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Abstract: From the first principles simulation (using the method of “a priori pseudopotential” and
the “quasi-harmonic approximation” method- author’s developments), the basic characteristics of
diborides and diborides of multielement transition metals (DMTMs) with an AlB2 type structure were
calculated. For both diborides and DMTMs, the linear coefficients of thermal expansion (LCTE) along
the axial axes differ little from each other, i.e., transition metal diborides and hexagonal lattice DMTMs
are quasi-isotropic. Quasi-isotropy makes it possible to estimate the LCTE using an analytical formula
that depends on the melting temperature. In the absence of experimental data on the melting point
of DMTMs, a method for calculating it from first principles is presented. The theoretical hardness
values of transition metal diborides and DMTMs with averaged parameters were calculated from
the first principles. The hardness of both bulk and nano-sized DMTMs was assessed using a hybrid
method. There is agreement between the calculated and available experimental data.

Keywords: pseudopotential method; quasi-harmonic approximation; quasi-isotropy; linear coeffi-
cient of thermal expansion; theoretical hardness; diborides of multielement transition metals

1. Introduction

The interest in studying high-entropy alloys (HEAs) is due to the main advantage of
this class of materials—solid solution strengthening. The difference in the atomic radii of
the constituent elements leads to distortion of the crystal lattice of the materials and thereby
creates a barrier to the movement of dislocations. Therefore, the search for new materials
with their inherent high entropy continues.

Among the latest achievements in the field of research of HEAs, one can note the pro-
duction of high-entropy metal alloys, presented in review articles [1,2]. High-entropy alloys
made from refractory metals are potential candidates for high-temperature applications
beyond the temperature range of conventional nickel-based superalloys.

Recently, there has been interest in a new group of multicomponent materials—high-
entropy transition metal diborides. These materials are not metal alloys but rather metal-
like compounds in which metallic bonds between metal atoms coexist with ionic-covalent
bonds between metal and non-metal atoms.

If we compare the mechanical properties of metal diborides with those of pure metals,
then diborides are characterized by high heat resistance, hardness, elasticity, and the
retention of a certain degree of ductility due to the presence of a metallic bond. Experimental
data on the hardness of transition metal diborides (4–6 groups) of both bulk and film-type
nanomaterials are presented in review articles [3–5]. In the case of bulk materials, the
hardness value is in the range of 20–35 GPa, while for thin films it is 40–77 GPa.

If you combine the advantages of HEAs and transition metal diborides, it is possible
to obtain alloys with significantly improved physical and chemical properties compared
to both those of metal HEAs and those of diborides. Work in this direction is currently
being developed, with the main focus devoted to various methods for the synthesis of these
materials [6–8].
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The purpose of the present work is to calculate from first principles the physical and
mechanical characteristics of diborides of multi-element transition metals (crystal lattice
parameters, melting point, LCTE, theoretical strength, hardness).

2. Theory and Calculation Methods

Unlike the high-entropy compounds of carbides, silicides, and nitrides with a NaCl-
type structure, or metal HEAs with a bcc or fcc structure, diborides are characterized by
a hexagonal lattice and, therefore, a certain degree of anisotropy in physical properties is
inherent.

Ab initio calculations of the LCTE (αa, αc) along the axial axes for transition met-
als with an hcp lattice differ by a factor of 1.5–1.8, as demonstrated in the case of Zr,
αc/αa = 1.74, and for Ti, αc/αa = 1.6. Such materials are characterized by high anisotropy
along the axial axes.

To assess the hardness or other characteristics of transition metal diborides, it is
necessary to determine the degree of their anisotropy. This is especially important in the
case of calculating DMTM hardness, as hardness is estimated through a combination of
ab initio calculations and the utilization of some experimental data. If the object under
study has a cubic structure, then the question of anisotropy does not arise when assessing
hardness.

In the calculations, we use the a priori pseudopotential method [9–12]. For DMTMs,
the pseudopotential can be represented as

V(q) = ∑i CiVi(q), (1)

where Ci and Vi(q) are the concentration and pseudopotential of the i-th element (MeB2).
In this work, equiatomic alloys are considered.

In DMTMs, the boron atoms have a “fixed” position in the hexagonal lattice. The
nodes of the hexagonal lattice contain metal atoms; the order of arrangement of these atoms
can change when moving from one cell to another. If we draw a parallel with metal HEAs,
then in DMTMs, it is not the metal atom (Me) but rather the compound (MeB2) that appears
as a separate element.

The pseudopotential for transition metal borides MeB2 (Me–V; Cr; Nb; Ta; Hf; Zr; Ti)
has the following form:

VMeB2(q) = [ΩMe VMe(q) + ΩBVB(q)∑2
j=1 exp(−i

→
q

→
δj ) ]/ΩMeB2,

⇀
δ1 =

→
a ·2/3 +

→
b ·1/3 +

→
c ·1/2 ;

→
δ2 =

→
a ·1/3 +

→
b ·2/3 +

→
c ·1/2 ,

(2)

where
⇀
δ1,

→
δ2 are the radius vectors of boron atoms in the lattice;

→
a ,

→
b ,

→
c are the vectors of

the hexagonal lattice; VMe, VB and ΩMe, ΩB represent the pseudopotential and volume of
metal and boron atoms; ΩMeB2–unit cell volume.

The energy of the electron–ion system is calculated in the second order of perturbation
theory using the pseudopotential. Based on the minimum energy per group of atoms
(MeB2), the cell parameters are then calculated.

Determination of hexagonal lattice parameters: Considering that boron atoms (pop-
ulated on the (002) plane) are much smaller in size than any transition metal atom, they
will have little effect on the distribution of metal atoms on the basal planes. Hence, it is
legitimate to assume that, to a first approximation, the basal plane parameter represents the
shortest distance between atoms, i.e., a = 2rMe, where rMe is the radius of the metal atom
located at the nodes of the basal plane of the unit cell.

To determine the parameter c, a fixed value of a is taken, and the minimum energy
of the electron–ion system is calculated depending on the parameter c. The result is
the minimum energy of the electron–ion system, denoted as U(a, c), per unit cell with
parameters (a, c).
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The calculation results are given in Table 1. For transition metal diboride, the calcu-
lated values of the lattice parameter are consistent with the experimental data [13]. The
correlation (determination) coefficient for lattice parameters is close to 1, which indicates
the adequacy of the developed models. From the results obtained, it appears that the ratio
c/a < 1.1.

Table 1. Calculated data on lattice parameters of transition metal diboride.

a, c (nm) a, c (nm) exp.

TiB2 0.3018; 0.3245 0.302; 0.322
ZrB2 0.3184; 0.3486 0.315; 0.353
HfB2 0.3166; 0.3423 0.317; 0.346
CrB2 0.2973; 0.3057 0.298; 0.307

2.1. Calculation of Linear Coefficient of Thermal Expansion

One of the possible ways to calculate the coefficient of thermal expansion is the “quasi-
harmonic approximation” method [14], based on determining the dependence of the total
energy of the system on the parameters of the crystal lattice at different temperatures.

The total energy of the electron–ion system of a crystalline material can be represented
as the sum of the energies of the electron–ion system at temperature T = 0, and the energy
of thermal vibrations of ions at temperature T ̸= 0. When calculating the energy of the
electron–ion system of crystals at zero temperatures, we use the pseudopotential method,
and the energy of thermal vibrations can be taken into account using one of the approximate
methods—the Debye method or the Einstein method.

When studying the temperature dependence of the physical and mechanical charac-
teristics of crystals, it is more convenient to use the Einstein method, especially when we
are talking about systems with a complex structure.

According to the Einstein method, atoms in a crystal lattice vibrate with the same
frequency, the value of which is proportional to the force constant of the material.

The force constant is determined using the pseudopotential method through the
second derivative of the interatomic interaction energy with respect to the spatial variable.
A model has been developed to identify the dependence of the vibration frequency on the
volume of the unit cell at different temperatures [14–17].

When calculating the total energy within the harmonic approximation, new force
constants and, consequently, frequencies depending on the volume are used, i.e., we obtain
the dependence of lattice parameters on temperature.

With the temperature dependence of the lattice parameters, the linear coefficient of
thermal expansion (LCTE) can be calculated.

LCTE (αa; αc) is calculated according to the standard method from first principles
using the relations:

αa = (a − a0)/(a0·T); αc = (c − c0)/(c0·T). (3)

Here, a and c are the lattice parameters at temperature T (K), while a0 and c0 are the
corresponding values at zero temperature. The average LCTE value is estimated using the
formula α = (2αa + αc)/3.

The LCTE values (αa; αc) and their average value are presented in Table 2 at tempera-
ture T = 300 K.

Table 2. Calculated LCTE of transition metal diborides; experimental values of the average LCTE are
presented in parentheses [3,13,18,19].

a* (nm) α* 106T−1 TH, K αa; αc* 106T−1 α* 106T−1

TiB2 0.2947 4.947 (4.6) 3500 4.80; 5.17 4.927
ZrB2 0.3128 5.365 (5.9) 3273 5.18; 5.60 5.320
HfB2 0.3097 4.860 (5.3) 3550 4.72; 5.10 4.841
CrB2 0.2860 7.630 (6-8) 2473 7.54; 7.75 7.609
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Considering that the parameters of the MeB2 hexagonal lattice and the coefficients of
thermal expansion in the directions a and c differ little from each other, we can accept an
approximation in which the hexagonal lattice is considered as cubic, with the parameter
a* = (0.866c a2)1/3. Then, the temperature dependence of the LCTE (α*) can be represented
by the formula [20]

α∗(T) = 0.032
(

T
TH

) 1
4
/TH, (4)

where TH is the melting temperature of diborides. The temperature dependence of the
LCTE is given in Table 3 for TiB2.

Table 3. Calculated LCTE values of TiB2 depending on temperature.

T, K αa 106T−1 αc 106T−1 α* 106T−1 α 106T−1

100 3.61 3.91 3.75 3.78
300 4.75 5.10 4.94 4.91
500 5.08 5.53 5.62 5.44
700 6.00 6.54 6.14 6.23
900 6.31 6.87 6.51 6.59

1200 6.80 7.46 7.01 7.09

The average LCTE value is α ≈ α*, which means that transition metal diborides with
a lattice parameter ratio c/a < 1.1 can be considered quasi-isotropic.

In the case of diborides of multielement transition metals, calculations of lattice
parameters and LCTE are carried out with pseudopotential (1).

Determination of the parameters of the hexagonal lattice of multielement transition
metal diborides from first principles is carried out according to the following scheme:

As a parameter of the basal plane, we take the double value of the average radius of a
metal atom, which represents the arithmetic mean of the radii of atoms of all types present
in the alloy, taking into account their concentration ratio.

We fix the value of the basal plane parameter (a), and calculate the dependence of the
total energy of the electro–ionic system on the second parameter (c). Based on the minimum
energy, we determine the value of the parameter (c).

Change the initial value of the parameter (a). For each value of the parameter ai, the
parameter ci (corresponding to the minimum energy) is determined.

From the set of energy values, the minimum one with parameters av, cv is selected.
According to the calculation results, diborides of multielement metals also exhibit a

parameter ratio cv/av < 1.1, that is, these alloys can be considered quasi-isotropic. Then,
the LCTE (αv) can be estimated using Formula (3), for which it is necessary to calculate its
melting temperature in the absence of experimental data.

2.2. Melting Point Calculation from First Principles

The theoretical strength is determined through the energy of the electron–ion system
U per representative volume; in the case of MeB2, this is the volume of the unit cell. For
uniaxial deformations (for example, along the z axis), the strength is estimated using
the relation

σz =
1

S c
∂U
∂ez

, (5)

where ez is the relative strain, S is the area of the atomic plane in a unit cell located
perpendicular to the strain axis, and c is the lattice parameter or its projection parallel to
the strain axis.

To calculate the melting temperature of materials, we solve the inverse problem. Using
materials with a verified melting point as an example, we determine the dependence
of the theoretical strength on temperature using the pseudopotential method and the
quasi-harmonic approximation [10]. The results of these calculations are presented in [20].
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As the calculation results show, for a group of crystalline materials (diborides, transi-
tion metal carbides, multi-element alloys), the theoretical strength has a maximum value at
temperature T = 0 K and decreases with increasing temperature [20]. At the melting point,
for all materials studied, the strength is 84.59–85.4% of the maximum strength.

In [21], it was experimentally proven that boride and metal-ceramic eutectic systems
maintain high strength up to a temperature of 0.8 TH (TH is the melting temperature of the
material), which was confirmed from first principles in both the case of a eutectic system
and for individual components [22]. The condition

σ (TX) = 0.85σ0(T = 0) (6)

is determined by TH = TX.
The calculated values of lattice parameters (av; cv), melting temperature, and LCTE

(αv at T = 300 K) for DMTMs, as calculated through Formula (3), are presented in Table 4.

Table 4. Basic characteristics (av; cv—lattice parameters; TH—melting temperature; αv—LCTE) of
multi-element diborides calculated from first principles.

av; cv (nm) TH, K αv 106T−1

(TiZr)0.5B2 0.315; 0.341 3280 5.36
(TiCr)0.5B2 0.300; 0.315 2910 6.23
(CrZr)0.5B2 0.309; 0.327 2800 6.54
HfZr)0.5B2 0.318; 0.345 3300 5.23

(TiZrHf)1/3B2 0.313; 0.339 3320 5.28
(TiCrHf)1/3B2 0.310; 0.334 2960 6.10
(CrZrHf)1/3B2 0.310; 0.339 2900 6.26
(TiZrCr)1/3B2 0.306; 0.323 2880 6.31

(TiZrHfCr)1/4B2 0.309; 0.331 2950 6.13

Due to the lack of (published, reliable) experimental data for these quantities, the
only way to verify the calculated values of the lattice parameters is by comparison with
the corresponding parameters obtained via Vegard’s rule. The latter is obtained using the
calculated values of the parameters of transition metal diborides (Table 1). The comparison
shows that the calculated data are close to the parameter values obtained using the rule of
mixtures (Vegard’s rule).

Due to the lack of published data on the melting point of DMTMs, the developed
method was applied to borides (MeB2 (Me—Ni, Zr, Hf, Cr, . . .); LaB6; and eutectic sys-
tems such as LaB6—MeB2) with known experimental data on the melting point. There is
agreement between the calculated and experimental data [22].

As for DMTMs, there is some information vacuum with respect to both lattice param-
eters and the melting point. Mainly presented are experimental studies devoted to the
synthesis of single-phase, stable alloys. According to our results, DMTMs have the same
properties as ordinary diborides, but with averaged physical parameters (which has also
been confirmed experimentally). Therefore, the application of the method to determine the
melting point of DMTMs is acceptable.

2.3. Calculation of Hardness of Transition Metal Diborides

Transition metal diborides exhibit an anomalously high (~97%) elastic recovery of the
indentation depth [4,5]. They have a high modulus of elasticity and deform almost elasti-
cally, which makes it possible to calculate, from first principles, the theoretical hardness as
a property of the surface layer of the material.

When calculating the total energy of the electron–ion system, the influence of the
energy of the outer surface of the material is taken into account. To estimate the energy
of the outer surface, the method presented in [10] is used. The essence of the method is to
redistribute the energy of the electron–ion system (per unit cell) over all faces of the cell.
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As a result, the energy density over the outer surface of the unit cell will be:

ρ = U/S, (7)

where
S = 4ac + 2a2

√
3, (8)

represents the area of the side faces and two basal planes, while U is the total energy of the
electron–ion system in the unit cell. According to the method, the energy per one of the
base areas (perpendicular to the c axis) will be:

Φc = U
(

a20.5
√

3
)

/(4ac + 2a20.5
√

3). (9)

The coefficient Kc = 0.5a2
√

3/(4ac + 2a20.5
√

3) represents the fraction of energy per
base area.

If the outer surface of the material coincides with the base plane, then it has half the
energy attributable to the base plane with a minus sign, Φ1 = −UKc/2.

After this, it is necessary to take into account the influence of the energy of the outer
surface on the state of the electron–ion system within the surface layer of the material,
which has a thickness, d, in the direction of the parameter c.

The energy of the electron–ion system in the first cell (adjacent to the outer surface)
is represented as: U1 = U − UKc/2. To calculate the energy of the electron–ion sys-
tem in the second cell, we use arithmetic averaging of the energies of the first two cells:
U1 = U − UKc/2 and U. Then, the energy in the second cell will be: U2 = (U1 + U)/2 =
U
(
1 − Kc/22), and for the i–th cell:

Ui = U
(

1 − Kc/2i
)

. (10)

We sum Ui for values i = 1, 2, . . . j, where j = d/c, and divide by the number j. The
result is the average energy of the electron–ion system in the surface layer as a function of
thickness, d:

Uc(d) = U(1 − 2Kc·c/d). (11)

If in Formula (4) we use the average energy of elementary cells in the surface layer (10),
then we ultimately have a functional dependence of the theoretical hardness on the selected
material surface thickness in the direction of the axial axes of the hexagonal lattice:

Hc(d) = σc(1 − 2Kc·c/d). (12)

Table 4 shows the calculated values of the compressive strength and hardness of
transition metal diborides at different thicknesses of the surface layer.

The use of the first-principles method for calculating the theoretical hardness of
multielement transition metal diborides is questionable due to the distortion of the crystal
lattice. Such a material is far from an ideal structure, and the concept of theoretical hardness
disappears. From first principles, such a calculation can be carried out, but with averaged
physical parameters and an ideal arrangement of virtual atoms of the same type (having an
averaged characteristic).

In this case, the distortion of the crystal lattice, which is the main feature of multi-
element alloys, is not directly taken into account. For alloys (ZrHf)B2, (ZrTi)B2, and
(TiZrHf)B2 with equiatomic composition, strength and hardness were calculated using the
same Formulas (4), (11), and (12) as those for transition metal diborides (Table 5).
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Table 5. Calculated values of theoretical strength and hardness (in GPa) depending on the thickness
of the surface layer (d, nm) (the last column presents experimental data on the hardness of thin films
with a thickness of 20–40 nm).

σc
Hc

H [4,5]
(d = 1) (d = 3) (d = 5) (d = 10) (d = 20)

TiB2 74.65 69.37 72.66 73.12 74.15 74.64 (40–77)
ZrB2 61.18 56.09 59.17 59.95 60.39 61.18 40
HfB2 64.97 59.86 63.24 63.96 64.43 64.96 40
CrB2 68.00 64.38 66.96 67.37 67.69 68.00 49

(ZrHf)B2 63.12 59.85 62.03 62.47 62.79 63.12
(TiZr)B2 67.98 64.50 66.82 67.28 67.63 67.97

(TiZrHf)B2 67.54 63.50 66.19 66.73 67.19 67.54
(TiZrHfCr)B2 68.05 65.00 67.03 67.44 67.75 68.05

From the results of a computational experiment, it is observed that diborides of
multielement transition metals behave like alloys of the solid solution type.

As is known, the hardness of crystalline materials depends on the interatomic interac-
tion, the size and packing of atoms in the elementary lattice, and the number of valence
electrons. Taking these factors into account, the authors of [23,24] presented the hardness
of covalent crystals using the formula:

H = const Si,j/Ω ,
Si,j =

√eiej/
(
ninjdi,j ); ei = zi/Ri.

(13)

Here, ni and nj represent the coordination numbers of atoms i and j, respectively; di,j is the
distance between atoms i and j; zi is the number of valence electrons of atom i; Ri is the
radius of the ionic core of atom i; Ω—volume of the elementary lattice.

For crystals containing several types of atoms, hardness is determined by the formula:

H =
∑n

i=1
√

Hii + ∑i ̸=j
√

Hij

Nij
=

∑n
i=1

√
Hi Hi + ∑i ̸=j

√
Hi Hj

Nij
. (14)

Hi is the hardness of the material, which is responsible for the interaction of identical
atoms, Ni,j is the number of possible pair interactions, n is the number of atom types.

With this representation, the hardness of a multi-element alloy appears to be the
geometric mean of the hardness of the binary systems involved in the crystal. Due to
geometric averaging, the hardness of such a material should be somewhere between the
lowest and highest hardness of the system components involved.

Formula (14) does not take into account the size of the dimensional discrepancy. This
parameter is important when estimating Hi,j. Therefore, in Formula (14), we add a factor
responsible for distortion. Then, Formula (14) can be represented as:

H = 0.5

{
∑n

i=1
√

Hi Hi

n
+

(
1 +

b ∆r
a∗v

)
∑i ̸=j

√
Hi Hj

Ni ̸=j

}
. (15)

Here, ∆r represents the parameter of atomic radius mismatches, and b is to be deter-
mined by comparing calculated and experimental data on hardness.

The hardness of multielement transition metal diborides can be calculated using
Formulas (13) and (15) based on data from first-principles calculations, and the unknown
parameter const is determined by comparing experimental and calculated hardness values.
Therefore, in cases where the hardness of transition metal diborides is known experimen-
tally (Hi), then these data can be used in Formula (15) to calculate the hardness of the alloy
(multi-element transition metal diborides).
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To determine the parameter b, we use Formula (15) for the (Zr,Hf)0.5B2 alloy. The
choice of alloy is not accidental, as the difference between the atomic radii of Zr and Hf
is small (∆r = 0.002 nm), and the lattice parameters of ZrB2 and HfB2 (Table 1) differ little
from each other. If relation (15) adequately describes the physical process responsible for
the inhibition of dislocations, then we can assume that the hardness of the (Zr,Hf)0.5B2 alloy
will be close to the average hardness value of ZrB2 and HfB2, which is confirmed (Table 5).
Therefore, we can assume that b = 1.

Table 6 shows the calculated values of the hardness of bulk materials, as well as data
on the hardness of the alloy estimated using the rule of mixtures (H = ∑n

i=1
√

Hi Hi
n ). For the

(HfZr)0.5B2 alloy, H ≈ H is obtained.

Table 6. Calculated values of hardness of diborides of multi-element transition metals (the experi-
mental value is presented in parentheses, obtained using the Vickers method).

(TiZr)0.5B2 (HfZr)0.5B2 (TiZrHf)1/3B2 (TiCrZrHf)1/4B2 (ZrHfVNbTa)1/5B2

H, GPa 28.50 25.50 28.33 26.45 24.52
H, GPa 29.45 25.498 28.95; (30.22 ± 2.43) [8] 31.79 26.2; (26) [25]

To compare theoretical results with experimental findings, the experimental data available in publications
are presented.

The hardening of the alloy depends on the ratio of the parameter ∆r (mismatch
parameter) to the average parameter of the alloy crystal lattice a∗v , which is associated with
the potentials of different elements, as well as their interaction. Formula (14) takes into
account the effect of a distorted crystal lattice on the mechanical properties of the material.

The Hi value (MeB2 hardness) is taken from experimental data for bulk or nano-sized
transition metal diborides [4,5].

In the case of nanosized DMTMs, hardness can be calculated using the same Formula (15)
if the hardness values of the transition metal diborides included in its composition, with
the same shape and size, are known. In Formula (15), the size factor is included into the
value of H.

Superstoichiometric thin films of transition metal diborides with a grain size of ~20 to
40 nm and a hardness of more than 40 GPa in [4] and about 44 GPa in [5] have been
experimentally obtained.

Let us estimate the hardness of equiatomic nanoalloys (Hf,Zr,Ta,V,W)B2 using Formula (14),
assuming that the average hardness H ≈ 40 GPa (according to experimental data, this
is the minimum value for the average hardness of the alloy). The hardness of a film of
multielement transition metal diborides with a grain size of 20–40 nm will be H ≈ 42 GPa.
For the same alloy, if H ≈ 44 GPa, then H ≈ 45.76 GPa, and its experimental value is
45 GPa [7].

3. Discussion of the Results

It is generally accepted that diborides of transition metals of groups IV–VII have higher
coefficients of thermal expansion along the c axis than along the a axis [26]. This is explained
by the presence of a boron network in the base plane, which has strong interatomic bonds.

When calculating the LCTE of transition metal diborides of groups IV–VI, the contri-
bution to the total interaction energy of metal–metal, metal–boron, and boron–boron atoms
was assessed. According to the calculation results, the physical parameters of diborides
are mainly influenced by the terms responsible for the metal–boron and metal–metal in-
teractions. For transition metal diborides, the effect of the boron–boron interaction on the
physical characteristics is negligible due to the small value of the weighting factor, which
is the ratio of the volume of a boron atom to the volume of a unit cell. The metal–boron
interaction is the same in the a and c directions. The terms responsible for the metal–metal
interaction in the same directions differ little from each other (due to the closeness of the
values of the parameters a and c).
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Consequently, we can consider that diborides and alloys of transition metal diborides
are quasi-isotropic along the axial axes. This makes it possible to determine the LCTE of
high-entropy diborides using Formula (3), which depends on one parameter—the melting
temperature. The melting point can be determined from first principles or experimentally.

According to the experimental data, the diborides of multielement transition metals,
both in bulk [8,25] and as nanomaterial [6,7], behave like ordinary solid solutions. These
theoretical calculations do not contradict this experiment.

The reason for this may be a decrease in the degree of freedom during the formation of
distortion of crystal lattices. In diborides, the position of two boron atoms is approximately
fixed, which reduces the number of possible random distributions of metal atoms.

The theoretical results obtained for both bulk and nano-sized samples are consistent
with this experiment.

4. Conclusions

It has been shown that diborides of multi-element transition metals with a hexagonal
lattice are quasi-isotropic (the LCTE along the axial axes have similar values). For such
materials, the LCTE can be estimated using the same formula as for metals or metal HEAs
with a cubic structure, depending on one parameter: the melting temperature.

The melting point of multi-element diborides can be calculated from first principles
based on the temperature dependence of the theoretical strength.

DMTM hardness can be estimated for both bulk and nano-sized materials with the
same formula, using experimental hardness values of nano or bulk diborides (components).
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