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Abstract: We point out that a modified temperature–redshift relation (T-z relation) of the cosmic
microwave background (CMB) cannot be deduced by any observational method that appeals to
an a priori thermalisation to the CMB temperature T of the excited states in a probe environment
of independently determined redshift z. For example, this applies to quasar-light absorption by a
damped Lyman-alpha system due to atomic as well as ionic fine-splitting transitions or molecular
rotational bands. Similarly, the thermal Sunyaev-Zel’dovich (thSZ) effect cannot be used to extract
the CMB’s T-z relation. This is because the relative line strengths between ground and excited states
in the former and the CMB spectral distortion in the latter case both depend, apart from environment-
specific normalisations, solely on the dimensionless spectral variable x = hν

kBT . Since the literature on
extractions of the CMB’s T-z relation always assumes (i) ν(z) = (1+ z)ν(z = 0), where ν(z = 0) is the
observed frequency in the heliocentric rest frame, the finding (ii) T(z) = (1+ z)T(z = 0) just confirms
the expected blackbody nature of the interacting CMB at z > 0. In contrast to the emission of isolated,
directed radiation, whose frequency–redshift relation (ν-z relation) is subject to (i), a non-conventional
ν-z relation ν(z) = f (z)ν(z = 0) of pure, isotropic blackbody radiation, subject to adiabatically slow
cosmic expansion, necessarily has to follow that of the T-z relation T(z) = f (z)T(z = 0) and vice
versa. In general, the function f (z) is determined by the energy conservation of the CMB fluid in a
Friedmann–Lemaitre–Robertson–Walker universe. If the pure CMB is subject to an SU(2) rather than
a U(1) gauge principle, then f (z) = (1/4)1/3(1 + z) for z� 1, and f (z) is non-linear for z ∼ 1.

Keywords: thermal ground state; thermal Sunyaev-Zel’dovich effect; microwave absorber clouds;
cosmic microwave background

1. Introduction

Angular correlations between directionally dependent temperature and polarisation
fluctuations of the cosmic microwave background (CMB) radiation [1] are important probes
for the extraction of cosmological parameters [2]. Since the observed angular correlations
are mainly influenced by curvature-induced dark-matter potentials, which in turn cause
acoustic oscillations of the baryon–electron–photon plasma prior to recombination, these
parameters depend on high-z physics when extracted from CMB data. Therefore, they
are very sensitive to the temperature–redshift relation (T-z relation) that is assumed in
expressing the CMB’s energy density ρ(T) in terms of z.

If the CMB is subject to a quantum U(1) gauge theory, then, according to the Stefan–
Boltzmann law and energy conservation in a Friedmann–Lemaitre–Robertson–Walker
(FLRW) universe, the T-z relation is T(z)/T(z = 0) = z + 1, where T(z = 0) is today’s
CMB temperature T(z = 0) = 2.726 K [1]. Such a U(1) T-z relation is identical to the
frequency–redshift relation (ν-z relation) ν(z)/ν(z = 0) = z + 1 describing electromagnetic
waves emitted by compact astrophysical objects and traveling through an expanding FLRW
universe towards the observer [3].

The thermodynamics underlying the CMB and the thermodynamics of a dense gas
of absorber–emitter particles may be richer than they appear, such that the two situations
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need to be distinguished. While the CMB can be represented by a photon gas within its
bulk, absorber–emitter particles thermalise via electromagnetic waves whose emissions
and absorptions are enabled by electronic transitions. Therefore, the conventional T-z
relation may not hold universally but, depending on how the above two extreme situations
are mixed, is modified as T(z)/T(z = 0) = f (z), where the function f (z) is specific to the
generalizing theory. Thermodynamics then immediately implies that the ν-z relation is also
of the form ν(z)/ν(z = 0) = f (z). Such is the case, for example, if the thermal photons
(and low-frequency waves) of the CMB are identified with the Cartan modes of a single
thermal SU(2) Yang–Mills theory, SU(2)CMB, in the deconfining phase [4,5]. These modes
interact only feebly within a small range of low temperatures and frequencies with the two
off-Cartan quasiparticle vector modes. The fact that all gauge modes, massless and massive,
are excitations of one and the same thermal ground state adds additional T-dependent
energy density to that of thermal fluctuations: the ground-state energy density rises linearly
in T in contrast to the rapidly attained Stefan–Boltzmann law ∝ T4 associated with thermal
fluctuations [4].

If the CMB as a bulk thermal photon gas is indeed subject to SU(2)CMB thermo-
dynamics (single Yang–Mills theory in its deconfining phase) from T = 10.55 keV (or
T = 1.09× 108 K) to T = 2.3× 10−4 eV (or T = 2.726 K), then a number of implications
arise (see [6–9] for the CMB large-angle anomalies, [7,10] for the modified high-z cosmo-
logical model implied by a modified temperature–redshift relation [5], [11] for dark-sector
physics, and [12] for neutrinos.

The purpose of the present paper is to point out that past observational extractions of
the CMB’s T-z relation from background-light absorbing systems, which are assumed to
thermalize with the CMB in a conventional way, are bound to extract the standard U(1) T-z
relation if participating frequencies (observed absorption lines) are blueshifted accordingly.
This is also true of the observation of spectral CMB distortions inflicted by its photons
scattering off hot electrons belonging to X-ray clusters along the line of sight, i.e., the
thermal Sunyaev-Zel’dovich effect (thSZ). In Section 2, we discuss these two observational
approaches in more detail. First, we analyse the extraction of T(z) from absorption lines
within the continuous spectrum of a background source caused by a cloud in its line of
sight, which is assumed to be thermalised with the CMB. Second, we discuss the distortions
of the CMB spectrum according to the thSZ effect. In the former case, the frequency of the
absorption line ν(z) = (z+ 1)ν(z = 0), which is assumed to coincide with the exciting CMB
frequency, is used to extract a temperature T(z). Note that in this case T(z) coincides with
the present CMB’s temperature T(z = 0) only if it is redshifted as T(z)/(z + 1) = T(z = 0).

In other words, ignoring the value of a known transition frequency ν∗(z) of the system
in using a different ν-z relation for ν(z), ν(z) = f (z)ν(z = 0), the extracted CMB tempera-
ture would only have redshifted to its present value under the use of T(z)/ f (z) = T(z = 0).
Therefore, it appears that in a given absorber system, interaction with the CMB occurs
by a local shift of the CMB frequency ν(z) and temperature T(z) to the line frequency
ν∗(z) = (z + 1)ν(z = 0) and cloud temperature T∗(z) = (z + 1)T(z = 0) of the absorbing
molecules. For deconfining SU(2) Yang–Mills thermodynamics, ν(z)→ ν∗(z) is an upward
shift (see Section 3).

The thermalisation within a photon gas far away from any charges is different from the
thermalisation within absorber clouds. This is because the degrees of freedom invoked are
not the same. As a result, T∗(z) = (z + 1)T(z = 0) is interpreted as the CMB’s T-z relation,
while it is actually T(z) = f (z)T(z = 0). In exploiting the thSZ effect for the CMB’s T-z
relation extractions, we observe a similar situation. In Section 3, we review [4,5] how a
modified T-z relation (and then the ν-z relation) arises if the CMB is subject to deconfining
SU(2) rather than U(1) quantum thermodynamics and how the Yang-Mills scale of such
an SU(2) model, in the following referred to as SU(2)CMB, is fixed by observation. To
achieve this, the CMB radio excess in line temperature, see, e.g., [13,14], is interpreted as
an effect due to the transition between deconfining and preconfining SU(2) Yang–Mills
thermodynamics. We also discuss a number of alternative explanations of this effect.
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Moreover, we discuss how another SU(2) model, SU(2)e [15–17], whose two stable soli-
tonic excitations in the confining phase represent the first-family lepton doublet, mixes with
SU(2)CMB. Such a mixing depends, up to temperatures of ∼7.99 keV, on the degree of ther-
malisation prevailing in a local environment of electromagnetically interacting electronic
charges within a certain range of frequencies and charge densities. The aforementioned
upward shift in the CMB frequency ν(z) to absorption line frequency ν∗(z), accompanied
by a shift in the CMB temperature T(z) to cloud temperature T∗(z), would then be a
consequence of an incoherent mixture of the Cartan modes of SU(2)CMB (thermal photonic
fluctuation) with those of SU(2)e (thermalised electromagnetic waves) when moving from
empty space to the interior of the cloud. Finally, in Section 4, we summarise the results of
this paper; mention an observational signature that is sensitive to the CMB’s T-z relation,
the spectrum of ultra-high energy cosmic rays (UHECRs); and briefly discuss implications
for Big Bang nucleosynthesis.

From now on, we work in natural units c = kB = h̄ = 1, where c denotes the speed of
light in vacuum, kB is Boltzmann’s constant, and h̄ refers to the reduced quantum of action.

2. Observational T-z Relation Extractions from a Prescribed v-z Relation

In this section, we discuss two principle probes used in the literature to extract the
redshift dependence of the CMB temperature T(z) up to z ∼ 6.34; see [18] for a useful
compilation, and how these extractions are prejudiced by an assumed ν-z relation of
CMB frequencies.

The first class of probes comprises absorbing clouds of known redshifts, e.g., parts of
damped Lyman-α systems, in the line of sight of a distant quasar or a bright galaxy. Here,
the assumed thermalisation with the CMB populates the fine-structure levels of the ground
states of certain atoms or ions [18–22] or excites rotational levels of certain molecules
[21,23,24] whose population ratios can be obtained from the respective absorption-line
profiles within the broad background spectra.

Modelling environmentally dependent contributions to level populations, such as
particle collisions or pumping by UV radiation, the relative level populations yield upper-
limit estimates of T(z) at the redshift of the cloud. The limitations of this method are
discussed in [25]. Note that in [26], a solution of the rotational excitations of various
molecular species could be provided directly from their spectra.

The second class of probes refers to the observation of the CMB spectrum within
certain frequency bands along the lines of sight of X-ray clusters of known redshifts. A char-
acteristic spectral distortion, known as the thermal Sunyaev-Zel’dovich effect (thSZ) [27,28]
and caused by the inverse Compton scattering of CMB photons off free, thermal electrons
of these clusters is exploited to estimate T(z).

2.1. Absorber Clouds in the Line of Sight of a Quasar or a Bright Galaxy

Estimates of T(z) using the relative populations due to the excitation of atomic (ionic)
fine-structure transitions and molecular rotation levels by the CMB have a long history;
see [29] for the theoretical basis and [18,19,21,23,24,26] for applications. Since sources of
level excitations other than the CMB (e.g., collisions, UV pumping) have to be modelled
for a given absorber, the extracted T(z) is usually seen as an upper bound on the true
CMB temperature.

If the CMB is assumed to be the sole source of level population, then the extraction of
T(z) is facilitated in terms of the column density of the absorber species, depending on the
measured line strength in the continuous spectrum of the background source, the transition
frequencies, the temperature at which the levels are thermalised, and the integrated opacity
of the line. Apparently, this method was validated by the measurement in [30] of the CMB
temperature T(z = 0) = (2.726+0.023

−0.031) K in our Galaxy, analysing CN rotational transitions
in five diffuse interstellar clouds. The value extracted in this way, T(z = 0), agreed well
with the spectral CMB fit by COBE [1] of T(z = 0) = (2.726± 0.010) K. So what about
z > 0?
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In [26], a molecular rich cloud within a spiral galaxy at z = 0.89 was observed towards
the radio-loud, gravitationally lensed blazar PKS 1830-211 at redshift z = 2.5. Within the
cloud, the rotational temperature Trot is defined via

nu

nl
=

gu

gl
exp

(
−2πν∗(z)

Trot

)
, (1)

where nu (gu) and nl (gl) are the populations (degeneracies) of the upper and lower level,
respectively, and ν∗(z) denotes the transition frequency in the cloud’s rest frame. For
the rotational excitations of ten molecules, Trot was interpreted to universally represent
T(z = 0.89) because the molecular gas was estimated to be sub-thermally excited (rotational
levels solely radiatively coupled to the CMB, negligible impact of collisions and the local
radiation field). Observations were performed within three wavelength bands at around
λ = 2, 3, 7 mm using two different instruments. In one (simplified) approach, the extraction
of Trot from the two transitions in each molecular species was performed by pinning down
the intersection of the two column densities NLTE depending on Trot. For a given transition,
NLTE is defined as

NLTE =
3

4π2µ2Sul
Q(Trot)

exp
(

El
Trot

)
1− exp

(
− 2πν∗(z)

Trot

) ∫ τdv , (2)

where El is the energy of the lower level, Q(Trot) the partition function including all
rotational excitations, µ the dipole moment, Sul the observed line strength, and

∫
τdv the

integrated (observed) opacity of the line. Across the absorption lines of all molecular
species considered, this approach produces values of Trot, which are quite consistent with
the expectation T(z = 0.89) = (1 + 0.89)T(z = 0) = 5.14 K.

Setting Trot = T∗(z) in Equation (2) and using ν∗(z) = (1 + z)ν(z = 0) is only
consistent with the participating CMB photons being distributed according to a blackbody
spectrum if T∗(z) also redshifts as T∗(z) = (1 + z)T(z = 0). Here ν(z = 0) denotes the
observed frequency of the transition in the heliocentric restframe. Therefore, this is an
in-built feature of the model even though the CMB may, in reality, exhibit a different T-z
relation (and then also ν-z relation) 1.

The situation is similar for the observation of atomic/ionic fine-structure transitions
in absorbers at z > 0. Also, here, the very assumption of these excitations thermalising
with the CMB ties the extracted T-z relation to the ν-z relation used in converting observed
(heliocentric) frequencies to transition frequencies in an absorber’s restframe: the proper
use of f (z) = 1 + z for absorption lines produces a higher cloud temperature T∗(z) than
CMB temperature T(z) if the latter is assumed to be described by an unmixed SU(2) model;
see Section 3.

In Section 3.2, we will discuss in more detail a degree-of-thermalisation-dependent
mixing of Cartan excitations in two SU(2) gauge groups explaining why directed radiation,
as issued by the background source and observed in a spectrally resolved way after having
passed the absorber, obeys a conventional ν-z relation while the ν-z relation of CMB photons
necessarily follows that of the T-z relation, which may well be unconventional [5].

2.2. The Thermal Sunyaev-Zel’dovich Effect

The thermal Sunyaev-Zel’dovich effect (thSZ) is a distortion of the blackbody shape of
the CMB spectrum that is induced by the inverse Compton scattering of CMB photons off
thermalised electrons in the X-ray plasmas of a given cluster of galaxies [27,28]. Neglecting
contributions from the weakly relativistic high-end part of the electrons’ velocity distribu-
tion, the thSZ effect can be expressed in terms of a frequency-dependent (line-temperature)
shift ∆T with respect to CMB baseline temperature T at the cluster’s redshift z as [31]

∆T
T

(x,~n) =
[

σT
me

∫
ds ne(s,~n) · Te(s,~n)

]
·
[

x coth
( x

2

)
− 4
]

. (3)
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Here, me and σT refer to the mass of the electron and the Thomson cross-section,
respectively. Both the electron temperature Te and the electron number density ne depend
on the proper distance parameter s along the direction~n of the line of sight under which
CMB photons interacting with a given X-ray cluster are observed. The dimensionless
variable x is defined as x ≡ 2πν

T . As Equation (3) indicates, the thSZ effect factorises into an
environmental part, determined by the thermodynamics of the X-ray cluster at redshift z
and dubbed the thSZ flux, and into a part that solely depends on x. We note that the zero
x0 of the second factor is

x0 ∼ 3.83 =
ν0

T(z = 0)
, (4)

where T(z = 0) = 2.726 K [1] denotes the CMB temperature today. As a consequence,
the thSZ effect predicts ν0 ∼ 217 GHz. The z dependence of T can already be extracted
by focusing on the frequency ν0 at which ∆T

T (x,~n) vanishes. By virtue of Equation (4), a
blueshift of ν0 according to the ν-z relation

ν∗0 (z) = f (z)ν0 (5)

then yields the T-z relation

T(z) =
f (z)ν0

x0
= f (z)T(z = 0) . (6)

Therefore, whatever the assumption on f (z) in the ν-z relation of Equation (5), this as-
sumption necessarily transfers to the T-z relation of Equation (6) if the intensity of the
unperturbed CMB at any redshift z > 0 is to possess a blackbody frequency distribution 2.

To suppress the statistical error in extractions of T(z), a set of frequency bands, centered
at {νi}, is usually invoked in fitting the modelled thSZ emission law to the observations
with respect to X-ray clusters within a given redshift bin δ. For example, in [31], the Planck
frequency bands at 100, 143, 217, 353, and 545 GHz were used in multiple redshift bins,
the stacking of patches in a given redshift bin δ and frequency band centered at νi was
performed, and the thSZ emission law was modelled by integrating Equation (3) over
bandpasses and by normalising it with the bandpass-averaged calibrator emission law.
Relevant fit parameters turned out to be the (stacked) thSZ flux Yδ, Tδ, and the radio-source
flux contamination Fδ

rad, which were subsequently estimated by a profile likelihood analysis.
The crucial point here is that, in the modelling of the thSZ emission law within redshift
bin δ, a blueshift of observation frequency νi to ν∗i = f (z)νi needs to be applied, implying
again the T-z relation

T(z) =
f (z)νi

xi
= f (z)T(z = 0) , (7)

where xi is now the solution to

Fδ
i

Yδ
= coth

( xi
2

)
− 4 , (8)

and Fδ
i denotes the stacked, observed thSZ flux within redshift bin δ. In [31], the use of

ν∗i = (1 + z)νi thus necessarily leads to the conventional T-z relation T(z) = (1 + z)T(z = 0).
To the best of the authors’ knowledge, the use of f (z) = 1+ z in the ν-z relation is, however,
common to all extractions of T(z) that appeal to the thSZ effect.

When the CMB gauge field represents the Cartan subalgebra of an SU(2) Yang–Mills
theory, SU(2)CMB, it can be shown [5] that f (z) is different from f (z) = 1 + z in the T-z
relation (see Section 3.1) and therefore also in the ν-z relation. This is because, in addition to
thermal photons, the thermal ground state in the deconfining phase of an SU(2) Yang–Mills
theory is excited towards two vector modes subject to a temperature-dependent mass.
A feeble coupling of these two kinds of excitations leads to spectral distortions of CMB
radiance deeply within the Rayleigh–Jeans regime [6], which is not targeted by Planck
frequency bands. In Section 3 we review how this T-z relation arises and discuss why
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a corresponding non-conventional ν-z relation is to be expected from a thermalisation
process that is dependent on the mixing angle between the Cartan modes of two SU(2)
gauge models subject to disparate Yang–Mills scales.

3. T-z Relation and v-z Relation in SU(2)CMB: Theoretical Basis

In this section, we discuss in detail why a thermal gas of electromagnetic disturbances
(far away from any emitting surface on the scale of a typical inverse frequency ν−1) and
with an isotropic and spatially homogeneous flux density of practically incoherent photons
obeys a T-z relation and an associated ν-z relation that are different from the ν-z relation of
directed, (partially) coherent radiation.

3.1. T-z Relation in SU(2)CMB

A pronounced distortion of the blackbody spectrum of radiance deep within the
Rayleigh–Jeans part was observed in [13,14] and the references therein. To explain this
highly isotropic CMB radio excess at frequencies below 1 GHz, we argued in [32] that
the critical temperature T(z = 0) for the deconfining–preconfining phase transition of
SU(2) Yang–Mills thermodynamics is very close to the present temperature of the CMB of
T(z = 0) = 2.726 K [1]. This may seem to be a somewhat fine-tuned situation. However, the
difference with the ordinary tuning of parameters by hand is that the dual gauge coupling
thermodynamically rises rapidly as the temperature drops into the preconfining phase.
Since the Cartan mode’s extracted thermal quasiparticle mass is 100 MHz, which is around
three orders of magnitude smaller than the critical temperature Tc, it follows that T(z = 0)
needs to be very close to Tc. However, due to a presently incomplete understanding of the
supercooling of the deconfining into the preconfining phase and the associated tunnelling,
there is a tolerance of ∼ 10 % in this dynamic tuning of the two temperatures, which
corresponds to about 1 Gy of cosmic evolution [33]. The exact assignment T(z = 0) = Tc,
addressed further below, implies a Yang–Mills scale ΛCMB = 1.064× 10−4 eV, and thus it
is justified to refer to the SU(2) Yang–Mills model, whose deconfining thermodynamics
are assumed to describe the CMB, as SU(2)CMB. We quote below a number of alternative
approaches to explaining the CMB radio excess.

Let us now review [5] how the T-z relation of deconfining SU(2)CMB thermodynamics
is derived from energy conservation in an Friedmann–Lemaitre–Robertson–Walker (FLRW)
universe of cosmological scale factor a, normalised such that today a(T(z = 0)) = 1.
One has

dρ

da
= −3

a
(ρ + P) , (9)

where ρ and P denote the energy density and pressure of deconfining SU(2)CMB ther-
modynamics, respectively. As usual, redshift z and scale factor a are related as follows:
a−1 = z + 1. Equation (9) has the formal solution

a = exp
(
−1

3

∫ ρ(T)

ρ(T(z=0))

dρ

ρ + P(ρ)

)
= exp

−1
3

∫ T

T(z=0)
dT′

1
T′

dρ

dT′

s(T′)

 , (10)

where the entropy density s is defined as

s =
ρ + P

T
. (11)

By virtue of the Legendre transformation

ρ = T
dP
dT
− P , (12)

one has
1
T

dρ

dT
=

d2P
dT2 =

ds
dT

. (13)

Substituting Equation (13) into Equation (10) finally yields
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a =
1

z + 1
= exp

(
−1

3

∫ T

T(z=0)
dT′

d
dT′

[
log

s(T′)
M3

])
= exp

(
−1

3
log

s(T)
s(T(z = 0))

)
. (14)

Here, M denotes an arbitrary mass scale. The formal solution (14) is valid for any
thermal and conserved fluid subject to expansion in an FLRW universe. If the function s(T)
is known, then (14) can be solved for the T-z relation T(z). Equations (11) and (14) exclude
a ground-state dependence of the T-z relation, since the equation of state for ground-state
pressure Pgs and energy density ρgs is Pgs = −ρgs [17].

In deconfining SU(2)CMB thermodynamics, asymptotic freedom [34,35] occurs non-
perturbatively for T � T(z = 0) [17]. The Stefan–Boltzmann limit is then well saturated,
and therefore s(T) is proportional to T3. Moreover, at T(z = 0), due to a decoupling of
massive vector modes, excitations represent a free photon gas. Therefore, s(T(z = 0)) is pro-
portional to T3(z = 0). As a consequence, the ratio s(T)/s(T(z = 0)) in Equation (14) reads

s(T)
s(T(z = 0))

=
g(T)

g(T(z = 0))

(
T

T(z = 0)

)3

=

((
g(T)

g(T(z = 0))

) 1
3 T

T(z = 0)

)3

, (T � T(z = 0)) ,

(15)

where g refers to the number of relativistic degrees of freedom at the respective tempera-
tures. We have g(T) = 2× 1 + 3× 2 = 8 (two photon polarizations plus three polarisations
for each of the two vector modes) and g(T(z = 0)) = 2× 1 (two photon polarisations).
Substituting this into Equation (15), inserting the result into Equation (14), and solving for
T, we arrive at the high-temperature T-z relation

T =

(
1
4

) 1
3
(z + 1) T(z = 0)

≈ 0.629 (z + 1) T(z = 0) , (T � T(z = 0)) . (16)

Due to two vector modes of a finite, T-dependent mass contributing to s(T) at low
temperatures, the T-z relation is modified to give

T = S(z)(z + 1) T(z = 0) , (T ≥ T(z = 0)) , (17)

where the function S(z) is depicted in Figure 1.
In Section 3.1, we reviewed why T(z = 0) . Tc. We now argue why T(z = 0)

is excluded fir being larger than Tc: there is another contribution to the excess in line
temperatures at low frequencies from the fact that the frequency of waves (populating
the deep Rayleigh–Jeans spectrum up to const/T2) and the frequency of photons (starting
to represent the spectrum for frequencies larger than const/T2) redshift differently. On
the other hand, the baseline temperature T(z) redshifts like the frequency of photons.
That is, wavelike modes redshift as ν(z) = (1 + z)ν(z = 0) while temperature (photon
frequency) redshifts more weakly as T(z) = S(z)(z + 1)T(z = 0) with a numerically
known function S(z) < 1 of negative slope dS(z)

dz ∼ −1 for z � 1; see Figure 1. This
also contributes to an increase in the line temperature at low frequencies compared to
the Rayleigh–Jeans law, since low frequencies are redshifted as usual but the baseline
temperature redshifts slower when lowering z in the vicinity of z = 0; see Figure 2 and
Equation (18). Observationally [13], the onset of this effect could be visible at ν ∼ 1 GHz,
which implies that the wavelengths of low-frequency waves are larger than 30 cm, in turn
implying a critical temperature lower than 11.6 K [17]. For the differential evolution of the
baseline temperature, we have

dT = T(z = 0)
(

dS(z)
dz

(1 + z) + S(z)
)

dz . (18)
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Figure 1. Plot of function S(z) in Equation (17). The curvature in S(z) at a low z indicates the
breaking of conformal invariance in the deconfining SU(2) Yang–Mills plasma for T & T(z = 0) with
a rapid approach towards (1/4)1/3 as z increases. The conventional T-z relation of the CMB, as used
in the cosmological standard model ΛCDM, is associated with the dashed line S(z) ≡ 1. Figure
adapted from [7].

Since the present CMB’s line temperature rises steeply with a spectral index of −2.6
when lowering the frequency [13,14], the effect of Equation (18), which (modulo a mild
stacking of low frequencies) is frequency-independent for ν < const/T2, does not explain
these large and variable line temperatures. Thus, we are again led to set T(z = 0) ∼ Tc
to explain the observed steep rise in terms of wave evanescence (thermal Meissner mass).
Therefore, the tuning T(z = 0) ∼ Tc is entirely explained by observation and does not
require any ad hoc parameter coincidence.

Note that large and variable line temperatures cannot be explained in terms of the
diffuse free–free emission facilitated by cosmological reionisation [36,37]. Interestingly,
synchrotron radiation induced by weakly interacting massive particle (WIMPS) annihi-
lations or decays in extra-galactic halos could match the low-frequency excess in CMB
line temperature if a thermal annihilation cross-section for light WIMPS is invoked [38].
Galactic radio emission is excluded as an explanation by the isotropy of the signal [39].
In [40], stochastic frequency diffusion is used to explain the low-frequency excess in the
present CMB (also dubbed ‘space roar´) in terms of a primordial epoch of non-equilibrium
conditions in the plasma. These conditions are modelled by a mild violation of the Einstein
relation in the Kompaneets equation to allow for low-frequency localisation in the evolving
photon distribution. The formation of the first generation of supermassive, cosmological
black holes is speculated to explain the space roar in terms of synchrotron emission from
the remnants [41].
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Figure 2. Plot of the T-z relation S(z)(1 + z) in deconfining SU(2) Yang–Mills thermodynamics
with T(z = 0) ≡ Tc. The conventional quantum U(1) T-z relation of the CMB, employed in the
cosmological standard model ΛCDM, is depicted by the dashed line. Here T∗ denotes the higher
value of the temperature within the cloud, deduced from a conventional ν-z relation of the line whose
profile is analysed.

If the line-temperature excess can, indeed, be shown to persist to higher redshifts,
including the onset of reionisation (cosmic dawn), then a potential explanation of the
anomalously strong absorption of the redshifted 21 cm line by neutral hydrogen measured
by an experiment to detect the global epoch of the reionisation signature (EDGES) [42] is
enabled. This would falsify our proposal that the present space roar is solely a very-low-
redshift phenomenon due to an admixture of Gaussian distributed evanescent waves to
the conventional low-frequency Rayleigh–Jeans CMB spectrum 3. However, the strong
absorption of the redshifted 21 cm line can also be explained by the dark-matter-induced
cooling of the absorbing cosmic gas without having to invoke the excess intensity of the
CMB at low frequencies throughout cosmic dawn [43].

3.2. Anisotropic Photon Emission by Electrons or Isotropic and Homogeneous Thermalisation

In the framework of the SU(2) Yang–Mills theory, why is it that spectral lines red-
shift according to the conventional ν-z relation ν(z) = (1 + z)ν(z = 0) while the bulk
of frequencies within the CMB follow a ν-z relation associated with the T-z relation of
Section 3.1?

The electron and its neutrino are modelled by a onefold self-intersecting, figure-
eight-like center-vortex loop and a single center-vortex loop, respectively; see [15–17].
These excitations are immersed into the confining ground state of the SU(2) Yang–Mills
theory. A mass formula can be derived for the electron that equates the frequency of
a breathing monopole [44,45] (or the quantum selfenergy [46,47]), contained within an
extended ball-like blob associated with the region of vortex intersection, with the sum
of the static monopole’s rest mass and the energy content of the deconfining SU(2) Yang–
Mills thermodynamics of the blob (considering the mixing of two thermal gauge theories
SU(2)CMB and SU(2)e at a temperature T0 = 1.18 Tc,e where the pressure vanishes [48]).
By invoking the value of the electron mass me = 511 keV, this formula yields a value of



Astronomy 2023, 2 295

the SU(2) Yang–Mills scale Λe = 3.62 keV or a critical temperature Tc,e = 7.99 keV for the
deconfining–preconfining phase transition in SU(2)e [48].

In addition, one obtains a blob radius r0 ∼ a0, where a0 denotes the Bohr radius
a0 = 0.592 Å. Also, the reduced Compton radius rc, which roughly coincides with the
core radius of the monopole rc [44,45], turns out to be rc ∼ αr0 where α ∼ 1/137 is the
electromaganetic fine-structure constant. Modulo the electron’s magnetic moment, carried
by two closed vortex lines connecting to the blob, this matches with de Broglie’s original
interpretation of the electron [46,47] and with the interpretation of the square of the wave
function in wave mechanics [49] as a probability density for locating a point particle [50].
Namely, in its restframe, the electron represents an extended (spatially homogeneous)
vibration induced by a charged monopole whose core size is negligible on the scale of the
blob size and whose rate of jump-like location changes within the blob volume matches the
vibration frequency ν0 (m0 = hν0, where m0 is electron mass).

If the global temperature of a photon gas is smaller than Tc,e, then these photons must
be thermalised with respect to SU(2)CMB for Tc,CMB ∼ 10−4 eV � 7.99 keV ∼ Tc,e. On
the other hand, a directedly propagating electromagnetic field (a wave) represents a non-
thermalised mode and thus cannot be subject to the gauge group SU(2)CMB but rather is
described by SU(2) Yang–Mills theories of much larger Yang–Mills scales [17]. The process
of converting these isolated waves, emitted by the charge carriers that do not penetrate into
the volume bounded by a closed, emitting spatial surface, into a thermal photon gas con-
tained within this volume hence proceeds by chopping their coherent intensity distribution
into grainy and short-lived energy-momentum packets by the increasing homogenisation
and isotropisation of energy transport as more and more differently directed waves of
varying oscillation frequencies superposition away from the emitting surface. This process
of thermalisation, producing a photon gas with the temperature of the emitting surface, can
effectively be understood as a rotation of SU(2) modes of theories with large Yang–Mills
scales into those of SU(2)CMB.

3.3. Thermalisation-Dependent Mixing of Two SU(2) Gauge Theories

For simplicity and due to its practical relevance 4, we consider the interplay of gauge
groups SU(2)CMB and SU(2)e. The discussion in Section 3.2 can then be summarised as

āCMB
µ = aCMB

µ cos θW + ae
µ sin θW ,

āe
µ = −aCMB

µ sin θW + ae
µ cos θW , (19)

where (āCMB
µ ,āe

µ) refers to the rotated state reached from the initial state (aCMB, ae) for the
effective gauge fields in the deconfining phases of SU(2)CMB and SU(2)e. The thermody-
namically determined mixing angle θW turns out to be close to the electroweak mixing
angle (θW = 30.84◦) if mixing within the interior of the blob—representing the center of
the region of self-intersection of the center-vortex loop—is considered. Within this central
domain, the mixed deconfining-phase pressure must vanish [48]. Note that in the case of
infinite-volume thermodynamics at high temperatures (high-z cosmology), such a stability
constraint on a finite-volume region is irrelevant, and one has θW = 45◦.

In general, a change in the state of thermalisation induces a change in the rotation angle
θ = θ(η, T∗, T). In particular, for the interaction of the CMB with absorber clouds, θ depends
on the degree of thermalisation η invoked by the initial states of electromagnetically
interacting electrons of temperature T∗ within the cloud and the temperature T of the CMB.
Note that the thermalisation of these electronic states is influenced by these very lines
dissipating directed background light. Via the degree of thermalisation η, the mixing angle
θ also depends on the range of frequencies νl ≤ ν ≤ νu of wavelike modes in SU(2)CMB
and SU(2)e, which mediate the interactions between the electrons. Due to the present
CMB exhibiting the largest low-frequency interval of excitations associated with waves
throughout its cosmological history (see Section 3.1), and since the main frequency used
for the extraction of T(z = 0) from background source–absorber cloud systems in the
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Milky Way [30] is 113.6 GHz, which is to the left of the peak frequency ν = 160.4 GHz of
the present CMB’s blackbody spectrum, it is qualitatively understandable that the same
temperature as in the CMB blackbody spectral fit in [1] is observed for these systems.
Due to the strong compression of the CMB wave spectrum with a factor ∝ T−2, it is also
plausible that temperatures extracted from a background source–absorber cloud system at
earlier epochs differ from the associated CMB temperatures because the mixing between
SU(2)CMB and SU(2)e within the cloud then is tilted towards SU(2)e.

The quantitative computation of θ in a situation where a system of interacting (bound)
electrons of a given number density, invoking a range of frequencies νl ≤ ν ≤ νu for these
interactions, is immersed into the CMB is a complex task which we hope to gain more
insight about in the future.

4. Summary and Outlook

In this paper, we discussed two main approaches to extract the CMB temperature at
finite redshifts: the analysis of absorption line profiles originating from gases of atoms,
ions, or molecules within the line of sight of a broad-spectrum and bright background
source, and the thermal Sunyaev-Zel’dovich effect (thSZ). In the literature, the assumption
of a conventional frequency–redshift relation (ν-z relation) for CMB photons, considered to
thermalise with relevant transitions in the cloud systems in the former case or to represent
CMB spectral distortions in the latter situation, yields a conventional temperature–redshift
relation (T-z relation) for the CMB. We argued, based on the blackbody spectrum at all
redshifts, that this is a consequence of thermodynamics. Whatever the assumed ν-z relation,
observations necessarily produce the associated T-z relation and vice versa. If the CMB
is subject to an SU(2) rather than a U(1) quantum gauge principle, we reviewed how the
corresponding T-z relation changes. Consequently, the CMB’s ν-z relation is changed.
Finally, on a qualitative level, we provided reasons for which the temperature of a cloud
of known redshift may differ from the temperature of a pure photon gas representing the
CMB far away from the cloud. This is because thermalisation in the cloud, in addition
the interaction of bound electrons with wavelike CMB disturbances, also proceeds via
emissions and absorptions of wavelike modes by bound electrons. These modes, however,
are subject to another (confining-phase) SU(2) Yang–Mills theory of a much higher critical
temperature: SU(2)e.

The existence of SU(2)e impacts Big Bang nucleosynthesis. Specifically, if the elec-
tron is subject to an SU(2) gauge-theory model, involving the two factors SU(2)CMB and
SU(2)e [15,16,48] (see also [11]), then the Hagedorn temperature TH = 6.66 keV of SU(2)e

implies that the primordial Helium mass fraction of Y = 1
4 (Y = 2 fi

1+ fi
, where fi denotes the

neutron-to-proton ratio at the onset of nucleosynthesis) is not induced by the nucleosyn-
thesis of the light elements setting in at T = 65 keV, subject to fi =

1
7 (the freeze-out value

f = 1
5 at T ∼ 800 keV being reduced to fi =

1
7 at T = 65 keV due to neutron decay). Rather,

nucleosynthesis would start at T = 65 keV with fi = 1, implying a Helium mass fraction of
Y = 1 prior to the Hagedorn transition. The value of Y would subsequently be reduced to
Y ∼ 1

4 through collective Helium photo-disintegration by gamma quanta that are released
across the Hagedorn transition.

Our conclusion regarding the extractions of the CMB temperature using the thSZ
effect pursued in the literature is that they confirm the CMB blackbody spectrum at a
finite redshift. However, under the assumed conventional ν-z relation, the result of the T-z
relation extraction is necessarily conventional as well.

The extraction of the CMB’s T-z relation from an assumed thermalisation within
absorber clouds, which also uses a conventional ν-z relation for the relevant absorption
lines, is questionable since the two systems, (i) a cloud immersed into the CMB and (ii) a
pure CMB, exhibit different thermal degrees of freedom at a sufficiently high redshift:
waves for (i) and photons for (ii).

One possibility for determining the effect of the T-z relation subject to SU(2)CMB is to
study the flux of ultra-high-energy cosmic rays (UHECRs). In particular, there is a sensitive
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region below the ankle, that is, for 1× 1018 eV ≤ E ≤ 6× 1018 eV. Due to the reduced
CMB photon density at the same finite redshift, there is a higher flux of UHECRs under
otherwise equal conditions for emission and propagation. Most prominently, the flux of
protons is significantly increased in comparison to the use of the conventional T-z relation
when fitted to UHECR data [51].
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Notes
1 One may think of the true CMB temperature (which would be lower in SU(2)CMB) and participating CMB frequency being

elevated by the same factor to T∗(z) and ν∗(z) of a rotational excitation, respectively, by the incoherent mixing of a Cartan mode
in SU(2)CMB and a Cartan mode of SU(2)e as the observer moves from empty space outside the cloud towards its interior.

2 According to a very good approximation, the spectral intensity I(ν) of today’s CMB is given as Iz=0(ν)dν = 16π2 ν3

exp
(

2πν
T(z=0)

)
−1

dν [1].

If we assume a T-z relation of T(z = 0) = 1
f (z) T(z) and a ν-z relation of ν(z = 0) ≡ 1

g(z) ν′ with f (z) 6= g(z), then the

Stefan–Boltzmann law would still have redshifted according to the T-z relation:
∫

dνIz=0(ν) =
π2

15 T4(z = 0) = π2

15

(
T(z)
f (z)

)4
=(

1
g(z)

)4 ∫
dν′ Iz(ν′). However, the maximum νmax = 2.821

2π T(z = 0) of the distribution Iz=0(ν)dν converts to a maximum

ν′max = 2.821
2π

g(z)
f (z) T(z) of the distribution Iz(ν′)dν′ = 16π2 (ν′)3

exp
(

f (z)
g(z)

2πν′
T(z)

)
−1

dν′. Thus, Iz(ν′) would no longer be a blackbody spectrum.

3 This admixture would arise due to phase tunnelling occurring when supercooling the deconfining phase into the preconfining
phase in SU(2)CMB.

4 Charge carriers subject to SU(2) theories of larger Yang–Mills scales, represented by the charged leptons of the standard model µ±

and τ±, are unstable due to weak decay and therefore do not qualify as material within the emitting surfaces of a blackbody cavity.
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