

iv1 iv2

iv1 ov1 iv2

Bpb

Ipb Opb

ie1 ie2 oe1 oe2

lpb rpb

Figure 3. Arity declaration for the operation symbol pb.

Remark 4.3 (Built-in Projections). Given a “set of indices” I and a “carrier set” A, we do have a
projection map πi : AI → A at hand for any index i ∈ I, as described in Section 2.

Analogously, we obtain for a “graph of indices” H and a “carrier graph” G a projection map
πH
K for any subgraph K of H by simple precomposition with the inclusion graph homomorphism

ιK,H : K ↪→ H :

πH
K : GH → GK is defined by πH

K(b) := ιK,H ; b for all b ∈ GH. (17)

In this way, we do have for any Γ-algebra G = (G, OPG) and any arity span I B O
l r

(as in Definition 4.1) with B = O exactly one map from GI to GO satisfying the commutativity
condition for graph operations in Definition 4.2, namely the projection πI

O : GI → GO. In case
I = B = O, πI

I : GI → GI is simply the identity on GI.
We call these projections built-in since their semantics is completely determined by their

arity! After the choice of the carrier G of a graph algebra G we do have these projections available
independent of and prior to the choice of the semantics opG of the operation symbols op ∈ OP.

A crucial methodological point is that we can use these built-in projections without being
forced to include corresponding auxiliary operational symbols in OP and/or without any need to
define their semantics when defining graph algebras. In the traditional approach, we are forced to do
this because there is no concept of boundaries at all, or, in other words, all boundaries in our sense
are by default empty in traditional Universal Algebra.

Our reformulation of the definition of homomorphisms for traditional algebras in
Definition 3.3 applies analogously to graph algebras.

Definition 4.3 (Graph Algebra Homomorphism). Let Γ be a graph signature. A Γ-homo-
morphism ϕ : G → H between two Γ-algebras G = (G, OPG) and H = (H, OPH) is a graph
homomorphism ϕ : G→ H satisfying the following homomorphism condition:

(HC) opG(b); ϕ = opH(b; ϕ) for all op ∈ OP and all b ∈ GIop .
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Iop G Oop

H

b

b;ϕ
ϕ

	 	

opG (b)

opH(b;ϕ)

GIop GOop

	

HIop HOop

opG

_ ; ϕ _ ; ϕ

opH

For any graphs G, H, and J each graph homomorphism ϕ : G → H induces by post-
composition a map _ ; ϕ : GJ → HJ and thus we can, more abstractly but equivalently,
express the homomorphism condition (HC) via the requirement that the above right square
of maps commutes. Note that in the case of constant symbols c ∈ OP, Ic = 0, the
homomorphism condition turns into the equation opG((), ()); ϕ = opH((), ()) if we apply
our conventions in Section 2 and Remark 4.2 concerning the tuple notation.

Example 4.4 (Functors as Homomorphisms). In the case of Γcat-algebras as defined in Ex-
ample 4.2, the homomorphism conditions for the operation symbols comp and id, according to
Definition 3.3, are nothing but the usual requirements for functors to be compatible with composi-
tion and identities, respectively.

Γ-algebras and Γ-homomorphisms together constitute a category Alg(Γ): The compo-
sition ϕ; ψ : G → K of two Γ-homomorphisms ϕ : G → H and ψ : H → K is given by the
composition ϕ; ψ of the underlying graph homomorphisms ϕ : G→ H and ψ : H→ K. Lastly,
the identity Γ-homomorphism idG : G → G for any Γ-algebra G is given by the identity
graph homomorphism idG : G→ G.

Proposition 4.1 (Forgetful Functor). The assignments G → G and (ϕ : G → H) 7→ (ϕ : G→
H) define a faithful forgetful functor:

UΓ : Alg(Γ)→ Graph. (18)

The homomorphism condition for Σ-homorphisms between Σ-algebras in Definition 3.3
has exactly the same structure as the homomorphism condition for Γ-homomorphisms
between graph Γ-algebras in Definition 4.3. In such a way, the pure categorical proof of
Theorem 3.1 can be directly transformed into a proof of the corresponding statement for
graph algebras, and thus, we obtain the following theorem “for free”.

Theorem 4.1 (Limits of Graph Algebras). Alg(Γ) inherits any small limit from the category
Graph, i.e., the functor UΓ : Alg(Γ)→ Graph creates small limits. Alg(Γ) therefore has all small
limits since Graph does.

4.2. Comparison with the Old Definitions

Guided by the pioneering generalized sketch framework developed in the 1990s
by a group around Zinovy Diskin [3–5], we introduced in [7] a different definition of
graph signatures and graph algebras, respectively. Ref. [7] considers a graph inclusion
iop : Iop ↪→ Rop as the arity of an operation symbol op and defines an operation opG on
a graph G as a map from GIop to GRop , making the following triangle commute for any
b : Iop → G.

Iop Rop

	

G

b

iop

opG (b)
(19)

The need for projection operations, among other issues, advised us to introduce
explicit output arities. At that point, we could have also chosen cospans Iop ↪→ Rop ←↩ Oop
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to declare the arities of graph operations instead of the spans in Definition 4.1. The choice
of spans has, however, many advantages that we will try to point at later in the paper.

In this subsection, we argue that the new variant and the old variant in [7] are seman-
tically equivalent as either definition of arity, algebra, or homomorphism can be obtained
from the other.

4.2.1. Comparison of Arity Declarations

For any arity span Iop
lop
←−↩ Bop

rop
↪−→ Oop in Definition 4.1, we can simply construct a

pushout to obtain the result arity Rop

Bop

Iop po Oop

Rop

lop rop

iop oop

The pushout of the arities of the operation symbol comp is visualized in Figure 4.

iv1 iv2 iv3

iv1 iv3

iv1 iv3

iv1 iv2 iv3

Bcomp

Icomp Ocomp

Rcomp

ie1 ie2 oe1

ie1 ie2

oe1

lcomp
rcomp

icomp ocomp

Figure 4. The pushout of arity declarations for the operation symbol comp.

Pushouts in Graph (as in any topos) preserve monomorphisms, and, moreover, pushouts
with a monomorphism involved are also pullbacks ([16], 13.3). Equation (15) ensures that
we can choose the specific pushout Rop = Iop ∪ Oop, which makes the resulting iop into a
graph inclusion, matching the definition in [7]. Note that Bop = Oop implies Iop = Rop.

Conversely, given a cospan Iop
iop
↪−→ Rop

oop
←−−↩ Oop of graph inclusions, we can construct

the intersection Bop = Iop ∩ Oop, i.e., the componentwise intersection of the vertex and edge
sets. This is well-defined as both Iop and Oop are subgraphs of the same graph Rop. The
resulting commutative square of inclusion graph homomorphisms is a pullback in Graph

where the span Iop
lop
←−↩ Bop

rop
↪−→ Oop satisfies the condition in Definition 4.1. In the case

where Rop = Iop ∪ Oop, the square is also a pushout!
Arities of graph operations are, however, defined in [7] by a single graph inclusion iop :

Iop ↪→ Rop only. In this situation, we can construct a cospan Iop
iop
↪−→ Rop

oop
←−−↩ Oop of graph

inclusion with Oop the smallest subgraph of Rop containing all vertices in (Rop)V (Iop)V
and all edges in (Rop)E (Iop)E. By construction, we have Rop = Iop ∪ Oop. As for cospans,
in general, Bop is defined to be the graph Iop ∩ Oop. However, the crucial observation is that
Bop will always be a discrete graph, i.e., a graph without edges! Note that this construction is
a special case of the construction of so-called initial pushouts in Graph ([9], 6.1).

Since, for a pushout of arities, Bop = Oop implies Iop = Rop, this means, especially, that
the original definition of arities of graph operations in [7] does not allow us to consider
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built-in projections (see Remark 4.3) as legal graph operations. This was one of the main
reasons that we introduced spans of graph inclusions as arities in this paper.

In conclusion, the span and cospan version are inverse to each other (at least in
Graph) while the original version in [7] is a special case of the cospan version, which is less
expressive than the other two versions. All three variants give us, however, a pushout of
arities and inclusion graph homomorphisms at hand.

4.2.2. Equivalence of Graph Operations

Given a pushout of arities, we consider an arbitrary input b : Iop → G.

Bop

Iop po Oop

Rop
	 	

G

lop rop

iop

b

oop

o

r

For any o : Oop → G with rop; o = lop; b, there exists, due to the pushout property, a unique
ro : Rop → G with iop; ro = b and oop; ro = o. Conversely, for any r : Rop → G with iop; r = b,
we have, trivially, lop; b = rop; (oop; r).

The uniqueness of mediating morphisms ensures that the assignments o 7→ ro and
r 7→ oop; r are inverse to each other. This observation ensures that there is a one-to-one
correspondence between maps from GIop to GRop , satisfying commutativity condition (19),
and maps from GIop to GOop , satisfying the commutativity condition in Definition 4.2.

4.2.3. Equivalence of Homomorphism Conditions

By extending the equivalence of graph operations, the equivalence of the respective
homomorphism conditions can also be straightforwardly shown utilizing the uniqueness
of mediating morphisms for the pushout of arities, as the interested reader may check.

Remark 4.4 (Graph of a Graph Operation). For any map f : A → B, its graph is usually
defined as the binary relation {(a, f (a)) | a ∈ A} ⊆ A× B. Often, the story is even turned, and
maps are introduced as those binary relations f ⊆ A× B that are left-total and right-unique.

Given a pushout of arities and a graph operation opG : GIop → GOop , we could, analogously,
consider the set {ropG (b) | b ∈ GIop} ⊆ GRop as the graph of the graph operation opG . Utilizing
the projections from GRop into GIop and GOop , we could even lift up properties like left-total and
right-unique to characterize those subsets of GRop that correspond to graph operations.

This observation may be a basis for defining Skolemization in Logics of Statements in
Context [1] once we have integrated operations into those logics.

Rop also has another important role, which was probably one of the reasons that the original
definition of sketch operations in [3–5] relied on graph inclusions iop : Iop ↪→ Rop. Rop is the only
place where the input items of a graph operation and the new items, created by the graph operation,
can be related. In such a way, we have to use Rop if we want to describe and specify properties of the
output of a graph operation that depend on properties of the input.
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Example 4.5 (Graph of Pullback Operation). Figure 5 shows the pushout of arity declarations
for the operation symbol pb. Constructing the graph of pullback operations, as described in Example
3, considers for any chosen pullback the whole pullback square, and not just the pullback span.

iv1 iv3 iv2

iv1 iv2

iv1 ov1 iv2

ov1

iv1 iv2

iv3

Bpb

Ipb Opb

Rpb

ie1 ie2 oe1 oe2

oe1 oe2

ie1 ie2

lpb rpb

ipb opb

Figure 5. The pushout of arity declarations for the operation symbol pb.

Example 4.6 (Chosen (co)limits). In general, any chosen (co)limits of diagrams of a fixed shape I
in a category C give rise to a corresponding graph operation on gr(C) where the arity B is simply
given by all the vertices in I while arity O represents the shape of the corresponding (co)cones.

In such a way, the pushout R combines the fixed shape I of diagrams with the shape of
corresponding (co)cones, and thus, the elements in the graph of the corresponding graph operation
on gr(C) represent, at the same time, a diagram and a (co)cone for this diagram.

Remark 4.5 (Advantages of Spans of Arities). Starting with a span of arities as in Definition 4.1,
we obtain a corresponding commutative square of arities via a simple pushout construction. That
this square becomes, moreover, in any topos, a pullback is an essential side effect.

If we start, in contrast, with a cospan, we could construct a pullback to obtain a commutative
square of arities. In the case of graphs (and probably in arbitrary pre-sheaf topoi), it is sufficient
to require that the cospan of inclusion morphisms is jointly epic to make the pullback square
simultaneously a pushout square. We are, however, not sure that this condition is sufficient for
arbitrary topoi.

The tricky construction of initial pushouts for a single arity inclusion (and not a cospan!)
may also generalize to arbitrary pre-sheaf topoi but probably not to arbitrary topoi.

The original definition of arities and graph operations in [7] turned out to not be appropriate to
define derived graph operations. On one hand, projections are necessary to define an appropriate
notion of derived graph operations. The original definition excludes, however, projections. On the
other hand, the construction of instances of graph operations in Section 5.3.2, by means of epi-mono
factorizations and pushouts, cannot equivalently be mimicked by means of the original definition.
Even the universal property of initial pushouts is not helpful in establishing an equivalence.

4.3. Graph Subalgebras

The definitions and results for graph algebras presented in this subsection are new
and not found in [7].

The effort we spent in Section 3 to lift up the traditional exposition of algebras to a
more categorical one pays off now. We can directly transfer most of the definitions and
results from algebras to graph algebras. The only difference is that the "ad hoc totalization
trick" in the proof of Proposition 3.3 does not work in the case of graph algebras and that
there is no axiom of choice in Graph.

In contrast to Section 3, we do not distinguish between “subalgebras” and “inclusion
homomorphisms”. We define “subalgebras” simply as “inclusions”.
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Definition 4.4 (Graph Subalgebra). Let Γ = (OP, ar) be a graph signature. A Γ-algebra
G = (G, OPG) is a Γ-subalgebra of a Γ-algebra H = (H, OPH) if G v H and and the inclusion
graph homomorphism ιG,H = (ιGV ,HV , ιGE ,HE) : G→ H establishes a Γ-homomorphism ιG,H : G → H.

We know that the monomorphisms (epimorphisms) in Graph are exactly the injective
(surjective) graph homomorphisms, respectively. Since the functor UΓ : Alg(Γ)→ Graph is
faithful and faithful functors reflect monomorphisms and epimorphisms, we obtain

Corollary 4.1 (Injective and surjective Homomorphisms). If the underlying graph homomor-
phism ϕ : G→ H of a Γ-homomorphism ϕ : G → H is injective (surjective), then ϕ : G → H is a
monomorphism (epimorphism) in Alg(Γ).

The category Graph has all small limits and colimits, and those are obtained by com-
ponentwise limits and colimits, respectively, in Set. This means, especially, that Graph has
all small multiple pullbacks (see Remark 3.3). Due to Theorem 4.1, we can define, in such a
way, the intersection of graph subalgebras analogous to the intersection of subalgebras in
Corollary 3.3.

Corollary 4.2 (Intersection of Graph Subalgebras). For any set I, any Γ-algebra H, and any
diagram δ : MP(I)→ Alg(Γ) of Γ-subalgebras δei = ιGi ,H : Gi ↪→ H, i ∈ I of H there is a unique
Γ-subalgebra L = (L, OPL) of H with L =

⋂
i∈I Gi, i.e., LV =

⋂
i∈I(Gi)V and LE =

⋂
i∈I(Gi)E,

that is a Γ-subalgebra of Gi for all i ∈ I.
Moreover, the inclusion Γ-homomorphisms ιL,Gi : L ↪→ Gi, i ∈ I and ιL,H : L ↪→ H constitute

a multiple pullback, i.e., a limit cone of the diagram δ : MP(I)→ Alg(Γ).
We call L = (L, OPL) also the intersection of the I-indexed familyM = (Gi | i ∈ I) of

Γ-subalgebras ofH and may use the notations
⋂M,

⋂
i∈I Gi or, simply,

⋂ Gi to denote L.

The category Graph is well powered; i.e., the collection of all graph subalgebras of
a graph algebra is a set, and thus, we can define the concept “accessible via a graph
homomorphism”.

Definition 4.5 (Graph Subalgebra accessible via a Graph Homomorphism). For any Γ-
algebraH and any graph homomorphism ϕ : G→ H, letM be the set of all Γ-subalgebras X ofH
such that ϕ factors through the inclusion graph homomorphism ιX,H : X ↪→ H; i.e., there exists a
graph homomorphism ϕX : G→ X such that ϕX ; ιX,H = ϕ.

We denote byR(ϕ,H) the intersection ofM, according to Corollary 4.2. In particular, the
carrier ofR(ϕ,H) is the intersection R(ϕ,H) :=

⋂{X | X ∈ M} of graphs. We callR(ϕ,H) the
Γ-subalgebra ofH accessible (reachable) via ϕ or the homomorphic image of G with respect
to ϕ.

In the case of inclusion graph homomorphisms ϕ = ιG,H : G ↪→ H, we also use the notation
R(G,H) instead ofR(ιG,H,H) and also callR(G,H) the Γ-subalgebra ofH generated by G.

Note that the graph homomorphism ϕX : G→ X in Definition 4.5 is unique, if it exists,
since the inclusion graph homomorphism ιX,B : X ↪→ H is a monomorphism in Graph.

We can also transfer Corollary 3.4 to graph algebras since, for any graph homomor-
phism ϕ : G→ H, the set-theoretic image ϕ(G) of G with respect to ϕ constitutes a subgraph
of H. Moreover, we have ϕ(G) =

⋂{Y | Y ∈ N} for the set N of all subgraphs Y of H.

Corollary 4.3 (Homomorphic image includes Image). For any Γ-algebra H and any graph
homomorphism ϕ : G → H, we have ϕ(G) v R(ϕ,H) for the set-theoretic image ϕ(G) of G with
respect to ϕ.
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Definition 4.6 (Accessible and Generated Graph Algebras). LetH be a Γ-algebra.

1. H is accessible via a graph homomorphism ϕ : G→ H ifR(ϕ,H) = H.
2. If H is accessible via an inclusion graph homomorphism ιG,H : G → H, i.e., if R(G,H) =

R(ιG,H,H) = H, we say also thatH is generated by G.
3. H is said to be generated if it is generated by the empty graph, i.e., accessible via the unique

graph homomorphism ι0,H : 0 ↪→ H from the initial object 0 in Graph to H.

Corollary 4.4. A Γ-algebraH is generated if, and only if, there are no proper Γ-subalgebras ofH.

Corollary 4.5. If a signature Γ has no constant symbols, then the empty Γ-algebra is the only
generated Γ-algebra.

The concept accessible via a graph homomorphism can be utilized to find a characterization
of epimorphisms in Alg(Γ). First, we observe that “accessible” implies “epic”.

Lemma 4.1 (Accessible implies Epic). A Γ-homomorphism ϕ : G → H is an epimorphism in
Alg(Γ) ifH is accessible via the underlying graph homomorphism ϕ : G→ H, i.e., ifH = R(ϕ,H).

Proof. We consider arbitrary Γ-homomorphsms ψ, φ : H → K such that ϕ; ψ = ϕ; φ.
We know that the subgraph X of H with XV = {v ∈ HV | ψV(v) = φV(v)} ⊆ HV ,

XE = {e ∈ HE | ψE(e) = φE(e)} ⊆ HE together with the inclusion graph homomorphism
ιX,H : X ↪→ H is an equalizer of the graph homomorphisms ψ, φ : H→ K in Graph. According
to Theorem 4.1, there is a unique Γ-algebra X = (X, OPX ) such that ιX,H : X ↪→ H becomes
an inclusion Γ-homomorphism ιX,H : X ↪→ H, which is, moreover, the equalizer of the
Γ-homomorphisms ψ, φ : H → K.

The assumption ϕ; ψ = ϕ; φ ensures that there exists a unique graph homomorphism
ϕX : G → X with ϕX ; ιX,H = ϕ. Due to the construction of R(ϕ,H) in Definition 4.5, we
have an inclusion Γ-homomorphism ιR(ϕ,H),X : R(ϕ,H) ↪→ X .

The accessibility ofH meansH = R(ϕ,H), and thus, we obtain, finally, X = H. This
means, however, that the equalizer of ψ and φ in Graph is the identity on H and thus, we
have ψ = φ as required.

We can also show that graph subalgebras are regular monomorphisms. Unfortunately,
the “ad hoc totalization trick”, used in the proof of Proposition 3.3, does not work for
arbitrary graph operations, since we may have, in contrast to traditional operations, non-
empty boundaries and a corresponding commutativity requirement for graph operations.
The simplest example, where this trick fails, is an operation that simply outputs a chosen
edge between two distinct nodes.

What we need is a more well-behaved procedure of transforming partial graph alge-
bras into total graph algebras. We therefore develop in Section 4.4 a corresponding free
construction called term completion.

Proposition 4.2 (Graph Subalgebras are Regular Monos). For any Γ-subalgebra ιG,H : G → H
of a Γ-algebra H there exists a Γ-algebra K and parallel Γ-homomorphisms ψ, φ : H → K such
that ιG,H : G → H is the equalizer of ψ and φ in Alg(Γ).

Proof. Utilizing the term completion construction and its characterization as a free con-
struction, as presented in Section 4.4, we will sketch a proof modifying the proof of
Proposition 3.3.

We construct the pushout of the span H G H
ιG,H ιG,H of inclusion graph homo-

morphisms (see the left diagram below). We set K := H+G H. Since ιG,H is monic in Graph
both graph homomorphisms κ1, κ2 : H → K are monic too and, moreover, the pushout
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square is as a pullback square as well. This ensures, especially, that ιG,H : G → H is the
equalizer of the graph homomorphisms κ1, κ2 : H→ K in Graph.

Graph

G

H H

K

ιG,H ιG,H

κ1 κ2

PAlg(Γ)

G

H H

K

ιG,H ιG,H

κ1 κ2

Alg(Γ)

G

H K H

TΓ(K)

ιG,H ιG,H

κ1; ιK,TΓ(K)

κ1

ιK,TΓ(K) κ2; ιK,TΓ(K)

κ2

Graph Operations on K: We extend K to a partial Γ-algebraK = (K, OPK) (see Definition 4.7)
by defining for each op in OP a corresponding partial graph operation opK : KIop ◦−→KOop

according to Case 1, Case 2, and Case 3.
The operations in K are defined exactly in a way that the graph homomorphisms κ1

and κ2 become Γ-homomorphisms κ1, κ2 : H → K, in the sense of Definition 4.8, and thus
we obtain a commutative square in PAlg (see the middle diagram above).

Applying the functor TCΓ : PAlg(Γ)→ Alg(Γ), we transform this commutative square
in PAlg(Γ) into a commutative square in Alg(Γ). Taking into account Corollary 4.6 and (23),
we obtain the commutative diagram on the right above.

The underlying square of graph homomorphisms is again a pullback in Graph since
the inclusion graph homomorphism ιK,TΓ(K) : K→ TΓ(K) is monic in Graph.

Theorem 4.1 ensures, finally, that the Γ-homomorphism ιG,H : G → H is the equalizer
of the Γ-homomorphisms κ1; ιK,TΓ(K), κ2; ιK,TΓ(K) : H → TΓ(K).

The regularity of Alg(Γ) entails that the concepts accessible and epic are equivalent.

Proposition 4.3 (Accessible ∼= Epic). For any Γ-homomorphism ϕ : G → H, it holds thatH is
accessible via the underlying graph homomorphism ϕ : G→ H; i.e., in other words,H is equal to the
homomorphic imageR(ϕ,H) of G with respect to ϕ, if, and only if, ϕ : G → H is an epimorphism
in Alg(Γ).

Proof. “Accessible implies epic” has been shown in Lemma 4.1. We show now that “epic
implies accessible”: We consider an arbitrary Γ-subalgebra X ofH such that there exists a
graph homomorphism ϕX : G→ X with ϕX ; ιX,B = ϕ. Due to Proposition 4.2, there exist
Γ-homomorphisms ψ, φ : H → C such that ιX,H : X → H is the equalizer of ψ and φ. Due
to the assumption ϕX ; ιX,H = ϕ, we obtain ϕ; ψ = ϕ; φ and thus ψ = φ, since ϕ is epic. This
means, however, that X = H and, finally,R(ϕ,H) = H due to the construction ofR(ϕ,H)
in Definition 4.5.

The axiom of choice is not valid in Graph. Therefore, the set-theoretic image ϕ(G) of the
carrier G of a Γ-algebra G with respect to a Γ- homomorphism ϕ : G → H is, in general, not
closed with respect to operations inH. As a consequence, not every epic Γ-homomorphism
needs to be surjective. We adapt the standard example of the composition of morphisms
in categories.
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Example 4.7 (Epic � Surjective). We consider a Γcat-homomorphism ϕ : G → H between two
finite Γcat-algebras G andH, as depicted below.

G

ϕ

��

1_

��

f //id1 :: 2p

��

id2dd 3N

��

g //id3 :: 4_

��

id4dd

H i α //

γ

44idi ;; ii
β //

idii

��
iii idiiiff

h

��

V





_

��

f

��

X

��

`

��

GIcomp is empty, while HIcomp has exactly one element b given by the assignments f 7→ α,
g 7→ β. α and β are in the set-theoretic image ϕ(G), while the result of applying compG to b, namely
γ = compG(b)(oe1), is not. ϕ : G → H is not surjective but epic sinceH = R(ϕ,H).

4.4. Partial Graph Algebras and Their Term Completion

In practice, graph operations are often partial graph operations. The sketch operations
introduced in [4,5], for example, can be seen as partial graph operations where the domain
of definition is specified by diagrammatic predicates. Therefore, we have decided to also
present in this paper the very basic definitions for partial graph algebras.

This decision was also influenced by the observation that we could prove Proposition 4.2
for arbitrary graph signatures based on a well-behaved completion procedure transforming
partial (graph) algebras into total (graph) algebras. To our surprise, the construction of
(graph) term algebras turns out to be just a special case of this new procedure.

Definition 4.7 (Partial Graph algebra). A partial (graph) Γ-algebra G is a pair (G, OPG) given

• By a graph G, called the carrier of G, and
• By a family OPG = (opG : GIop ◦−→GOop | op ∈ OP) of partial maps such that the following

diagram commutes for all op in OP and all graph homomorphisms b ∈ dom(GIop).

Bop

Iop 	 Oop

G

lop rop

b opG (b)

(20)

The partial maps in OPG are referred to as partial graph operations.

Be aware that constants can also be partial! For any constant symbol c in OP, with
Ic = 0, we do have exactly two possibilities, since GIc is a singleton: Either dom(cG) = GIc ,
i.e., the constant is defined, or dom(cG) = ∅, i.e., the constant is not defined.

Definition 4.8 (Partial Graph Algebra Homomorphism). A Γ-homomorphism ϕ : G → H
between two partial Γ-algebras G = (G, OPG) and H = (H, OPH) is a graph homomorphism
ϕ : G→ H satisfying the following homomorphism condition

(HCP) b; ϕ ∈ dom(HIop) and opG(b); ϕ = opH(b; ϕ) for all op ∈ OP and all b ∈ dom(GIop).
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Iop G Oop

H

b

b;ϕ
ϕ

	 	

opG (b)

opH(b;ϕ)

GIop GOop

≥

HIop HOop

opG

_ ; ϕ _ ; ϕ

opH

In other words, the definedness of partial operations has to be preserved by a homo-
morphism but does not need to be reflected!

Partial graph Γ-algebras and Γ-homomorphisms between them constitute a category
PAlg(Γ): The composition ϕ; ψ : G → K of two Γ-homomorphisms ϕ : G → H and
ψ : H → K is given by the composition ϕ; ψ of the underlying graph homomorphisms
ϕ : G → H and ψ : H → K. The identity Γ-homomorphism idG : G → G for any partial
Γ-algebra G is given by the identity graph homomorphism idG : G→ G. We consider graph
Γ-algebras as special partial Γ-algebras and thus Alg(Γ) is a full subcategory of PAlg(Γ).

Proposition 4.4 (Forgetful Functor). The assignments G → G and (ϕ : G → H) 7→ (ϕ : G→
H) define a faithful forgetful functor

UP
Γ : PAlg(Γ)→ Graph.

By introducing a fresh new element whenever an operation is not defined for a certain
input, we can transform any partial (graph) algebra into a total (graph) algebra.

Remark 4.6 (Syntactic Representation of Inputs). In addition to our notational conventions
in Section 2 and Remark 4.2, we will rely on the following syntactic representation of inputs of
graph operations: For any graph G and any op in OP an input b = (bV , bE) ∈ GIop is represented
by two strings, representing the vertices and the edges in G, respectively, separated by the symbol “p”

syn(b) := pbv1, . . . , bvnop p be1, . . . , bemopq

where nop = |(Iop)V | and mop = |(Iop)E|. In the case Iop = 0, the only the input 0G = ((), ()) :
0→ G is represented, in such a way, by two separated empty sequences: syn(0G) = p p q.

Of course, we could work with any other syntactic representation as long as the following two
important properties are satisfied: (1) Uniqueness, i.e., for all b1, b2 ∈ GIop we have syn(b1) =
syn(b2) if, and only if, b1 = b2; (2) syn(b) is indeed a representation, i.e., we are able to reconstruct
from syn(b) the corresponding graph homomorphism b = (bV , bE) ∈ GIop with the help of the
information about Iop in the signature Γ. In the case where Iop has no isolated vertices, for example,
we can uniquely represent any b ∈ GIop by the string pbe1, . . . , bemopq only!

Definition 4.9 (Term Completion). Let Γ = (OP, ar) be a graph signature and K = (K, OPK)
be a partial Γ-algebra. We define the Γ-term completion TΓ(K) of the graph K with respect to the
partial Γ-algebra K as the smallest graph satisfying the following three conditions:

Generators: K v TΓ(K)
Constants: For all constants c in OP, such that dom(cK) = ∅, the graph TΓ(K) contains

• pcov〈 p 〉q as a vertex, for each vertex ov in Oc;
• pcoe〈 p 〉q as an edge, for each edge oe in Oc,

where scTΓ(K)(coe〈 p 〉) := cscOc (oe)〈 p 〉 and tgTΓ(K)(coe〈 p 〉) := ctgOc (oe)〈 p 〉

Operations: For all op in OP with Iop 6= 0 and any t ∈ TΓ(K)Iop such that there is no
b ∈ dom(opK) ⊆ KIop with t = b; ιK,TΓ(K), TΓ(K) contains

• popov〈syn(t)〉q as a vertex, for each vertex ov in (Oop)V \ (Bop)V ;
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• popoe〈syn(t)〉q as an edge, for each edge oe in (Oop)E \ (Bop)E, where

scTΓ(K)(opoe〈syn(t)〉) :=

{
tV(scOop(oe)) , if scOop(oe) ∈ (Bop)V

opscOop (oe)〈syn(t)〉, if scOop(oe) ∈ (Oop)V \ (Bop)V

tgTΓ(K)(opoe〈syn(t)〉) :=

{
tV(tgOop(oe)) , if tgOop(oe) ∈ (Bop)V

optgOop (oe)〈syn(t)〉, if tgOop(oe) ∈ (Oop)V \ (Bop)V

Obviously, we have

TΓ(K) = K for all total Γ-algebras K = (K, OPK). (21)

Remark 4.7 (Term Construction by Pushouts). The construction of Γ-terms in Definition 4.9
can be organized as a successive application of term-construction steps starting with the graph
K: A term-construction step in the case Constants means that we construct, in parallel, for a
constant symbol c the terms for all vertices and edges in Oc. Analogously, a term-construction step
in the case Operations means that we construct for an operation symbol op and an input t, in
parallel, the terms for all vertices and edges in Oop \ Bop. Each term-construction step extends an
intermediate graph T to a graph T′. This extension is, however, nothing but the construction of the
following pushout:

Iop Bop Oop

·y

T T′

t
	

lop; t

lop rop

opTΓ(K)(t)

ιT,T′

where the definition of opTΓ(K)(t) is spelled out, explicitly, in Definition 4.10. In light of this
observation, one can look at the term notation as a means to solve two problems:

1. The term notation provides a uniform mechanism to create unique identifiers for the new graph
items introduced by applying a non-deleting injective graph -transformation rule [9].

2. At the same time, the term notation encodes all the information necessary to uniquely identify
the pushout that has been creating the new items.

The following term-completion construction is new and has never even been defined for
traditional partial algebras. Utilizing the operations in K to the greatest possible extent, we
can straightforwardly extend K to a total Γ-algebra with carrier TΓ(K).

Definition 4.10 (Term-Completion Algebra). We can extend any partial Γ-algebraK = (K, OPK)
to a total Γ-algebra TΓ(K) = (TΓ(K), OPTΓ(K)) as follows:

Constants: For all constants c in OP:

Utilizing K: If cK is defined, we simply reuse it:

cTΓ(K)(0TΓ(K)) = cTΓ(K)(0K; ιK,TΓ(K)) := cK(0K); ιK,TΓ(K)

Completion: If cK is not defined, i.e., dom(cK) = ∅ we set

• (cTΓ(K)(0TΓ(K)))V(ov) := pcov〈 p 〉q for each vertex ov in Oc and
• (cTΓ(K)(0TΓ(K)))E(oe) := pcoe〈 p 〉q for each edge oe in Oc.

Operations: For all op in OP with Iop 6= 0 and any t ∈ TΓ(K)Iop :

Utilizing K: If there is a b ∈ dom(opK) ⊆ KIop with t = b; ιK,TΓ(K), we reuse opK:

opTΓ(K)(t) = opTΓ(K)(b; ιK,TΓ(K)) := opK(b); ιK,TΓ(K)
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Completion: If there is no b ∈ dom(opK) ⊆ KIop with t = b; ιK,TΓ(K), we set

(opTΓ(K)(t))V(ov) :=
{

tV(ov) , if ov ∈ (Bop)V
popov〈syn(t)〉q, if ov ∈ (Oop)V \ (Bop)V

(opTΓ(K)(t))E(oe) :=
{

tE(oe) , if oe ∈ (Bop)E
popoe〈syn(t)〉q, if oe ∈ (Oop)E \ (Bop)E.

The definitions ensure that the constructed pairs opTΓ(K)(t) of maps are indeed graph
homomorphisms and that the operations in TΓ(K) satisfy the commutativity condition in
Definition 4.2. Moreover, the cases “Utilizing K” are defined in such a way that we obtain

Corollary 4.6 (Embedding). For any partial Γ-algebra K = (K, OPK), the inclusion graph
homomorphism ιK,TΓ(K) : K → TΓ(K) constitutes a Γ-homomorphism ιK,TΓ(K) : K → TΓ(K) in
PAlg(Γ), and thus, due to (21), TΓ(K) = K if K is a total Γ-algebra.

We can adapt and generalize the proof of Proposition 2 (Free graph algebras) in [7] to
a proof that term completion is a free construction.

Proposition 4.5 (Term Completion as a Free Construction). For any partial Γ-algebra K =
(K, OPK), the total Γ-algebra TΓ(K) = (TΓ(K), OPTΓ(K)) has the following universal property:
for any total Γ-algebra G = (G, OPG) and any Γ-homomorphism ϕ : K → G there exists a unique
Γ-homomorphism ϕ∗ : TΓ(K)→ G such that the defining condition ιK,TΓ(K); ϕ∗ = ϕ is satisfied.

PAlg(Γ) K TΓ(K) TΓ(K) Alg(Γ)

G G

ϕ

ιK,TΓ(K)

ϕ∗
	

ϕ∗

Proof. We prove this by structural induction according to Definition 4.9 and Remark 4.7.

Generators: In this base case, the defining condition forces ϕ∗V(kv) = ϕV(kv) for all kv ∈
KV and ϕ∗E(kv) = ϕE(ke) for all ke ∈ KE.

Constants: In the second base case, we have, for all constants c in OP:

Utilizing K: If cK is defined, the definition of operations in TΓ(K), the defining
condition and the assumption that ϕ is a Γ-homomorphism ensure that ϕ∗

satisfies the homorphism condition for the constant c:

cTΓ(K)(0TΓ(K)); ϕ∗ = cK(0K); ιK,TΓ(K); ϕ∗ = cK(0K); ϕ = cG(0K; ϕ)

= cG(0K; ιK,TΓ(K); ϕ∗) = cG(0TΓ(K); ϕ∗)

Completion: If cK is not defined, the definition of operations in TΓ(K) and the
required homomorphism condition for ϕ∗ forces for each vertex ov in Oc

ϕ∗V(cov〈 p 〉) = ϕ∗V

(
(cTΓ(K)(0TΓ(K)))V(ov)

)
=
(
cTΓ(K)(0TΓ(K)); ϕ∗

)
V
(ov)

= (cG(0TΓ(K); ϕ∗))V(ov) = (cG(0G))V(ov) .

For each edge oe in Oc we obtain, analogously, ϕ∗E(coe〈 p 〉) = (cG(0G))E(oe).

Operations: We have, for all op in OP with Iop 6= 0 and any t ∈ TΓ(K)Iop ,
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Utilizing K: If there is a b ∈ dom(opK) ⊆ KIop with t = b; ιK,TΓ(K), then the definition
of operations in TΓ(K), the defining condition and the assumption that ϕ is a
Γ-homomorphism ensure that ϕ∗ satisfies the homomorphism condition for t:

opTΓ(K)(t); ϕ∗ = opK(b); ιK,TΓ(K); ϕ∗ = opK(b); ϕ = opG(b; ϕ)

= opG(b; ιK,TΓ(K); ϕ∗) = opG(t; ϕ∗)

Completion: If there is no b ∈ dom(opK) ⊆ KIop with t = b; ιK,TΓ(K), the induction
hypothesis is that ϕ∗ is already defined on a subgraph T v TΓ(K) and that
t(Iop) v T. This ensures t; ϕ∗ ∈ GIop . In the induction step, we extend ϕ∗ to
the graph T′ v TΓ(K). The definition of operations in TΓ(K) and the required
homomorphism condition for ϕ∗ forces for each vertex ov in (Oop)V \ (Bop)V

ϕ∗V(opov〈syn(t)〉) = ϕ∗V

(
(opTΓ(K)(t))V(ov)

)
=
(
opTΓ(K)(t); ϕ∗

)
V
(ov)

= (opG(t; ϕ∗))V(ov) .

For each edge oe in (Oop)E \ (Bop)E we obtain, analogously, ϕ∗E(opoe〈syn(t)〉) =
(opG(t; ϕ∗))E(oe).

The assignments K 7→ TΓ(K) and (ψ : L → K) 7→ ((ψ; ιK,TΓ(K))
∗ : TΓ(L) → TΓ(K))

define, as usual for free constructions, a functor TCΓ : PAlg(Γ)→ Alg(Γ), and this functor
is left-adjoint to the inclusion functor I : Alg(Γ) ↪→ PAlg(Γ).

PAlg(Γ) Alg(Γ)

L TΓ(L) TΓ(L)

	

K TΓ(K) TΓ(K)

TCΓ

I

ψ

ιL,TΓ(L)

(ψ; ιK,TΓ(K))
∗ (ψ; ιK,TΓ(K))

∗

ιK,TΓ(K)

(22)

Due to Corollary 4.6 we even have I; TCΓ = idAlg(Γ), i.e., Alg(Γ) is a full reflective
subcategory of PAlg(Γ). In particular, we have for any Γ-homomorphism ψ : L → K in
PAlg(Γ)

TCΓ(ψ) = (ψ; ιK,TΓ(K))
∗ = ψ; ιK,TΓ(K) if L is a total Γ-algebra. (23)

4.5. Graph Terms and Graph Term Algebras

Graph term algebras are just the special case of term-completion algebras TΓ(K) where
all the graph operations inK are completely undefined, i.e., where everything is determined
by the carrier only.

Definition 4.11 (Graph Term Algebras). Let X be a graph and X = (X, OPX ) be the correspond-
ing unique partial Γ-algebra where all graph operations are completely undefined.

Graph terms : We denote the graph TΓ(X ), according to Definition 4.9, also by TΓ(X) and call it
the graph of all (graph) Γ-terms on X.

Graph term algebra : We denote the term completion Γ-algebra TΓ(X ), due to Definition 4.10,
also by TΓ(X) = (TΓ(X), OPTΓ(X)) and call it the Γ-term graph algebra on X.

Assigning to any graph X the corresponding unique partial Γ-algebra X = (X, OPX )
where all graph operations are completely undefined, defines a functor from Graph to
PAlg(Γ) that is left-adjoint to the forgetful functor UP

Γ : PAlg(Γ)→ Graph in Proposition 4.4.
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Combining this adjunction with the adjunction in (22) gives us the desired universal
property of graph term algebras at hand.

Proposition 4.6 (Graph Term Algebra as a Free Construction). Given a graph X, the Γ-term
graph algebra TΓ(X) has the following universal property: For any total Γ-algebra G = (G, OPG)
and any graph homomorphism ϕ : X→ G, there exists a unique Γ-homomorphism ϕ∗ : TΓ(X)→ G
such that the defining condition ιX,TΓ(X)

; ϕ∗ = ϕ is satisfied.

Graph X TΓ(X) TΓ(X) Alg(Γ)

G G

ϕ

ιX,TΓ(X)

ϕ∗
	

ϕ∗

It might be worth mentioning that Proposition 4.6 also enables us to straightforwardly
transfer Lemmas 3.3 and 3.4 in Section 3.5 to the graph algebra setting.

The definition of graph term algebras and their characterization as a free construction
is the main result in [7]. We claimed, “The Kleisli category of the new adjunction provides
an appropriate substitution calculus.” However, as time passed, we realized that this claim
is not fully true.

Substition Calculus: Graph term algebras manifest the “internalization approach” in the
case of graph algebras. Relying on Proposition 4.6, we can indeed obtain a fully
fledged substitution calculus, meeting the requirements formulated in Section 3.4.1.
Based on the idea that a substitution (declaration) is now given by a graph homo-
morphism σ : X → TΓ(Y) and that a variable assignment is a graph homomorphism
α : X → G for a Γ-algebra G = (G, OPG), we can simply transfer all the discussions,
definitions and results from Section 3.4.2 to graph algebras. We will spare the reader
this copy–paste exercise.

No appropriate concept of Derived Operation: In traditional Universal Algebra, we do
have a one-to-one correspondence between the “internal view” of terms as elements
of free algebras and the “external view” of terms as an appropriate representation of
derived operations (compare Definitions 3.12 and 3.14). It took us a while to realize
that this one-to-one correspondence breaks down when it comes to graph algebras
and even longer to understand the reasons. We discuss and address this problem in
the next section.

5. Derived Graph Operations

We now discuss the reasons why graph terms, in our opinion, do not provide a
fully adequate and appropriate concept of derived graph operation. First, each graph term,
interpreted as an operation in a given graph algebra, will only produce isolated single
vertices or single edges (without the source or target, respectively). What we do need,
however, are graphs as outputs of derived graph operations! This flaw could be repaired
by considering not single graph terms but subgraphs of graphs of graph terms.

Lemma 5.1 (Operations by Subgraphs). For a given graph X, any subgraph O v TΓ(X) defines

a span X
lO←−↩ BO

oO
↪−→ O of graph inclusions with BO := X ∩ O. Moreover, we obtain for all graphs

G a map δGO : GX → GO defined by δGO(b) := ιO,TΓ(X)
; b∗ for all b ∈ GX and satisfying the

commutativity requirement for graph operations in Definition 4.2.

However, this solution is not quite satisfactory. Each item in O is given by a separate
term expression, and the different term expressions may represent, in general, different
“computation schemes”. What we want and need, especially in practical applications, is a
single graph operation expression built up from variables and the symbols in OP such that
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the corresponding derived operation for a Γ-algebra produces, for any input, all (!) output
items simultaneously with the same computation. Moreover, we would like to be able to
define the semantics of these graph operation expressions, i.e., the corresponding derived
graph operations in Γ-algebras, independently of graph term algebras and in a comparably
easy, well-structured inductive way as we did for terms in Definition 3.14.

Unfortunately, traditional terms do not provide a fully appropriate blueprint to de-
fine such graph operation expressions. In Definition 3.8, terms are constructed using the
following steps: The two basic steps, Variables and Constants, and the induction step Op-
erations, which is implicitly split into two steps—(1) Tupling and (2) Symbolic Sequential
Composition of a tuple with an operation symbol. This splitting becomes apparent in
Definition 3.14 (Construction of Derived Operations).

In the case of graph operations, the step Variables turns into a step (Built-in) Projec-
tions. Besides this, there is nothing wrong with any of the steps except the step Tupling.

Example 5.1 (Composition of four Edges). To illustrate the problems with tupling, we consider
the composition of four edges. We are interested in a “graph operation expression” built up of three
copies of the operation symbol comp, as defined in Example 4.1. The input arity of the expression

should be the graph iv1 iv2 iv3 iv4 iv5
ie1 ie2 ie3 ie4 and the output arity should be

the graph iv1 iv5
oe with oe representing the composition of the four edges in the input arity.

An obvious idea is that in a first step, two parallel applications of comp produce the graph

iv1 iv3 iv5
oe1 oe2 with oe1 representing the composition of the edges ie1, ie2 and oe2

representing the composition of the edges ie3, ie4, respectively. In a second final step, the third
application of comp should then produce the edge iv1 iv5

oe .

If we describe the first step by a tuple, we will not obtain iv1 iv3 iv5
oe1 oe2 as the

output arity but only a pair
(

iv1 iv3
oe1 , iv3 iv5

oe2
)

of separated edges. This pair of

edges, however, does not match the input arity of comp and thus the second step can not be performed.
One could argue that we can repair this flaw a posteriori by “gluing” the two separated

graphs on the overlapping part, i.e., on the vertex iv3 in the example. This construction, however,
would be rather complicated and pathological, as it would consist of a mixture of colimit and
limit constructions. In the next subsections, we will propose a more systematic and well-behaved
mechanism based on a priori “soldering”.

5.1. Reconstruction of Syntactic Lawvere Theories

In this section, we analyze the construction of syntactic Lawvere theories in more
detail to better understand the “nature of tupling” and to find a way to solve the problems
with tupling pointed at in Example 5.1.

In Section 3.7, we defined syntactic Lawvere categories L(Σ), relying on a given concept
of term and a corresponding substitution calculus. Moreover, we have seen that a syntactic
Lawvere category L(Σ) can be characterized as a finite product category freely generated
by a signature Σ. Following this observation, we will now turn the story and reconstruct
the concept of term by means of the language of finite products and a corresponding
axiomatization of finite products.

5.1.1. Categories with Finite Products

We start with a standard definition of finite products. A category C has finite products
if, and only if, the following ingredients are present:

1. C has an empty product (terminal object) 1, i.e., for any object A in C there is a morphism
〈〈 〉〉 : A→ 1 such that

g; 〈〈 〉〉 = 〈〈 〉〉 : B→ 1 for all morphisms g : B→ A. (24)
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2. For any family A1, . . . , An, n ≥ 1 of objects, there is an object A1 × . . .× An together
with projections πi : A1 × . . .× An → Ai, 1 ≤ i ≤ n such that

3. For any object B and any family fi : B → Ai, 1 ≤ i ≤ n of morphisms, there is a
morphism 〈〈 f1, . . . , fn〉〉 : B→ A1 × . . .× An with

〈〈 f1, . . . , fn〉〉; πi = fi for all 1 ≤ i ≤ n. (25)

Moreover, we have id1 = 〈〈 〉〉 and idA1×...×An = 〈〈π1, . . . , πn〉〉 .
4. Finally, for all morphisms g : C → B, the following equation holds

g; 〈〈 f1, . . . , fn〉〉 = 〈〈g; f1, . . . , g; fn〉〉 . (26)

5.1.2. Categories Based on Finite Product Expressions

To reconstruct syntactic Lawvere categories, we define, in a first step, reflexive graphs
with finite product expressions as edges and an associative composition. A finite product
expression (or fp-expression for short) is a string of symbols built up of variable symbols,
operation symbols, and angle bracket symbols ”〈”, ”〉” to denote tupling, the semicolon
symbol “ ; ” to denote symbolic composition, and the auxiliary comma symbol “ , ” to separate
substrings.

In the second step, we generate from fp-expression graphs finite product categories
with equivalence classes of fp-expressions as morphisms.

We will only outline the definitions, constructions and results. One possibility to do
it completely formally and precisely is to reuse, for example, the well-developed theory
of specifications of partial algebras with conditional existence equations [17,18] and to
construct the finite product categories as “partial quotient term algebras” freely generated
by signatures (compare [19]).

First, we define for any signature Σ = (OP, ar) a reflexive graph FP(Σ) with an
associative composition as follows:

Objects: As objects, we choose the same canonical finite sets of variables as for L(Σ)

X0 = ∅ and Xn := {xn
1 , xn

2 , . . . , xn
n} for all n ∈ N with n ≥ 1 .

Morphisms: Morphisms are all finite product expressions inductively defined as follows

Symbolic Projections: pxn
i q : Xn → X1 is an fp-expression for all n ≥ 1, 1 ≤ i ≤ n.

Constant and Operation Symbols: popq : Xn → X1 with n ∈ N is an fp-expression
if op is an n-ary operation symbol in OP.

Empty Symbolic Tuples: p〈〉q : Xn → X0 is an fp-expression for all n ∈ N.
Non-empty Symbolic Tuples: p〈ex1, . . . , exn〉q : Xm → Xn is an fp-expression for all

m ≥ 0, n ≥ 1 and all families pexiq : Xm → X1, 1 ≤ i ≤ n of fp-expressions.
Symbolic Sequential Composition: pex1; ex2q : Xn → Xm is an fp-expression for all

n, k, m ∈ N and all fp-expressions pex1q : Xn → Xk , pex2q : Xk → Xm.
Symbolic Identities: p〈xn

1 , . . . , xn
n〉q : Xn → Xn is the identity on Xn for all n ≥ 1

and p〈 〉q : X0 → X0 is the identity on X0.

Remark 5.1 (Computation Diagrams). Inspired by logic circuit diagrams, term graphs [20],
and string diagrams [21], we will use informal computation diagrams to visualize the computations
represented by fp-expressions. A computation diagram consists of “computation units”, “(data-flow)
edges”, and input and output “ports”.

Each n-ary operation symbol is seen as a “computation unit” with n input ports and a single
output port. Variable symbols appear, however, in two different roles: as “ports”, i.e., as elements of
the objects Xn, and as “computation units”, i.e., as identifiers for projections. To distinguish these
two roles, we simply denote ports by i instead of xn

i . As a “computation unit”, a variable simply
copies values from a single input port to an arbitrary finite number of output ports.
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Example 5.2 (Finite Product Expressions). Let Σ be a signature with two binary operation
symbols, “+” and “∗”. Both fp-expressions p+q : X2 → X1 and p〈x2

1, x2
2〉;+q : X2 → X1 are

equivalent, according to the Equations (24)–(26), and represent simple “tree-like” computation
diagrams as depicted below. The picture below also visualizes the effect of symbolic composition.

X2 X2 X1 X2 X1

1

2

x2
1

x2
2

1

2
+ 1

1

2

x2
1

x2
2

+ 1

〈x2
1, x2

2〉 + 〈x2
1, x2

2〉;+

Equations (24)–(26) do not enforce that the unary symbolic tuple p〈〈x2
1, x2

2〉;+〉q : X2 → X1
is equivalent to the fp-expression p〈x2

1, x2
2〉;+q : X2 → X1 even if both fp-expressions represent

“essentially” the same computation and are therefore depicted by the same computation diagram!
The first fp-expressions represent the addition of two numbers. We can, of course, derive

expressions representing the doubling of a number as the expression p〈x1
1, x1

1〉;+q : X1 → X1, for
example. The picture below shows how the corresponding dag-like computation diagram is obtained
by composing a “copying unit” with a computation unit.

X1 X2 X1 X1 X1

1 x1
1

1

2
+ 1 1 x1

1 + 1

〈x1
1, x1

1〉 + 〈x1
1, x1

1〉;+

More generally, fp-expressions allow us to represent arbitrary “sharing of sub-computations”.
The fp-expression p〈〈x2

1, x2
2〉;+〉; 〈x1

1, x1
1〉; ∗q : X2 → X1, for example, represents the square of the

sum of two numbers. The corresponding dag-like computation diagram is depicted below

X2 X1

1

2

x2
1

x2
2

+ x1
1 ∗ 1

〈〈x2
1, x2

2〉;+〉; 〈x1
1, x1

1〉; ∗

Relying on the identity and associativity law as well as the axioms of finite products,
according to the Equations (24)–(26), we generate a family of equivalence relations in
FP(Σ)(Xn, Xm) for all n, m ∈ N that is compatible with symbolic composition and symbolic
tupling. We construct the corresponding equivalence classes of fp-expressions and define
composition, identity and tupling operations on these equivalence classes in the usual
way by representatives. What we obtain, finally, is a finite product category FP(Σ) with
equivalence classes of symbolic tuples as morphisms.

Adapting the recipe from Definition 3.14, we can obviously translate every Σ-term
t ∈ TΣ(Xn) into an fp-expression pe(t).

Definition 5.1 (Translation of Terms into Finite Product Expressions). For any set Xn, n ∈ N,
we inductively define for all Σ-terms t ∈ TΣ(Xn) a corresponding finite product expression
pe(t) : Xn → X1 as follows:

Variables: pe(pxn
i q) := pxn

i q, for all n ≥ 1, 1 ≤ i ≤ n.

Constants: pe(pc〈〉q) := p〈〉; cq, for all pc〈〉q ∈ TΣ(Xn).
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Operations: pe(pop〈t1, . . . , tn〉q) := p〈pe(t1), . . . , pe(tn)〉; opq, for all pop〈t1, . . . , tn〉q ∈
TΣ(Xn), n ≥ 1.

We call all the fp-expressions pe(t), obtained by Definition 5.1, fp-expressions in normal
form. Correspondingly, all the fp-expressions p〈pe(t1), . . . , pe(tn)〉q are called symbolic tuples
in normal form. We use the term “normal form” since they are in normal form with respect to
a rewrite system [14] consisting of the rewriting rules given by the Equations (24)–(26) read
from the left to the right.

Example 5.3 (Finite Product Expressions-Normal Forms). From the five fp-expressions in
Example 5.2, the two expressions p〈x2

1, x2
2〉;+q and p〈x1

1, x1
1〉;+q are fp-expressions in normal

form, while p〈〈x2
1, x2

2〉;+〉q is a symbolic tuple in normal form.
None of the rules (24)– (26) can be applied to p+q! However, applying these rules, we can

transfer the fp-expression p〈〈x2
1, x2

2〉;+〉; 〈x1
1, x1

1〉; ∗q : X2 → X1, which is the symbolic composi-
tion of a symbolic tuple in normal form with an fp-expression in normal form, into normal form:

〈〈x2
1, x2

2〉;+〉; 〈x1
1, x1

1〉; ∗ ⇒
〈
〈〈x2

1, x2
2〉;+〉; x1

1 , 〈〈x2
1, x2

2〉;+〉; x1
1
〉

; ∗ (26)
⇒

〈
〈x2

1, x2
2〉;+ , 〈x2

1, x2
2〉;+

〉
; ∗ (25)

The picture below shows the result of this transformation into normal form for the relevant
sub-expression 〈〈x2

1, x2
2〉;+〉; 〈x1

1, x1
1〉.

X2 X2 X2 X2

1

2

x2
1

x2
2

+ x1
1

1

2

1

2

x2
1

x2
2

+

+

1

2

〈〈x2
1, x2

2〉;+〉; 〈x1
1, x1

1〉 〈〈x2
1, x2

2〉;+, 〈x2
1, x2

2〉;+〉

The general effect of normalization is that all “value copying” is moved to the beginning, while
we have to “clone computations units” to get rid of “value copying” happening elsewhere.

The crucial observation is that every equivalence class of symbolic tuples, constituting
a morphism in FP(Σ), contains exactly one symbolic tuple in normal form! Based on this
observation, it can be shown that the category FP(Σ) is isomorphic to the syntactic Lawvere
category L(Σ).

5.1.3. Substitutions Revisited

Since every equivalence class of symbolic tuples in FP(Σ) contains exactly one sym-
bolic tuple in normal form, we can define a corresponding representation category FPnf(Σ)
with morphisms all symbolic tuples in normal form.

However, the symbolic composition of a symbolic tuple in normal form with an fp-
expression in normal form or a symbolic tuple in normal form does not, in general, result
in an fp-expression in normal form or a symbolic tuple in normal form, respectively. We
have to normalize this composite fp-expression to define composition in FPnf(Σ).

The rules, given by the Equations (24)–(26), are not sufficient to transform any fp-
expression into its normal form. They are, however, sufficient to compute the normal form
of all symbolic compositions of a symbolic tuple in normal form with an fp-expression in
normal form and thus, due to Equation (26), all symbolic compositions of symbolic tuples
in normal form! We described an example of a normalization of a symbolic composition of
a symbolic tuple in normal form with an fp-expression in normal form in Example 5.3.

We now have a chain of isomorphisms between categories L(Σ) ∼= FP(Σ) ∼= FPnf(Σ).
The morphisms in L(Σ) are tuples of terms representing substitution declarations, while
composition is nothing but substitution application. The tuples of terms in L(Σ) are trans-
formed into symbolic tuples in normal form in FPnf(Σ), while composition in FPnf(Σ) is
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given by symbolic composition plus normalization. So, in light of substitution calculi, as dis-
cussed in Section 3.4.1, we obtain the following correspondence of concepts: “substitution
declaration” ∼= “symbolic tuple in normal form”. Moreover, Lawvere’s original slogan
“composition is substitution” turns into the slogan

substitution application ∼= symbolic composition plus normalization.

This perception may open a path to develop, in the future, an appropriate substitution
calculus for derived graph operations.

5.2. Analysis of Finite Product Expressions

After transforming the syntactic Lawvere category L(Σ) into the isomorphic categories
FP(Σ) and FPnf(Σ), we are now able to attack the problems, pointed at in Example 5.1, by
analyzing in more detail finite product expressions.

5.2.1. Finite Products vs. Tensor Products

It is well-known that finite products also give us tensor products at hand [21]. We will
use the term parallel composition of morphisms instead of tensor product of morphisms, and we
will use the bar symbol “|” instead of “⊗” to denote parallel composition of morphisms.
The picture below visualizes the parallel composition of the fp-expression p+q : X2 → X1
with itself.

X2 X1 X4 X2

1

2

1

2

+

+

1

1

1

2

3

4

+

+

1

2

+ (+|+)

Conversely, tensor products together with copying, allow us to define finite products [21].
In our present setting, copying is represented by symbolic tuples of symbolic projections,
and thus each non-empty symbolic tuple p〈ex1, . . . , exn〉q can equivalently be described by
a symbolic composition p〈copy〉; (ex′1| . . . |ex′n)q of a symbolic tuple p〈copy〉q of symbolic
projections with a parallel composition p(ex′1| . . . |ex′n)q of expressions. The picture below
shows the result of this transformation for the fp-expression 〈〈x2

1, x2
2〉;+, 〈x2

1, x2
2〉;+〉, dis-

cussed in Example 5.3. To exemplify that we do not always have ex′i = exi, we also show
the result for the variant 〈〈x3

1, x3
2〉;+, 〈x3

2, x3
3〉;+〉.

X2 X4 X2 X3 X4 X2

1
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x2
1

x2
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1

x2
2

x2
1

x2
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+

+

1

2

1

2

3

x3
1

x3
2

x3
3

1

2

3

4

x2
1

x2
2

x2
1

x2
2

+

+

1

2

〈x2
1, x2

2, x2
1, x2

2〉 (〈x2
1, x2

2〉;+ | 〈x2
1, x2

2〉;+) 〈x3
1, x3

2, x3
2, x3

3〉 (〈x2
1, x2

2〉;+ | 〈x2
1, x2

2〉;+)

In conclusion, in the case of traditional operations, tupling can equivalently be replaced
by parallel composition plus copying. There are no problems concerning parallel composition
of graph operations, and thus the problem with tupling can finally be shown to be a
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problem with copying. We have to eventually replace copying by another mechanism that
does not cause problems!

5.2.2. Copying vs. Soldering

How can we explain, in terms of computation diagrams, the effect of pre-composing
an expression ex : Xn → Xm with a symbolic tuple p〈copy〉q : Xk → Xn of symbolic
projections? We construct out of a computation diagram with n input ports and m output
ports a new computation diagram with k input ports and the same m output ports.

To explain this construction, we have to leave the pure world of expressions and
remember that a symbolic tuple p〈copy〉q : Xk → Xn of symbolic projections encodes a
map c : Xn → Xk between ports. If c is not surjective, the construction adds each element
in Xk \ c(Xn) as a “dummy input port”. In addition, each original input port x ∈ Xn is
soldered with all other input ports x′ ∈ Xn with c(x′) = c(x) to a single input port in Xk.
Relying on our conventions in Section 2 concerning the notation of maps, we will use a
new type of expression [c](ex) to denote the new operation from Xk to Xm defined by the
newly constructed computation diagram and call it the instance of pexq with respect to c.
The left picture in Figure 6 visualizes the construction of [1, 2, 1, 2](+|+).

In the case of computation units and non-injective, surjective maps c : Xn → Xk, we
could even interpret the construction of [c](ex) as the construction of a new computation
unit computing, for example, the square of a number (see the right picture in Figure 6).

X4 X2

X2 X2

1

2

3

4

+

+

1

2

1

2

+

+

1

2

(+|+)

[1, 2, 1, 2](+|+)

X2 X1

X1 X1

1

2
∗ 1

1 ∗ 1

∗

[1, 1](∗)

Figure 6. Instances of computation diagrams.

In the case of traditional operations, the soldering of input ports has no effect on
output ports since the boundaries are empty! In the case of graph operations, however,
soldering of input ports may cause soldering of items in the boundary and thus, potentially,
also of output ports. This is exactly the mechanism we have been looking for to solve the
problems with tupling exemplified in Example 5.1, as we will demonstrate in Section 5.3.

5.3. Three Mechanisms to Construct New Graph Operations

Our analysis in the last subsection suggests that we should try to define “derived
graph operations” by means of three basic constructions on graph operations—parallel
composition, instantiation, and sequential composition.
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5.3.1. Parallel Composition

Given a graph G and a family ωi : GIi → GOi , 1 ≤ i ≤ k, k ≥ 2 of graph operations with

arity spans ari = Ii Bi Oi
rili , we can construct a new graph operation

ω := ω1 + . . . + ωk : GI → GO with arity ar = ar1 + . . . + ark = I B O
rl , (27)

called the parallel composition of ω1, . . . , ωk, where the arity graphs are given by sums of
graphs I = I1 + . . . + Ik, B = B1 + . . . + Bk, O = O1 + . . . + Ok and the inclusion graph
homomorphims are sums of graph homomorphisms l = l1 + . . . + lk, r = r1 + . . . + rk.

The sum I = I1 + . . . + Ik comes along with a family κIi : Ii → I, 1 ≤ i ≤ k of
injections and for any b ∈ GI the uniqueness of mediating morphisms entails the equation

b = [κI1 ; b, . . . , κIk ; b] : I→ G . (28)

By applying the given operations ωi : GIi → GOi , 1 ≤ i ≤ k, we obtain a family
ωi(κ

I
i ; b) : Oi → G of graph homomorphisms satisfying the commutativity requirement for

graph operations in Definition 4.2:

li; κIi ; b = ri; ωi(κ
I
i ; b) for all 1 ≤ i ≤ k. (29)

We define the result of applying ω = ω1 + . . . + ωk to an input b ∈ GI as the unique
cotuple of the single results

ω(b) = (ω1 + . . . + ωk)(b) := [ω1(κ
I
1 ; b), . . . , ωk(κ

I
k ; b)] : O→ G. (30)

The algebraic laws of cotuples and sums ensure that the commutativity requirement
for graph operations is satisfied:

r; ω(b) = (r1 + . . . + rk); [ω1(κ
I
1 ; b), . . . , ωk(κ

I
k ; b)] (def. of r and (30))

= [r1; ω1(κ
I
1 ; b), . . . , rk; ωk(κ

I
k ; b)]

= [l1; κI1 ; b, . . . , lk; κIk ; b] (29)
= (l1 + . . . + lk); [κI1 ; b, . . . , κIk ; b]
= l; b (def. of l and (28))

Remark 5.2 (Parallel Composition - Index Shifting). In the case that all the arity spans ari =

Ii Bi Oi
rili are canonical arity spans, in the sense of Remark 4.2, we can also construct

the arity ar = ar1 + . . . + ark = I B O
rl as a canonical arity span.

We construct the sums of sets IV = (I1)V + . . . + (Ik)V and IE = (I1)E + . . . + (Ik)E
utilizing the technique of “index shifting” we used in Section 3.7.2 to define finite products
in Lawvere theories. The sum B = B1 + . . . + Bk of boundary graphs can be chosen to be a
corresponding subgraph of I = I1 + . . . + Ik. Finally, we can construct a sum O = O1 + . . . + Ok
with OV = BV ∪ (OV \ BV) and OE = BE ∪ (OE \ BE) where both sums of sets OV \ BV :=
(O1)V \ (B1)V + . . . + (Ok)V \ (Bk)V and OE \ BE := (O1)E \ (B1)E + . . . + (Ok)E \ (Bk)E are
again constructed by means of “index shifting”.

The technique of “index shifting” allows us to define sums of canonical arities in such a way
that the formation of these sums becomes associative. This means, especially, that there is no need to
work with “nested parallel compositions”.

Example 5.4 (Parallel Composition). We consider a Γcat-algebra C = (gr(C), OPC) given by a
category C as described in Example 4.2. The upper part of Figure 14 is the same as the upper part of
Figure 7 and shows the arity ar(comp) + ar(comp) of the parallel composition compC + compC of
the composition operation in C with itself.
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ie2

ie3

ie4
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ie1

ie2

ie3

ie4

oe1

oe2

l(comp|comp) r(comp|comp)

ϕ ϕB ϕR

l′ r′

Figure 7. Parallel application of two composition operations on successive pairs of arrows.

Analogously, the upper part of Figure 8 shows the arity of the parallel composition compC +πI
I

of the composition operation in C with the built-in projection (identity map) πI
I : GI → GI, as

defined in Remark 4.3, where I is the canonical input arity graph iv1 iv2
ie1 (the notations for

“graph operation expressions”, like (comp|comp) and (comp|(I, I)), will be defined in Section 5.4).

iv1

iv2

iv3

iv4

iv5

iv1

iv3

iv4

iv5
iv1

iv3

iv4

iv5

iv1
iv2

iv3
iv4

iv1
iv3

iv4

iv1
iv3

iv4

ie1

ie2

ie3

ie3

oe1

ie3

ie1

ie2

ie3

ie3

oe1

ie3

l(comp|(I,I)) r(comp|(I,I))

ψ ψB ψR

l′ r′

Figure 8. Parallel application of a composition operation and an identity map on arrows.

5.3.2. Instantiation

Given a graph G and a graph operation ω : GI → GO with arity ar = I B O
rl ,

we can construct for any finite graph I′ and any graph homomorphism ϕ : I → I′ a
graph operation

ω/ϕ := : GI
′ → GO

′
with arity ar/ϕ = I′ B′ O′r′l′ , (31)

called the instance of ω with respect to ϕ, where B′ := ϕ(B) v I′ and O′ is constructed as a

pushout of the span B′ B O
rϕB with B′ v O′ such that I′ and O′ \ B′ are disjoint as

depicted in the picture below. For any input b ∈ GI
′
, we can apply the given graph operation

ω : GI → GO to ϕ; b ∈ GI and obtain a result ω(ϕ; b) ∈ GO such that l; ϕ; b = r; ω(ϕ; b). Since



Logics 2023, 1 227

l; ϕ = ϕB; l′ by construction, we obtain ϕB; l′; b = r; ω(ϕ; b) and thus the pushout property
of the right square entails the existence of a unique kb : O′ → G such that l′; b = r′; kb and
ϕO; kb = ω(ϕ; b).

I′

I

B′

B

O′

O

G

	 po

	

l′ r′

l r

ϕBϕ ϕO

kbb
ϕ; b ω(ϕ; b)

It is probably worth mentioning that it is sufficient to require that ϕO; kb = ω(ϕ; b).
ϕB : B → B′ is an epimorphism by construction such that ϕO : O → O′ also becomes an
epimorphism since pushouts preserve epimorphisms. Therefore, kb : O′ → G is uniquely
determined by the requirement ϕO; kb = ω(ϕ; b). Moreover, this requirement also implies
l′; b = r′; kb since ϕB : B→ B′ is an epimorphism. In other words, ω(ϕ; b) factors uniquely
through ϕO : O→ O′ and thus the term “instance” is indeed appropriate.

For any input b ∈ GI
′
,. we define (ω/ϕ)(b) := kb. This ensures, especially, the

required commutativity l′; b = r′; (ω/ϕ)(b).

Remark 5.3 (Instantiation—Canonical Arities). For a canonical arity span I B O
rl

and a canonical input arity graph I′, we have that I′ and O \ B are disjoint. In such a way, we can

simply define O′V = B′V ∪ (OV \ BV) and O′E = B′E ∪ (OE \ BE) such that I′ B′ O′r′l′

becomes a canonical arity span as well.

Example 5.5 (Instances of the Composition Operation). There are four different instances of
the composition operation compC in a Γcat-algebra C = (gr(C), OPC) as described in Example 4.2.

The lower part of Figure 9 visualizes the arity ar(comp)/β of the instance compC/β of compC ,
giving us the composition of two loops at hand. The arity ar(comp)/γ of the most specialized
instance compC/γ of compC , namely the composition of a loop with itself, is shown in the lower part
of Figure 10.

iv1

iv2

iv3

iv1

iv3

iv1

iv3

iv1 iv1 iv1

ie1

ie2

oe1

ie1 ie2 oe1

lcomp rcomp

β βB βR

l′ r′

Figure 9. Composition of two loops.
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oe1
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lcomp rcomp

γ γB γR

l′ r′

Figure 10. Composition of a loop with itself.

Example 5.6 (Tupling versus Soldering). The lower part of Figure 7 visualizes the arity of the
instance (compC + compC)/ϕ of the parallel composition compC + compC in Example 5.4. It shows
that instantiation indeed provides the “soldering effect” we need to solve the problems with “tupling”
as exemplified in Example 5.1! The output arity of the graph operation (compC + compC)/ϕ consists
of two successive arrows; thus, we can indeed compose it with compC (see Example 5.7).

Analogously, the lower part of Figure 8 visualizes the arity of the instance (compC + πI
I)/ψ

of the parallel composition compC + πI
I in Example 5.4. This example shows that we also need

“soldering” to describe the composition of three arrows by means of “derived graph operations”.

Remark 5.4 (Transfer of Items). Note that ϕ is not required to be surjective! The items in
I′ \ ϕ(I) have no influence on the output produced by ω/ϕ and are ignored. Specifically, they do
not appear in B′ = ϕ(B) and thus not in O′ either.

Any transfer of items from the input to the output has to be performed explicitly! If we need to
transfer, in addition, also items from I′ \ ϕ(B) to the output, we have first to construct a parallel
composition of ω with appropriate built-in projections before we define a corresponding extended
ϕ′ that also comprises the items in I′ \ ϕ(B) we wish to transfer. An example for such a “need of
transfer” is the successive composition of three arrows (compare Figure 8).

Corollary 5.1 (Instantiation). Let a graph G and a graph operation ω : GI → GO with a canonical

arity span I B O
rl be given. For any canonical input arity graphs I′, I′′ and any graph

homomorphisms ϕ : I→ I′, ψ : I′ → I′′, we have

(ω/ϕ)/ψ = ω/(ϕ; ψ).

Proof. This follows immediately from the fact that (ϕ; ψ)(I) = ψ(ϕ(I)) and the fact
that the composition of two pushouts is also a pushout. The choice of canonical arities
ensures, especially, that OV \ BV = O′V \ B′V = O′′V \ B′′V and OE \ BE = O′E \ B′E = O′′E \ B′′E, by
construction.

Hypothesis 5.1 (Parallel Composition and Instantiation). It should not be a problem to prove a
more general result about the interplay of parallel composition and instantiation.

We consider a graph G and a family ωi : GIi → GOi , 1 ≤ i ≤ k, k ≥ 2 of graph operations

with canonical arity spans Ii Bi Oi
rili together with a family ϕi : Ii → I′i, 1 ≤ i ≤ k

of homomorphisms where all the I′i values are canonical input arity graphs. For any graph homo-
morphism ϕ : I′1 + . . . + I′k → I′′ with I′′ a canonical input arity graph, we have

(ω1/ϕ1 + . . . + ωk/ϕk)/ϕ = (ω1 + . . . + ωk)/(ϕ1 + . . . + ϕk); ϕ.
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5.3.3. Sequential Composition

At first glance, it should not be a problem to sequentially compose two graph opera-

tions ω1 : GI1 → GO1 with arity ar1 = I1 B1 O1
r1l1 and ω2 : GI2 → GO1 with arity

ar2 = I2 B2 O2
r2l2 . We simply require O1 = I2 and define, as usual, composition

through successive application, (ω1; ω2)(b) := ω2(ω1(b)) for all b ∈ GI1 , while the arity of
the sequential composition is given by a standard pullback based composition of spans
(see the picture below).

I1 I2

B1 B2

=O1 O2

B1 B2∩

G

pb

	 	

l1 r1 l2 r2

l∗2 r∗1

b
ω1(b)

ω2(ω1(b))

There are, however, at least two problems with this naive proposal:

1. For canonical arity spans ar1 and ar2 , we can have an equality O1 = I2 only if ω1 is a
built-in projection.

2. There are two kinds of output items produced via the sequential composition of two
graph operations. First, the output items produced by ω2. Second, the output items
produced by ω1 and implicitly transferred by ω2, i.e., the items in B2 \ (B1 ∩ B2) =
B2 \ B1. In other words, the resulting arity will not satisfy the disjointness condition in
Definition 4.1 if B2 \ B1 is non-empty!

Since we intend to define graph operation expressions with canonical arity spans
only, we consider canonical arity spans ar1 and ar2. To solve the first problem, we intro-
duce sequential composition via arity renaming, i.e., instead of O1 = I2, we assume a graph
isomorphism $ : I2 → O1 and define a graph operation ω1;$ ω2 : GI1 → GO

$
2 with arity

ar = I1 B O
$
2

rl where O
$
2 is isomorphic to O2 and constructed by means of $ in

such a way that ar becomes a canonical arity span. This also solves the second problem.
We now describe the rather involved step-wise construction of the canonical arity

of the graph operation ω1;$ ω2 : GI1 → GO
$
2 obtained by the sequential composition of

two given graph operations ω1 : GI1 → GO1 and ω2 : GI2 → GO1 via a graph isomorphism
$ : I2 → O1. The reader can follow the construction in Figure 11.
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I1 I2

B1 B2

O1 O2

$(B2)

B

B
$
2

O
$
2

G

pb

	

	

po

	
	

	

	

l1 r1 l2 r2

$

$B

$−1
B

l$
2

r∗1 ; ι
r∗1

ι

l∗2 r$
2

$O

$−1
O

b

ω1(b) $; ω1(b) ω2($; ω1(b))

$−1
O ; ω2($; ω1(b))

l r

Figure 11. Sequential composition via a graph isomorphism $ : I2 → O1.

1. We obtain an epi-mono factorization of l2; $ : B2 → I2 by constructing the image of B2
with respect to $ : I2 → O1. The resulting restriction $B : B2 → $(B2) of $ becomes an
isomorphism since $ is an isomorphism.

2. The boundary arity of ω1;$ ω2 can now be constructed by simple intersection (pull-
back): B := B1 ∩ $(B2) and l := l$

2 ; l1.
3. To be able to define O

$
2 as an extension of B such that O$

2 \ B consists of canonical
sets of output vertices and output edges, according to Remark 4.2, we first have to
reindex the output vertices/edges in $(B2) \ B = $(B2) \ B1 ⊆ O1 \ B1. We construct
a graph B

$
2, isomorphic to $(B2) with (B

$
2)V = BV ∪ PV and (B

$
2)E = BE ∪ PE, where

PV = {ov1, . . . , ovnP} and PE = {oe1, . . . , oemP} for nP = |($(B2))V \ BV | and mP =
|($(B2))E \ BE|.

4. We can define an isomorphism ι : $(B2) → B
$
2 that is the identity on B such that, in

addition, ιV restricted to ($(B2))V \ BV is an order-preserving map from ($(B2))V \ BV
to PV while ιE restricted to ($(B2))E \ BE is an order-preserving map from ($(B2))E \ BE
to PE. The construction ensures that r∗1 ; ι becomes an inclusion graph homomorphism
r∗1 ; ι : B→ B

$
2.

5. We construct O$
2 via a pushout of the span O2 $(B2) B

$
2

ι$−1
B ;r2 with (O

$
2)V := BV ∪

(PV + (O2)V \ (B2)V) where (PV + (O2)V \ (B2)V) is constructed by “index shifting”
and (O

$
2)E := BE ∪ (PE + (O2)E \ (B2)E) where (PE + (O2)E \ (B2)E) is also constructed

by “index shifting”.
6. The construction ensures B$

2 v O
$
2 and that $O : O2 → O

$
2 becomes an isomorphism. We

set r := r∗1 ; ι; r$
2 and obtain a canonical arity span I1 B O

$
2

rl as required.

After the arity of the graph operation ω1;$ ω2 : GI1 → GO
$
2 has been constructed, we

can straightforwardly define ω1;$ ω2 : GI1 → GO
$
2 through the successive application of the

given graph operations plus two intermediate arity-based isomorphic transformations:

(ω1;$ ω2)(b) := $−1
O ; ω2($; ω1(b)) : O$

2 → G for all b ∈ GI1 . (32)

The commutativity condition in Definition 4.2 is trivially satisfied since the diagram
in Figure 11 is commutative by construction and definition.
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Example 5.7 (Composition of four and three arrows). The output arity of the graph operation

(compC + compC)/ϕ in Example 5.6 is the graph O1 := iv1 iv3 iv5
oe1 oe2 (see Figure 7)

while the input arity of the graph operation compC is the graph I2 := iv1 iv2 iv3
oe1 oe2 . In

such a way, both graph operations can be composed via the arity renaming $ : I2 → O1 defined
by the assignments {iv1 7→ iv1, iv2 7→ iv3, iv3 7→ iv5, oe1 7→ oe1, oe2 7→ oe2}. The resulting
graph operation ((compC + compC)/ϕ) ;$ compC with the canonical arity span shown in Figure 12
describes then the way of composing four successive arrows discussed in Example 5.1.

iv1
iv2

iv3
iv4

iv5

iv1

iv5

iv1

iv5

ie1

ie2

ie3

ie4

oe1
l r

Figure 12. Arity of the composition of four arrows.

Analogously, the output arity of the graph operation (compC + πI
I)/ψ in Example 5.6 is

the graph O1 := iv1 iv3 iv4
oe1 ie3 (see Figure 8), while the input arity of the graph

operation compC is the graph I2 := iv1 iv2 iv3
oe1 oe2 . In such a way, both graph op-

erations can be composed via the arity renaming ρ : I2 → O1 defined by the assignments
{iv1 7→ iv1, iv2 7→ iv3, iv3 7→ iv4, oe1 7→ oe1, oe2 7→ ie3}. The resulting graph operation
(((compC + πI

I)/ψ) ;ρ compC with the canonical arity span shown in Figure 13 describes then the
way of composing three successive arrows in a Γcat-algebra C = (gr(C), OPC) that corresponds to
the left-hand side of the associativity law for the composition of morphisms in categories

( f ; g); h = f ; (g; h) for all A
f→ B

g→ C h→ D in C. (33)

With the obvious changes, we can also construct a graph operation (((πI
I + compC)/ψ′) ;ρ

′
compC

with the same canonical arity span but representing the right-hand side of the associativity law.

iv1
iv2

iv3
iv4

iv1

iv4

iv1

iv4

ie1

ie2

ie3

oe1
l r

Figure 13. Arity of the composition of three arrows.

Hypothesis 5.2 (Associativity of Sequential Composition). We consider three graph operations
with two arity renamings as depicted below.

I1 I2 I3

B1 B2 B3

O1 O2 O3

l1 r1 l2 r2 l3 r3

$ ε

ω1 ω2 ω3
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What kind of associativity can we gain? Constructing, first, the composition ω2;ε ω3, we
transfer the diagram of arities above into the diagram

I1 I2

B1 B

O1 Oε
3

l1 r1 l r

$

ω1 ω2;ε ω3

This means, that we can sequentially compose ω1 and ω2;ε ω3 via $ : I2 → O1. We obtain a
graph operation ω1;$ (ω2;ε ω3) with input arity I1 and output arity (Oε

3)
$.

In contrast, we cannot compose ω1;$ ω2 and ω3 via ε : I3 → O2 since the output arity of
ω1;$ ω2 is O$

2 and not O2 as required. Fortunately, we can bridge the gap using $−1
O : O2 → O

$
2 (see

Figure 11 and the diagram below) and construct the sequential composition (ω1;$ ω2);ε;$−1
O ω3 with

input arity I1 and output arity O
ε;$−1

O
3 .

I1 I3

B B3

O
$
2 O2 O3

l1 r1 l3 r3

$−1
O ε

ω1;$ ω2 ω3

We are convinced that one can prove (Oε
3)

$ = O
ε;$−1

O
3 and an associativity law like ω1;$ (ω2;ε ω3) =

(ω1;$ ω2);ε;$−1
O ω3, but we leave this as a topic for future research.

Remark 5.5 (Constructions and Built-in Projections). For any graph G the collection of all
built-in projections πH

K : GH → GK, as described in Remark 4.3, is closed with respect to any of
the three constructions—parallel composition, instantiation, or sequential composition. That is,
applying any of these constructions only to built-in projections will result in a built-in projection.

We made some effort to define the arity spans of resulting graph operations in such a way that
the result of applying any of the three constructions to graph operations with canonical arity spans
has a canonical arity span as well.

In such a way, the sub-collection of all built-in projections πI
O : GI → GO with I as a finite

canonical input arity also becomes closed with respect to any of the three constructions. This fact may
cause some redundancy when defining “graph operation expressions” and corresponding “derived
graph operations”. We will, however, try to avoid unnecessary redundancy.

5.4. Graph Operation Expressions and Derived Graph Operations

Now, we finally have everything at hand to define graph operation expressions and
their semantics, i.e., the derived graph operations we have been looking for. We define graph
operation expressions with canonical arities and with a structure as close as possible to
the structure of terms. Instead of “terms” we have “single expressions”, while “multi
expressions” correspond to “tuples of terms”.

Definition 5.2 (Graph Operation Expressions). For any graph signature Γ = (OP, ar), we
define inductively the set GE(Γ) of all (graph operation) Γ-expressions with canonical arity
spans.

Projections: p(I, O)q ∈ GE(Γ) with arity span ar(p(I, O)q) = I O O
l r for any

finite canonical input arity graph I and any subgraph O v I.

p(I, O)q is called a projection expression.
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Constants: p[ ]cq ∈ GE(Γ) with arity ar(p[ ]cq) = I 0 Oc
l r for any constant

symbol c ∈ OP and any finite canonical input arity graph I.

Moreover,

p([ ]c ↓ O)q ∈ GE(Γ) with arity ar(p([ ]c ↓ O)q) = I 0 O
l r for any non-

empty subgraph O v Oc.

Both expressions p[ ]cq and p([ ]c↓O)q are declared as single Γ-expressions.

Operations: p[syn(ϕ)]opq ∈ GE(Γ) for any operation symbol op ∈ OP, any finite canon-
ical input arity graph I′, and any graph homomorphism ϕ : Iop → I′ where the ar-

ity ar(p[syn(ϕ)]opq) = I′ B′ O′r′l′ is constructed as an instance of the arity

ar(op) = Iop
lop
←−↩ Bop

rop
↪−→ Oop by means of B′ := ϕ(Bop) and a pushout as in (31).

Moreover, p([syn(ϕ)]op ↓ O)q ∈ GE(Γ) for any non-empty subgraph O v O′ such that

O \ B′ is non-empty with arity ar(p([syn(ϕ)]op↓O)q) = I′ B′ ∩ O O
r′Ol′O .

Both expressions p[syn(ϕ)]opq and p([syn(ϕ)]op↓O)q are called basic Γ-expressions and
are declared as single Γ-expressions.

Multi expressions: p(ge1| . . . |gek)q ∈ GE(Γ) for any family gei, 1 ≤ i ≤ k, k ≥ 2 of single
Γ-expressions or projection expressions with, at least, one single Γ-expression. The arity

ar(p(ge1| . . . |gek)q) := ar(ge1) + . . . + ar(gek) = I B O
rl is constructed as

described in Remark 5.2.

Moreover, p[syn(ϕ)](ge1| . . . |gek)q ∈ GE(Γ) for any finite canonical input arity graph
I′ 6= I, and any graph homomorphism ϕ : I→ I′ with arity ar(p[syn(ϕ)](ge1| . . . |gek)q)

= I′ B′ O′r′l′ constructed as an instance of the arity ar(p(ge1| . . . |gek)q) =

I B O
rl by means of B′ := ϕ(B) and a pushout as performed in (31).

Both expressions p(ge1| . . . |gek)q and p[syn(ϕ)](ge1| . . . |gek)q are declared as multi Γ-
expressions.

Symbolic composition: p(ge1; syn($); ge2)q ∈ GE(Γ) for any single or multi Γ-expression

ge1 with arity ar(ge1) = I1 B1 O1
r1l1 , any basic Γ-expression ge2 with arity

ar(ge2) = I2 B2 O2
r2l2 , and any graph isomorphism $ : I2 → O1.

The arity ar(p(ge1; syn($); ge2)q) = I1 B O
$
2

rl with O
$
2 isomorphic to O2 is

constructed as described in Section 5.3.3.

p(ge1; syn($); ge2)q is declared as a single Γ-expressions.

Remark 5.6 (Notational Convention: Trivial Instances). In case of trivial instances, we will
just drop the corresponding substring “[. . .]”.

Constants: In the case I = 0, we will just write pcq instead of p[ ]cq and p(c ↓ O)q instead of
p([ ]c↓O)q.

Operations: In the case ϕ = idIop , we will just write popq instead of p[syn(ϕ)]opq and
p(op↓O)q instead of p([syn(ϕ)]op↓O)q.

Since we utilize sequential composition via arity renaming, we could even require ϕ to be a
non-isomorphism in the cases Operations and Multi expressions.

Example 5.8 (Graph Operation Expressions). The graph operation (compC + compC)/ϕ in
Example 5.6 is represented by the Γcat-expression p[syn(ϕ)](comp|comp)q. By Symbolic compo-
sition, we obtain then the Γcat-expression p([syn(ϕ)](comp|comp); syn($); comp)q representing
the graph operation ((compC + compC)/ϕ) ;$ compC in Example 5.7.
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The graph operation (((compC + πI
I)/ψ) ;ρ compC in Example 5.7 is represented by the Γcat-

expression p([syn(ψ)](comp|(I, I)); syn(ρ); comp)q while (((πI
I + compC)/ψ′) ;ρ

′
compC corre-

sponds to the Γcat-expression p([syn(ψ′)]((I, I)|comp); syn(ρ′); comp)q. Both Γcat-expressions
share the same canonical arity span shown in Figure 13, and thus, we can express the associativity
law (33) for the composition of morphisms in categories by an equation between Γcat-expressions:

([syn(ψ)](comp|(I, I)); syn(ρ); comp) = ([syn(ψ′)]((I, I)|comp); syn(ρ′); comp). (34)

In (34), we do have a twofold-syntactic and semantic equality between graph operation expres-
sions: equal arity and equal semantics. A future equational calculus for graph operation expressions
should, however, also reflect arity renamings, as defined in Remark 4.1, and deal with semantic
equality of graph operation expressions “up to arity renamings”.

Generalizing the examples of the correspondence between graph operation expressions
and graph operations in Example 5.8 and relying on the inductive definition of graph
operation expressions in Definition 5.2, we now define “derived graph operations” as those
graph operations that can be represented by graph operation expressions.

Definition 5.3 (Derived Graph Operations). Let Γ = (OP, ar) be a graph signature and G =

(G, OPG) a Γ-algebra. For all Γ-expressions pgeq ∈ GE(Γ) with ar(ge) = Ige Bge Oge
rgelge

,

we can inductively define a map geG : GIge → GOge satisfying the commutativity condition in (16).
geG is called the derived graph operation in G represented by ge.

Projections: (I, O)G := πI
O : GI → GO , according to (17), for all p(I, O)q ∈ GE(Γ).

Constants: [ ]cG := πI
0 ; cG : GI → GOc for all p[ ]cq ∈ GE(Γ).

([ ]c↓O)G := πI
0 ; cG ; πOc

O : GI → GO for all

p([ ]c↓O)q ∈ GE(Γ).

Operations: ([syn(ϕ)]op)G := opG/ϕ : GI
′ → GO

′
, according to Section 5.3.2, for all

p[syn(ϕ)]opq ∈ GE(Γ).

([syn(ϕ)]op↓O)G := (opG/ϕ); πO′
O : GI

′ → GO for all

p([syn(ϕ)]op↓O)q ∈ GE(Γ).

Multi expressions: (ge1| . . . |gek)
G := (geG1 + . . . + geGk ), according to Section 5.3.1, for all

p(ge1| . . . |gek)q ∈ GE(Γ).

([syn(ϕ)](ge1| . . . |gek))
G := (geG1 + . . . + geGk )/ϕ, according to Section 5.3.1 and Sec-

tion 5.3.2, for all p[syn(ϕ)](ge1| . . . |gek)q ∈ GE(Γ).

Symbolic composition: (ge1; syn($); ge2)
G := geG1 ;$ geG2 : GI1 → GO

$
2 , according to Sec-

tion 5.3.3, for all p(ge1; syn($); ge2)q ∈ GE(Γ).

Hypothesis 5.3 (Substitutions Revisited). In light of the discussion in Section 5.1.3, it may
be possible to develop in the future a substitution calculus for graph operation expressions along
the following lines: A substitution is given by a single- or multi-Γ-expression psubq with arity

I1 B1 O1
r1l1 . The substitution psubq can be applied to a Γ-expression pgeq with arity

I2 B2 O2
r2l2 if there is a graph isomorphism $ : I2 → O1. Substitution application is

then carried out in two steps: (1) We build the expression p(sub; syn($); ge)q through symbolic
composition. If pgeq is not a basic Γ-expression, this expression will not be a Γ-expression in the
sense of Definition 5.2! (2) We transform the expression p(sub; syn($); ge)q into an equivalent
Γ-expression pĝeq in the sense of Definition 5.2.

To illustrate this idea, we outline for the graph signature Γcat an example of an equivalence
between a symbolic-composition expression p(sub; syn($); ge)q, which is not a Γcat-expression in
the sense of Definition 5.2, and a Γcat-expression pĝeq.
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To begin with a feasible visualization, we consider the Γcat-expression p[syn(φ)](comp|comp)q
where φ and the arity I′ B′ O′r′l′ are described in Figure 14.

iv1

iv2

iv3

iv4

iv5

iv6

iv1

iv3

iv4

iv6
iv1

iv3

iv4

iv6

iv1
iv2

iv3
iv4

iv1
iv2

iv3
iv4

iv1
iv2

iv3
iv4

ie1

ie2

ie3

ie4
oe1

oe2

ie1

ie2

ie3

oe1

oe2

l(comp|comp) r(comp|comp)

φ φB φR

l′ r′

Figure 14. Parallel application of two composition operations on overlapping pairs of arrows.

The sample substitution is given by the extended Γcat-expression

psubq := p[syn(φ̄)](comp|comp|(I, I)|(I, I))q

with arity ar(sub) = Isub Bsub Osub
rsublsub depicted in Figure 15. I is the canonical input

arity graph iv1 iv2
ie1 . The input arity of p(comp|comp|(I, I)|(I, I))q extends the input

arity of p(comp|comp)q by the arrows iv7 iv8 iv9 iv10
ie5 ie6 while φ̄ extends φ by

the assignments {iv7 7→ iv1, ie5 7→ ie1, iv8 7→ iv2, iv9 7→ iv3, ie6 7→ ie3, iv10 7→ iv4}.

iv1
iv2

iv3
iv4

iv1
iv2

iv3
iv4

iv1
iv2

iv3
iv4

ie1

ie2

ie3

ie1

ie3

ie1

ie3

oe1

oe2

lsub rsub

Figure 15. Arity of the Γcat-expression psubq = p[syn(φ̄)](comp|comp|(I, I)|(I, I))q.

As a Γcat-expression, we consider pgeq := p[syn(ϕ)](comp|comp)q with arity ar(ge) =

Ige Bge Oge
rgelge

shown in Figure 16. ϕ is given by the assignments {ie1 7→ ie1, ie2 7→
ie2, ie3 7→ ie3, ie4 7→ ie4}.

iv1
iv2

iv3
iv4

iv1

iv4

iv1

iv4

ie3

ie2

ie1

ie4

oe1

oe2

lge rge

Figure 16. Arity of the Γcat-expression pgeq = p[syn(ϕ)](comp|comp)q.

By means of the isomorphism $ : Ige → Isub that is the identity on nodes, we can build the
following symbolic-composition expression that is not a Γcat-expression

p(sub; syn($); ge)q = p[syn(φ̄)](comp|comp|(I, I)|(I, I)); syn($); [syn(ϕ)](comp|comp)q
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Using the two Γcat-expressions in (34), we can, however, construct a Γcat-expression pĝeq given by

p[syn(θ)](([syn(ψ)](comp|(I, I)); syn(ρ); comp)|([syn(ψ′)]((I, I)|comp); syn(ρ′); comp))q

All four expressions share the same canonical input arity graph I′ in Figure 14, and θ is defined
as the cotuple θ := [idI′ , idI′ ] : I′ + I′ → I′.

p(sub; syn($); ge)q and pĝeq do have the same arity and are equivalent, that is, for all Γcat-
algebras G = (G, OPG) we have (sub; syn($); ge)G = ĝeG .

Hypothesis 5.4 (Operations by Subgraphs). At the beginning of this section we discussed that
any subgraph of a graph of graph terms defines a graph operation (see Lemma 5.1). A reasonable
question is to what extent this method of defining graph operations can be simulated by means
of “graph operation expressions” and “derived graph operations”. We claim that it is possible to
inductively prove a statement like the following:

For any finite canonical input arity graph I and any finite subgraph O v TΓ(I), there
exist a graph operation expression ge ∈ GE(Γ) with input arity I and an output arity O′

isomorphic to O such that for all Γ-algebras G = (G, OPG), we have geG = δIO(b) (up to
arity renaming) for the graph operation δIO : GI → GO defined in Lemma 5.1.

There are two essential means that should allow us to prove such a statement:

1. By means of the restriction expressions p([ ]c↓O)q and p([syn(ϕ)]op↓O)q, we can simulate
the “pseudo operation symbols” cov, coe, opov, opoe and their semantics by choosing O to be
the single output vertex ov or the single output edge oe (together with its source and target).

2. Once we have been able to represent all the single vertices and edges in a subgraph O v TΓ(I)
by corresponding graph operation expressions, we can combine them into one graph operation
expression using the trick used in Conjecture 5.3 to define the graph operation expression
pĝeq. All the single output arities will be soldered together resulting in a graph isomorphic
to O.

6. Operations in Topoi

When we started to write the paper, we intended to round it up with a longer section
to summarize the results and findings, and to lift them up to a more abstract level.

On the way, we discovered, however, too many new things and results, which we
simply had to investigate and include in the paper, and thus it became a bit too long and
overloaded. Therefore, we reserve a detailed categorical analysis of the results and findings
of the paper and the development of a general theory of operations in topoi as a topic
of future research. We already spent, however, some essential effort to revise traditional
concepts and results, and to lift them up to a more categorical level; thus, we want to
include, at least, some few remarks concerning this topic.

We are quite sure that all (!) the definitions, constructions, and results, including term
algebras and the result that subalgebras are regular monic, can be generalized to presheaf
topoi (C-sets) [C→ Set] with C as a simple category in the sense of [22]. Simple categories
are a special class of “finite categories with no cycles of non-identity morphisms” and play
a role in the foundation of Homotopy Type Theory.

There is no problem defining signatures and algebras in arbitrary topoi, analogous to
graph signatures and graph algebras. However, terms and term algebras will, in general,
not be available. One of the main outcomes of the paper is that there is no need for term
algebras to define derived operations. It is sufficient to define “operation expressions” and
their semantics, and this can be performed in arbitrary topoi, as long as we drop the request
that operation expressions should be represented “syntactically”!

We hope that even a prospective substitution calculus for graph operation expres-
sions (along the ideas in Conjecture 5.3) can be generalized to operation expressions in
arbitrary topoi.
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7. Related Work

The work presented in this paper has its origins in the pioneering work on generalized
sketches of a group around Zinovy Diskin in the 1990s [3–5]. The concept of sketch operation
in [4] was the starting point for the joint paper [7] on graph operations and free graph
algebras. As discussed in Section 4.2, it turned out, however, that the original definition of
arities and graph operations in [7] was not appropriate to define graph operation expressions
representing derived graph operations in analogy to the role of terms as representations of
derived operations in traditional Universal Algebra.

Close to finalizing the paper and by a chain of accidents, we found out about a paper
on graph operations (only available in French!) [6] from Albert Burroni, a former PhD
student of Charles Ehresmann. The ambition of [6] is very much in accordance with the
intentions behind our paper. Graph operations are also defined as maps from GI to GO.
There are, however, essential conceptual and technical differences between both papers:

• Input and output arity graphs are not described with concrete syntactic identifiers but
are implicitly considered as being given by “equivalence up to arity renaming”.

• There are no boundaries and thus no systematic treatment of “preservation conditions”
as we formalized them by means of the commutativity condition in (16).

• In the examples, preservation conditions are expressed by means of ad hoc equations
between vertices and/or edges, respectively.

• There is no explicit notion of “derived graph operation”, and the issue of “graph
operation expressions” is not addressed at all.

• Derived graph operations, in our sense, appear only implicitly when properties of
graph operations are described by means of equations between vertices and/or edges.

• Apart from that, Ref. [6] demonstrates the usefulness and appropriateness of graph
operations in category theory, and in particular, it seems to be worth investigating the
relation between Chapter 2 and the first-order sketches introduced in [1] .

Thanks to the referees for drawing our attention to [23,24]. This is a work that should
have been cited in [25] as an excellent underpinning of the claim that fibered structures
provide an appropriate “technological space” where logical deduction can take place. We
add here some comments on the relationship between the present paper and [23,24]:

• There are no graph operations but only plain algebraic operations in [23,24].
• However, the authors do not follow the tradition in Universal and Categorical Algebra

of defining algebras as “indexed structures” [26] where sort symbols are interpreted
by sets and operation symbols by maps from finite Cartesian products of sets into sets.
Instead, they describe algebras as “fibred structures” utilizing so-called “m-graphs”.

• In [23,24], the authors consider many-sorted algebraic signatures, while we restrict
ourselves in the paper and in the following discussion to unsorted algebraic signa-
tures Σ.

• m-graphs can encode the “graphs” of operations in traditional “indexed Σ-algebras”.
That is, each element of the graph gr(opA) := {((a1, . . . , an), a) | opA(a1, . . . , an) = a}
of an n-ary operation opA : An → A in an “indexed Σ-algebra” A can be represented
by a designated m-edge e with source src(e) = a1 . . . an and target trg(e) = a.

• The discussion in Remark 4.4 concerning “graphs of graph operations” also applies
to graphs of algebraic operations. There are no boundaries in the case of algebraic
operations, and thus we have Rop = {i1, . . . , in, o} for each n-ary operation symbol
op in the signature Σ. Remark 4.4 proposes to represent the elements ((a1, . . . , an), a)
in gr(opA) by maps a : {i1, . . . , in, o} → A with a(ik) = ak for all 1 ≤ k ≤ n and
a(o) = a. Due to the notational conventions in Section 2, we would, however, denote
those mappings simply by (n + 1)-tuples (a1, . . . , an, a).

• The set of all pairs (op, (a1, . . . , an, a)) with op in Σ and ((a1, . . . , an), a) ∈ gr(opA) for
an “indexed Σ-algebra”A constitutes the disjoint union of the graphs of all operations
in A and can obviously serve as the set E of m-edges of an “m-graph encoding” of
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the “indexed Σ-algebra” A. The carrier set A of A is thereby the set of vertexes of the
m-graph encoding of A.

• For many-sorted signatures Σ we can construct m-graph encodings of “indexed
Σ-algebras” that are fully analogous.

• It is obvious that the m-graph encodings of terminal “indexed Σ-algebras”, where each
sort in a many-sorted signature Σ is interpreted by a singleton, exactly correspond to
the m-graphs serving as signatures in [23,24]. Thus, there is indeed a unique m-graph
homomorphism from the m-graph encoding of any “indexed Σ-algebra” into the
corresponding signature in the sense of [23,24].

• The “syntactic Lawvere theories” in our paper appear in [23,24] as finite product
categories freely generated by m-graphs.

Since we use parallel and sequential composition of maps to define derived graph
operations, there is of course a certain overlap with monoidal categories, term graphs [20]
and string diagrams [21]. However, our approach to derived graph operations essentially
deviates from traditional monoidal categories and string diagrams:

• Traditional monoidal categories and string diagrams only deal with single isolated
items as the input and output of operations.

• This manifests itself in the absence of boundaries.
• The essential difference is that the presence of boundaries forces us to replace “internal

copying of items in diagrams” with “soldering of input and output ports of diagrams”,
i.e., by constructing instances of diagrams as a whole.

It is an interesting and open question to what extent it might be useful and feasible to
define categories with (equivalence classes of) graph operation expressions as morphisms.
A more exotic question would be if those hypothetical categories can be characterized and
axiomatized in analogy to the different kinds of monoidal categories and string diagrams.

8. Conclusions

One of the roles of terms in Universal Algebra is to represent derived operations, i.e.,
operations that can be built up from the basic operations in an algebra. Relying on a revised
version of graph operations, we defined graph operation expressions as a counterpart to terms.
We identified three basic mechanisms to construct new graph operations out of given ones:
parallel composition, instantiation and sequential composition. These mechanisms allowed
us to construct for all graph operation expressions a corresponding derived graph operation
in any graph algebra.

In another direction, we made a first step toward “Universal Graph Algebra”; i.e.,
we generalized some basic model-theoretic concepts and results from algebras to graph
algebras. In particular, we generalized the concept generated subalgebra and proved that all
monomorphic homomorphisms between graph algebras are regular.

We made an overall and essential effort to present definitions, concepts, constructions,
results, and proofs in a more categorical way such that it can be straightforwardly lifted to
the level of topoi in the future.

Besides the missing proofs of the conjectures, there are many open ends and many
things that could or should be carried out. In particular, an equational calculus for graph
operations relying on the equality of graphs (and not of single vertices and/or edges) is
very much demanded. Such a calculus is also expected to provide a basis to define an
equivalence relation for graph operation expressions and, in turn, for a semantic-preserving
rewriting of graph operation expressions.
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