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Abstract: Candidate theories of quantum gravity predict the presence of a minimal measurable length
at high energies. Such feature is in contrast with the Heisenberg Uncertainty Principle. Therefore,
phenomenological approaches to quantum gravity introduced models spelled as modifications of
quantum mechanics including a minimal length. The effects of such modification are expected to
be relevant at large energies/small lengths. One first consequence is that position eigenstates are
not included in such models due to the presence of a minimal uncertainty in position. Further-
more, depending on the particular modification of the position–momentum commutator, when such
models are considered from momentum space, the position operator is changed, and a measure
factor appears to let the position operator be self-adjoint. As a consequence, the (quasi-)position
representation acquires numerous issues. For example, the position operator is no longer a multi-
plicative operator, and the momentum of a free particle does not correspond directly to its wave
number. Here, we will review such issues, clarifying aspects of minimal length models, with particu-
lar reference to the representation of the position operator. Furthermore, we will show how such
a (quasi-)position description of quantum mechanical models with a minimal length affects results
concerning simple systems.

Keywords: quantum gravity phenomenology; generalized uncertainty principle; quantum mechan-
ics; position; de Broglie relations

1. Introduction

Several approaches to quantum gravity, as well as gedanken experiments in black
holes and high energy physics, suggest the presence of a minimal measurable length [1–8].
Such minimal length may be due to structural properties of space time (e.g., causal dynam-
ical triangulation, loop quantum gravity, etc.) or to a fundamental minimal uncertainty
in position (e.g., string theory, re-elaborations of the Heisenberg microscope including
gravity, etc.). Regardless of its nature, such minimal length is in contrast with one of the
cornerstones of quantum mechanics, viz. The Heisenberg uncertainty principle. Therefore,
a modification of quantum mechanics accounting for such minimal measurable length is
often considered in phenomenological approaches to quantum gravity. This modification
is referred to as the generalized uncertainty principle (GUP). Several different approaches
to GUP have been proposed in the past. In fact, GUP can be cast as a modification of the
uncertainty relation between position and momentum, with no necessary modification of
the representations of the corresponding operators [8–10]; alternatively, modifications of
Poisson brackets have been considered in the classical sector, inducing modified classical
dynamics [11–14]; finally, a modified commutation relation between position and momen-
tum is studied, related with a modified uncertainty relation via the Schrödinger–Robertson
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relation [15–18]. In this work, we will consider this last approach. Specifically, we will
consider a generic commutation relation of the form

[q̂, p̂] = i} f ( p̂). (1)

To study such relation and its implications, we will use [16] as a guideline. In particular,
based on the work [19], we will study the action of the position operator in models with
a minimal length described by Equation (1). It is worth pointing out at this stage that, as
Equation (1) introduces a minimal uncertainty in position, position eigenstates are not
included in such a model. We will thus see how a new representation is possible, following
the ideas developed in [16] and the implications of such alternative perspective.

2. Quasi-Position Representation

Let us start from the momentum–space representation, in which the momentum
operator acts on a wavefunction ψ(p) by multiplying by the momentum variable p. In this
space, a possible representation for the position operator is

q̂ψ(p) = i} f (p)
d

dp
ψ(p). (2)

As mentioned in the introduction, position eigenstates are not present in such model.
Thus, we do not have a meaningful representation in which the operator q̂ acts multi-
plicatively. However, we can introduce maximally localized states as those states with
the smallest position uncertainty possible, and write any state as a superposition of such
maximally localized states. For practical reasons, we will specialize our analysis to the case
in which the function f (p) in Equation (1) is given as

f (p) = 1− 2δp +
(

δ2 + ε
)

p2, (3)

with
δ =

δ0

MPlc
, ε =

ε0

M2
Plc

2
. (4)

Here, MPl is the Planck mass, c is the speed of light in vacuum, and δ0 and ε0 are di-
mensionless parameters. Similar results in a more general setting can be found in [19].
A function of minimal uncertainty in position can be found, as usually implemented in
quantum mechanics, as the function ψ〈q〉(p) of position expectation value 〈q〉 fulfilling the
following equation

(q̂− 〈q〉)ψ〈q〉 =
−i}〈 f (p)〉
(∆p)2 ( p̂− 〈p〉)ψ〈q〉. (5)

Using Equations (2) and (3), we find a differential equation of solution

ψ〈q〉(p) =
1√

1− 2δp + (δ2 + ε)p2
exp
[
−i
〈q〉p0(p)

}

]
, (6)

where p0(p) is defined as

p0(p) =
∫ p

0

dp′

f (p′)
=

1√
ε

arctan

[
−δ +

(
δ2 + ε

)
p√

ε

]
+

1√
ε

arctan
(

δ√
ε

)
. (7)

It is important to notice that, in general, the quantity p0 is bounded on subset of R. In
fact, in the particular case of Equation (3), we find

p0 ∈
(

1√
ε

arctan
(

δ√
ε

)
− π

2
√

ε
,

1√
ε

arctan
(

δ√
ε

)
+

π

2
√

ε

)
. (8)
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Such property is in agreement with the existence of a minimal length as, as we will
see below, the two extremes correspond to the shorter wavelength allowed in the model.
Furthermore, it is worth noticing that such an interval is not symmetric with respect to 0.
This is a consequence of the linear term in p in Equation (3), which introduces a difference
between the left and right direction.

Considering the function in Equation (6) as a function of both p and ξ = 〈q〉 and using
it as a kernel for an integral transform, we obtain the following two transforms, which
generalize the Fourier transform in the case of GUP.

T−1[φ](ξ) = 1√
2π}

∫ ∞
−∞

dp
f (p)ψ(p, ξ)φ(p),

T[φ](p) = 1√
2π}

∫ ∞
−∞ dξ[ψ(p, ξ)]−1φ(ξ).

(9)

Such transform allows for representing a state as a superposition of maximally local-
ized states of different position expectation values ξ. We can then use them to find the
momentum eigenstates in such new “quasi-position” representation

φp̃(ξ) = T−1[δ( p̃− p)](ξ) =
1√
2π}

1

[1− 2δ p̃ + (δ2 + ε) p̃2]
3/2 exp

[
i
ξ p0( p̃)

}

]
. (10)

We thus see that a momentum eigenstate, i.e., a free-particle state, in quasi-position
space corresponds to a plane wave of wave number k = p0( p̃)/}. Therefore, GUP changes
the de Broglie relation between wave number and momentum. Furthermore, in models in
which f (p) is not an even function, e.g., δ0 6= 0, we have two different wave numbers for
left- and right-moving waves or, equivalently, a different dispersion relation for left- and
right-moving particles.

Furthermore, the same transformations allow for writing the position and momentum
operators in quasi-position space. In fact, we find

q̂ = ξ + i}
[(

δ2 + ε
)

p̂− δ
]
,

p̂ =

√
εtan

[√
ε p̂0−arctan

(
δ√
ε

)]
+δ

δ2+ε
, p̂0 = −i} d

dξ

(11)

We then see that the position operator in such representation is not a multiplicative
operator, as in standard quantum mechanics. This result is due to the rich structure of
models with a minimal length.

3. Examples

We are now going to consider two special systems in which a minimal length, via the
results found in the previous section, has interesting consequences.

3.1. Particle in a Box

Let us consider a one-dimensional box of side L. Such a system, similarly to what is
implemented in ordinary quantum mechanics, can be described in terms of a discontinuous
potential, which is 0 between ξ = 0 and ξ = L, and infinite anywhere else. Proceeding as
usual, one considers a superposition of left- and right- moving waves with same momen-
tum eigenvalue p up to a sign, and imposes the relevant boundary conditions. However, as
in GUP models the wavelengths of left- and right- moving waves are, in general, different,
we cannot directly conclude that a solution of the Schrödinger equation is a standing wave
with L a semi-integer multiple of the wavelength. In fact, after the necessary calculation,
one may find that, in this case, the condition is that the sum of wavelengths of the left- and
right-moving waves be a divider of the box width or, in terms of the quantity p0,

[p0(pn)− p0(−pn)] =
2nπ}

L
, (12)
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where pn is the momentum eigenvalue associated with the n’s energy state. The relation
above can then be inverted to find the possible values of the momentum eigenvalue.
However, as p0 is bounded, as shown in the previous section, Equation (12) admits only
a finite number of integers n. The maximum number of possible energy eigenstates is in
fact related with the ratio L/lPl , with lPl the Planck length. Specifically, one finds for the
maximum number

nmax = b L
2lPl
√

ε0
c. (13)

In Figure 1, two different choices for the parameters δ0 and ε0 are compared to the
standard case. The vertical dashed lines correspond to the higher energy state allowed in
each model. Such effect becomes more relevant the narrower the box is, for example, when
L = 20lPl and ε0 = 1, one find that only 10 energy states are allowed. Conversely, one can
find that boxes narrower than a particular width do not allow any state, that is, when

L < 2lPl
√

ε0. (14)
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3.2. Potential Barrier

As a second example, let us consider a potential barrier of width L and height U0
between ξ = 0 and ξ = L. As in ordinary quantum mechanics, considering a particle
approaching the barrier from the left, a generic energy eigenstate is given by a superposition
of a left- and a right-moving wave on the left of the barrier, corresponding to a reflected
and an incoming wave, respectively; a left- and a right-moving wave in the region of the
barrier; and a right-moving wave on the right of the barrier, corresponding to a transmitted
wave. Imposing the corresponding boundary conditions, one can then find a relation for
the transmission and reflection coefficients. Carrying out the calculations, one can find
that resonances in the transmission amplitudes appear at different energies than in the
standard case. Furthermore, contrary to ordinary quantum mechanics, only a finite number
of resonances are allowed. As in the case of a particle in a box, resonances are related with
the sum of the wavelengths of left- and right-moving waves in the region of the barrier.
Specifically, a resonance is obtained when the width of the barrier is a half-integer multiple
of such a sum. In terms of the quantity p0, we have

p0
(

p′n
)
− p0

(
−p′n

)
=

2nπ

L
, (15)

with p′n the momentum eigenvalue of the stationary states corresponding to a resonance,
i.e.,

pn =
√

2m(En −U0). (16)
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In this case as well, as p0 acquires values on a limited interval, we can conclude that
only finitely many resonances are allowed, as shown in Figure 2. The maximum number of
resonances depend on the ratio L/lPl and is given by

nmax = b L
2lPl
√

ε0
c. (17)
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4. Conclusions

The generalized uncertainty principle is a quantum model describing the existence of
a minimal uncertainty in position. In this paper, we considered such a model modifying the
commutation relation between position and momentum. Due to the presence of a minimal
uncertainty in position, it is not possible to define a position representation, and we had to
resort to an alternative description, often referred to as “quasi-position”. However, such
methodology introduces various issues that we have tried to clarify here. In particular,
the position operator does not act multiplicatively in such new representation. Rather, it
contains a term proportional to the momentum operator and another which is an imaginary
constant. Such an imaginary constant is related to the position expectation value on states
of minimal uncertainty in position. Furthermore, by studying momentum eigenstates in
the quasi-position representation, we saw that they can be described as plane waves with
a wave number which is not proportional to the momentum eigenvalue, suggesting a
modification of de Broglie relations. In fact, left- and right-moving waves, characterized by
the same momentum eigenvalue, are described by different wavelengths. Furthermore,
in general, the wave number of a free wave acquires its value on a limited interval, thus
introducing a maximum wave number or a minimal wavelength, compatible with the
introduction of a minimal length. All this has interesting implications when quantum
systems are analyzed, as in the two examples presented here. In fact, we have seen that,
in contrast to ordinary quantum mechanics, only a finite number of stationary states are
allowed in a box. Furthermore, depending on the width of the box and on the parameters
of the adopted model, a box may even present no state at all. As a second example,
we considered the case of a potential barrier. Here, a minimal length also has relevant
implications. In fact, we found a finite number of resonance energies for a wave crossing
the barrier. Such number depends on the width of the barrier and on the parameters of the
model. Furthermore, when no resonance is present, the reflection coefficient is strongly
suppressed, even for energies below the potential energy of the barrier, as seen in Figure 3.
Again, these last features are compatible with the presence of a minimal length.
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The present analysis, although limited to a one-dimensional case and to a specific
model, serves to shed some light on the issues concerning a description of quantum
mechanics with a minimal length. In fact, this is often the playground of phenomenological
studies in quantum gravity [20–22]. A detailed and careful analysis is therefore necessary
in order to potentially compare such features with experimental observations.
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