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Abstract: Challenges associated with cubozoan jellyfish detection and the limitations of current
detection techniques limit the ability of scientists to fill critical knowledge gaps surrounding their
ecology. Environmental DNA (eDNA), however, has proven useful as an ecological survey tool to
detect and study these deadly jellyfish. This study aimed to leverage the power of eDNA to detect
and explore the distribution of the Australian box jellyfish (Chironex fleckeri), encompassing both
its medusae and polyp life history stages, within an open coastal bay (Horseshoe Bay) of Magnetic
Island, Queensland, Australia. Our investigation focused on a hypothesis concerning the source
locations of the jellyfish within Horseshoe Bay and, through a comparison of both life history stage
distributions, aimed to determine potential population stock boundaries. eDNA results aligned with
the predicted nearshore distribution of medusae. Further, the elusive benthic polyp stage was also
detected. These findings confirmed Horseshoe Bay as a source location of the jellyfish. Moreover, our
evidence supported a model that the area likely represents a population stock of the species. This
adds to growing evidence suggesting some cubozoan jellyfish have population stocks of small spatial
scales in both open and relatively closed ecosystems such as estuaries. In conclusion, this study serves
as a notable example of eDNA’s ability to resolve critical knowledge gaps surrounding cubozoan
ecology and to enhance the management ability of these deadly jellyfish to reduce envenomations.
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1. Introduction

Stinging jellyfish pose a global issue due to their threat to human health and their sub-
sequent economic impacts [1–10]. Cubozoan jellyfish, known for their potent venom, are the
class of most concern [4,11–13]. Of these taxa, the Australian box jellyfish, Chironex fleckeri,
is the most notorious, and is responsible for more than 200 recorded deaths in the Indo-
Pacific region [14]. The presence of these stinging jellyfish leads to extensive beach clo-
sures, which significantly impacts upon local tourism industries and consequently, local
economies [3]. However, due to their elusive nature and the challenges associated with
their detection, mitigating and managing their threat is a ‘wicked’ problem [4,15,16]. To
enhance the ability of stakeholders to effectively manage these taxa, it is important to gain a
greater understanding surrounding their ecology [11]. The more that is known surrounding
these taxa, the more informed and appropriate management solutions can be applied.

Considerable knowledge gaps, namely, understanding surrounding population dy-
namics, distribution limits, and the locality of benthic life history stages (polyps), exist
surrounding the ecology of cubozoan jellyfish [11,14,17]. Importance is placed upon under-
standing the locality of polyps as they are the source of stinging medusa and, given their
asexual characteristics [18], play a major role in the population dynamics and distributional
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limits of cubozoans [11,17–20]. Additionally, growing evidence suggests that population
stocks of some of the ~50 cubozoan species [21] are of small spatial scales and therefore the
locality of the polyp stage is central to this understanding [17,22–26]. The ability to study
these aspects of cubozoan ecology, however, are logistically challenging to undertake. This
is due to limitations of current detection/sampling techniques which hinder the ability
of scientists to fill these critical knowledge gaps. Environmental DNA (eDNA), however,
provides a new approach to investigate the ecology of these dangerous taxa [27–31].

A highly specific and sensitive eDNA detection assay has recently been developed for
Chironex fleckeri [29]. This detection tool was successfully utilised as an ecological survey
tool and successfully detected the elusive benthic polyp life history stage of the species [28].
Morrissey et al. [28] putatively detected the polyp stage of C. fleckeri and further examined
this life history stage’s potential habitat. Polyps were detected in habitats with rocky
substrata and shallow carbonate reefs. Further, Morrissey et al. [28] utilised the genetic
tool to contribute to an understanding of population stock boundaries of the jellyfish in
a relatively enclosed estuarine system (Port Musgrave, Australia) [26]. The results from
eDNA largely concurred with the results of a biophysical modelling and jellyfish behaviour
study indicating low connectivity from Port Musgrave and a source of polyps that were
only found in the estuary [28].

In contrast, C. fleckeri is also found in a relatively open coastal system at Magnetic
Island, situated off the coast of North Queensland, Australia. The island is not only
of interest ecologically, but it is a tourism hotspot where cubomedusae co-occur with
swimmers and are responsible for beach closures during the Australian box jellyfish season
(October–May) (pers. comms. Surf Life Saving Queensland, SLSQ). Multiple coastal bays
on the island are monitored and patrolled by local management authorities (SLSQ) due to
the threat posed by cubozoan jellyfish. Horseshoe Bay, which is located on the northern side
of the island, is a recognised hotspot for C. fleckeri medusae and it has been hypothesised
as a source location of the jellyfish [32]. This hypothesis arose from a multiyear study
undertaken by Brown [32], who examined the distribution and movements of the species’
medusae stage on Magnetic Island. Brown [32] made visual surveys around the entire
island and noted that C. fleckeri medusae appeared firstly within the vicinity of Horseshoe
Bay during November, the start of the Australian box jellyfish season, and from December
onwards, individuals were encountered in neighbouring bays, although in considerably
lower abundance. Furthermore, Brown [32] noted that small juvenile C. fleckeri individuals
were only found within Horseshoe Bay whereas larger specimens were found at multiple
locations around the island. From these findings, Brown [32] hypothesised that Horseshoe
Bay was the source location of the species for the island and, therefore, most likely contained
the polyp life history stage of the species. eDNA, as it can detect putative presence of
nearby polyps, therefore allowed for the testing of components of this hypothesis [27,29].
Further, as C. fleckeri medusae have largely been observed along the north side of Magnetic
Island, primarily within Horseshoe Bay, it is possible that the area may represent a local
stock of the jellyfish. This provides an opportunity to test a developing paradigm that
C. fleckeri commonly have population stocks of small spatial scales [17,22,26,28].

The objective of this study was to utilise eDNA to detect and study the Australian
box jellyfish, C. fleckeri, in an open coastal system, contrasting that of Morrissey et al. [28]
(semi-enclosed system). Specifically, we aimed to determine (i) the presence and localised
distribution of the species’ medusae stage, (ii) the source of medusae by examining the
distribution of polyps in the absence of medusae, and (iii) compare medusae and polyp
distributions to infer likely population concentrations and boundaries. Further, the re-
sults of our sampling will allow us to contribute to knowledge on the spatial scales of
C. fleckeri populations.
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2. Materials and Methods
2.1. Study Area

This study was conducted within and near a group of open coastal bays at Magnetic
Island, Australia (19.11◦ S, 146.85◦ E). Horseshoe is the largest bay, and to the west and
outside of Horseshoe Bay is Maud Bay (Figure 1). Horseshoe Bay, in particular, is a hotspot
for tourism where Chironex fleckeri medusae are known to reside during the Australian
box jellyfish season (October to May). Surf Life Saving Queensland (SLSQ) monitors this
area through undertaking daily beach tows, within and outside of the local stinger net
(preventative measure to provide a safe, jellyfish-free swimming area), covering ~150 m of
shoreline. These beach tows provided information on the presence or absence of C. fleckeri
medusae in the study area. Additionally, oceanographic data exist for Horseshoe Bay (pers.
comms JA Schlaefer). Both Horseshoe and Maud Bays have some freshwater inflows which
become isolated during low tide (tidal range 3.4 m).
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Figure 1. Sampling sites in Horseshoe and Maud Bays, Magnetic Island. Sampling sites are numbered.
The circle colours indicate the sampling design: black circles for the grid sampling design, white
circles for the modified winter sampling design, and half-white, half-black circles for sites included
in both designs. Sites 5, 6, 16, 19, 22, and 23 reflect the nearshore sampling design. Sites 6/7, 8/9,
10/11, and 23 reflect the freshwater inflows.

2.2. Field Sampling

The sampling was divided into two temporal windows as follows; October to May,
when medusae are present (Australian box jellyfish season), and July to September, when
medusae are absent. Sampling took place between 2020 and 2022. It has been predicted
from other studies that medusae will be most abundant close to shore [32,33], and that sites
with freshwater inflows may be a source of medusae from benthic polyps [34,35]. Within
the Australian box jellyfish season, spatial variation in the distribution of medusae was
determined by sampling for eDNA. Initially, sampling was undertaken at sites located along
the shores of Horseshoe and Maud Bays resulting from their known nearshore distribution
(Figure 1, December 2020 and February 2021). Samples were also collected within and at
the mouths of freshwater inflows into these bays (the flora and landform of Horseshoe
Bay are shown in Figure S1). It was possible that medusae could move outside the open
coastal bays. To detect this potential scenario, samples were collected in a grid design
across the bays and positioned at three distances from shore (Figure 1, March 2021 and
December 2021). This sampling design also allowed us to examine whether any eDNA
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signal was being transported out of the bay. eDNA sampling for medusae detection was
conducted concurrently with SLSQ’s detection of C. fleckeri medusae using beach tows.

The distribution of polyps could only be determined in the absence of medusae [28].
The seasonality of C. fleckeri medusae is well established with medusae only being present
during summer months (October to May) [11,34,36,37]. Accordingly, sampling for eDNA
was undertaken in the austral winter (July 2020, Figure 1). Polyps were detected in winter,
and a modified sampling design in July 2022 gave greater sampling effort in and near sites
where polyps had been detected, and some emphasis was given to sites with freshwater
inflows within Horseshoe Bay. Samples were collected within the freshwater inflow when
connected (sites 6, 8, and 10) and when isolated (sites 7, 9, and 11) by the tide and along the
shore of Horseshoe Bay. An offshore site (site 14) acted as an in situ negative control and a
100 × 16 m beach seine net drag (mesh size of 3 cm) was utilised at all sites along the shore
of Horseshoe Bay to further confirm the absence of medusae.

For each site, 2 L replicate water samples were collected and filtered immediately in
the field and were stored in Longmires buffer at temperatures of 4 ◦C until processed. An
equipment control, prior to sample collection, was also undertaken for each replicate sample
to ensure the sampling equipment was not contaminated. Specific details surrounding
collection, handling, and storage of eDNA samples can be found in Morrissey et al. [29].
Further, a conductivity, temperature, and depth device (CTD; Seabird SBE 19 Plus) was
utilised at each sample site to examine the level of stratification, as this is known to have an
influence upon eDNA within the water column [38,39].

2.3. eDNA Extraction and Purification

Collected eDNA samples were extracted using the PPLPP method, initially developed
by Edmunds and Burrows [40] and subsequently modified for filter-based extractions by
Cooper, Huerlimann [41]. Following extraction, the eDNA underwent purification utilising
the Zymo One Step PCR Inhibitor Removal kit (Zymo IR; Zymo Research; Irvine, CA, USA)
in accordance with the manufacturer’s instructions. The resulting eDNA, now purified,
was then stored under −20 ◦C conditions until the quantification process. Specific details
surrounding eDNA extractions and purifications can be found in Morrissey et al. [29].

2.4. Quantitative PCR

This study utilised a multiplexed assay, developed by Morrissey et al. [29], for the
identification, quantification, and interpretation of Chironex fleckeri eDNA. To assess method
success and for potential PCR inhibitors, an endogenous control assay was multiplexed
with the C. fleckeri specific assay [29]. qPCR reactions were composed of 2 µL of eDNA
template, 10 µL of TaqMan Environmental Master Mix 2.0, 0.7 µM sense and anti-sense
C. fleckeri primers, 0.525 µM sense and anti-sense endogenous control primers, 0.25 µM
of both C. fleckeri and endogenous control TaqMan MGB probes (assay sequences listed
in Table S1). MilliQ water was added to adjust the final volume to 20 µL. Utilising the
QuantStudio 3 and 5 Real-Time PCR systems, each reaction followed a two-step cycling
profile (95 ◦C for 10 min, succeeded by 50 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min).
Six technical replicates were performed for each sample to ensure precision. Additionally,
each plate included at least three negative controls, extraction blanks, a positive control,
and synthetic DNA (sDNA) standards (10 thousand to one copy µL−1) to ensure lack of
contamination and consistency among plates. The criteria for confirming positive detection
of C. fleckeri involved the amplification of a single technical replicate. The decision to
consider a single positive technical replicate as indicative of species presence is common for
eDNA detection of cryptic and low-abundance species [41–45]. Additionally, zeroing single
technical replicate detections in an ad hoc manner may introduce uncertainties, biases,
or type II errors into subsequent analyses [46]. Any positive findings were substantiated
through clean up and bidirectional sanger sequencing of PCR product, undertaken by the
Australian Genome Research Facility. The results were cross-checked against reference
sequences to ensure accuracy.
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2.5. Statistical Analysis

Replicate filters (n = 2) were treated as subsamples. Positive technical replicates
from each replicate water sample were averaged to represent the eDNA concentration
(copies L−1) at each sample site [47–49]. The average provided a more representative
snapshot of Chironex fleckeri presence in the study area. Additionally, detections were also
reported as number of positive technical replicates out of 12 per sampling site, hence, two
measures of positive detection of Chironex fleckeri eDNA are presented.

3. Results
3.1. Seasonality of Chironex fleckeri Medusae within Horseshoe Bay

The detection of Chironex fleckeri in beach tows is known to be highly seasonal within
Horseshoe Bay. Medusae were only present in summer months (October–May) in each
year of sampling (pers. comms. Surf Life Saving Queensland). The seasonality of C. fleckeri
medusae is additionally well established [11,34,36,37]. The absence of observations of
medusae and stings confirmed the absence of the taxa’s medusae stage during winter
months (June–September). Additionally, no medusae were captured in beach seine net
drags at any Horseshoe Bay sites that were sampled during the July 2022 sampling time.
This sampling regime established the ground truth that C. fleckeri medusae are only present
during summer months, and thus any detections during winter months are most likely
eDNA shed from C. fleckeri polyps rather than medusae.

3.2. Detection and Distribution of Chironex fleckeri Medusae
3.2.1. Nearshore Detection of Chironex fleckeri Medusae

Chironex fleckeri eDNA was detected along the shores of both Horseshoe and Maud
Bays in 2020 and 2021 (Figures 2 and 3). In the summer of 2020 (December), eDNA was
exclusively found within Horseshoe Bay, with increasing concentrations observed along
the shore to the western end of the bay (Figure 2, sites 16–19). Detection was noted in 22.9%
of technical replicates from positive sample sites, with eDNA copies L−1 ranging from
32 to 275.6 copies L−1 (Table S2).
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Figure 2. Bubble map plot displaying sampling sites along the shore of Horseshoe and Maud Bays
with positive detections of Chironex fleckeri medusae, in December 2020. Bubbles indicate eDNA
concentrations (copies L−1); colours are for visualisation purposes only.

Two months later (i.e., February 2021), C. fleckeri eDNA was again detected within
Horseshoe Bay. Additionally, eDNA was detected in Maud Bay close to this bay’s fresh-
water inflow (Figure 3). During this sampling time, detection was found in 15% of
technical replicates from positive sample sites, with eDNA copies L−1 ranging from
17.8 to 92.4 copies L−1 (Table S2). Notably, eDNA concentrations were generally lower dur-
ing that sampling period (exception of site 6). Equipment controls for both sampling times
verified the lack of contamination, while the endogenous control affirmed method success.
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Figure 3. Bubble map plot displaying sampling sites along the shore of Horseshoe and Maud Bays
with positive detections of Chironex fleckeri medusae, in February 2021. Bubbles indicate eDNA
concentrations (copies L−1); colours are for visualisation purposes only.

Temperatures and salinities were similar throughout the study area within each sam-
pling period (December 2020; 29–31.1 ◦C and 36.2–36.4 ppt, February 2021; 29.8–30.3 ◦C
and 32.4–33.8 ppt). Lower salinities were observed in February, likely due to rainfall in the
week preceding sampling. No stratification of the water column in temperature or salinity
was detected in water depths of 0.4–3.1 m (Figures S2 and S3).

3.2.2. Bay Wide Sampling Design for Chironex fleckeri Medusae

The eDNA of Chironex fleckeri was only detected at nearshore sample sites in Horseshoe
Bay and there were some detections in Maud Bay (Figures 4 and 5). Interestingly, no
C. fleckeri eDNA was detected at mid-shore or offshore sites. In March 2021, the highest
eDNA concentrations were observed near the freshwater inflow in Horseshoe Bay (Figure 4).
Notably, this specific site consistently exhibited positive detections at all sampling times
within the 2020/21 box jellyfish season (Figures 2–4). Detection was observed in 22.2%
of the technical replicates from positive sample sites, and eDNA copies L−1 ranged from
18.8 to 134.8 copies L−1 (Table S3). At the end of 2021 (December), at the beginning of the
next Australian box jellyfish season (2021/22), detection of eDNA was confined to sites
with freshwater inflow in both Horseshoe and Maud Bays (Figure 5). Thus, only two sites
had positive detections during that sampling time with eDNA copies L−1 ranging from
22.5 to 33.5 copies L−1 (Table S3). All controls again verified the lack of contamination and
method success for both sampling times.
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Coasts 2024, 4 204

Coasts 2024, 4, FOR PEER REVIEW 7 
 

 

 

Figure 4. Bubble map plot displaying sampling sites within Horseshoe and Maud Bays with positive 

detections of Chironex fleckeri medusae, in March 2021. Bubbles indicate eDNA concentrations (cop-

ies L−1); colours are for visualisation purposes only. 

 

Figure 5. Bubble map plot displaying sampling sites within Horseshoe and Maud Bays with positive 

detections of Chironex fleckeri medusae, in December 2021. Bubbles indicate eDNA concentrations 

(copies L−1); colours are for visualisation purposes only. 

Stratification of the water column is known to restrict eDNA dispersal within the 

water column [38,39]. However, CTD profiles did not detect any stratification of the water 

column in temperature or salinity at all sites ranging in depths from 0.4 to 13 m (Figures 

S4 and S5). Temperatures and salinities were consistent throughout the study area for each 

sampling period (March 2021; 27.2–29.6 °C and 31.4–32.9 ppt, December 2021; 30–30.7 °C 

and 35.2–35.5 ppt). It should be noted, however, that nearshore waters in March 2021 were 

2 °C higher than all other sites.  

3.3. Detection and Distribution of Chironex fleckeri Polyps 

3.3.1. Bay Wide Sampling Design for Chironex fleckeri Polyps 

Chironex fleckeri eDNA was positively detected within Horseshoe Bay outside of the 

established medusae season (Figure 6). The detections, therefore, could only be a@ributed 

to the presence of the species’ benthic polyp stage, as no medusae were reported to be 

present during that sampling period and medusae are not usually found at this time of 

the year. Positive detections were only found near the freshwater inflow within Horseshoe 

Bay and along the eastern side of the bay. eDNA copies L−1 ranged from 62.5 to 63.5 copies 

L−1 (Table S4). All controls provided assurance of contamination-free conditions and 

method success.  

Figure 5. Bubble map plot displaying sampling sites within Horseshoe and Maud Bays with positive
detections of Chironex fleckeri medusae, in December 2021. Bubbles indicate eDNA concentrations
(copies L−1); colours are for visualisation purposes only.

Stratification of the water column is known to restrict eDNA dispersal within the water
column [38,39]. However, CTD profiles did not detect any stratification of the water column
in temperature or salinity at all sites ranging in depths from 0.4 to 13 m (Figures S4 and S5).
Temperatures and salinities were consistent throughout the study area for each sampling
period (March 2021; 27.2–29.6 ◦C and 31.4–32.9 ppt, December 2021; 30–30.7 ◦C and 35.2–
35.5 ppt). It should be noted, however, that nearshore waters in March 2021 were 2 ◦C
higher than all other sites.

3.3. Detection and Distribution of Chironex fleckeri Polyps
3.3.1. Bay Wide Sampling Design for Chironex fleckeri Polyps

Chironex fleckeri eDNA was positively detected within Horseshoe Bay outside of
the established medusae season (Figure 6). The detections, therefore, could only be at-
tributed to the presence of the species’ benthic polyp stage, as no medusae were reported
to be present during that sampling period and medusae are not usually found at this
time of the year. Positive detections were only found near the freshwater inflow within
Horseshoe Bay and along the eastern side of the bay. eDNA copies L−1 ranged from
62.5 to 63.5 copies L−1 (Table S4). All controls provided assurance of contamination-free
conditions and method success.
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colours are for visualisation purposes only.

3.3.2. Targeted Sampling to Determine Chironex fleckeri Polyp Hotspots

The targeted sampling design only detected Chironex fleckeri eDNA at sites with
freshwater inflows within Horseshoe and Maud Bays (Figure 7). These detections were
outside of the established medusae season and therefore could only be attributed to the
presence of benthic polyps. Additionally, there were no reports of medusae being present
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during that sampling period, and none were caught in our beach seines. eDNA copies
ranged from 73.6 to 82.3 copies L−1 (Table S5), and positive detection was observed in
12.5% of technical replicates from positive sample sites. All controls ensured the absence of
contamination and validated the success of the applied methods.

Coasts 2024, 4, FOR PEER REVIEW 8 
 

 

 

Figure 6. Bubble map plot displaying sampling sites within Horseshoe and Maud Bays with positive 

detections of Chironex fleckeri polyps, in July 2020. Bubbles indicate eDNA concentrations (copies 

L−1); colours are for visualisation purposes only. 

3.3.2. Targeted Sampling to Determine Chironex fleckeri Polyp Hotspots 

The targeted sampling design only detected Chironex fleckeri eDNA at sites with 

freshwater inflows within Horseshoe and Maud Bays (Figure 7). These detections were 

outside of the established medusae season and therefore could only be a@ributed to the 

presence of benthic polyps. Additionally, there were no reports of medusae being present 

during that sampling period, and none were caught in our beach seines. eDNA copies 

ranged from 73.6 to 82.3 copies L−1 (Table S5), and positive detection was observed in 12.5% 

of technical replicates from positive sample sites. All controls ensured the absence of con-

tamination and validated the success of the applied methods.  

 

Figure 7. Bubble map plot displaying sampling sites within Horseshoe and Maud Bays with positive 

detections of Chironex fleckeri polyps, in July 2022. Bubbles indicate eDNA concentrations (copies 

L−1); colours are for visualisation purposes only. 

CTD profiles did not reveal any stratification of the water column in terms of tem-

perature or salinity in shallow water. Variation in temperature was found to occur be-

tween inshore and offshore sites, with highest temperatures being recorded nearshore. 

Temperatures and salinities were 20–22.7 °C and 31.5–34.4 ppt within Horseshoe and 

Maud Bays. Salinities were, however, found to decrease considerably when moving fur-

ther within Horseshoe Bay’s freshwater inflow (34.1–2.5 ppt) (Table S5). Further, salinities 

were observed to fluctuate (±3.7 ppt) midway along this freshwater inflow. This lower 

salinity may have been resultant from rainfall occurring two weeks prior to sampling, 

resulting in a recent mixing of freshwater with saltwater.  

Figure 7. Bubble map plot displaying sampling sites within Horseshoe and Maud Bays with positive
detections of Chironex fleckeri polyps, in July 2022. Bubbles indicate eDNA concentrations (copies L−1);
colours are for visualisation purposes only.

CTD profiles did not reveal any stratification of the water column in terms of temper-
ature or salinity in shallow water. Variation in temperature was found to occur between
inshore and offshore sites, with highest temperatures being recorded nearshore. Tempera-
tures and salinities were 20–22.7 ◦C and 31.5–34.4 ppt within Horseshoe and Maud Bays.
Salinities were, however, found to decrease considerably when moving further within
Horseshoe Bay’s freshwater inflow (34.1–2.5 ppt) (Table S5). Further, salinities were ob-
served to fluctuate (±3.7 ppt) midway along this freshwater inflow. This lower salinity
may have been resultant from rainfall occurring two weeks prior to sampling, resulting in
a recent mixing of freshwater with saltwater.

3.4. Detection of Chironex fleckeri near Shore at All Times

There were consistent spatial patterns of eDNA detection across times (Figure 8). Within
Horseshoe Bay’s freshwater inflow, eDNA was detected at all sampling times (site 6). This
detection must be due to the presence of both medusae and polyp life history stages. Similarly,
Chironex fleckeri eDNA was detected in Maud Bay and near a freshwater inflow (site 23) at all
but one sampling time. Regarding nearshore sample sites within Horseshoe Bay, to the west
of site 5, detection was only found during the medusae season (sites 16 and 19).
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4. Discussion
4.1. Distribution of Chironex fleckeri Medusae

During the Australian box jellyfish season, Chironex fleckeri medusae were consis-
tently detected nearshore and not in waters that were hundreds of meters to kilometres
from shore. This eDNA detection aligned with Brown’s [32] observations on C. fleckeri
medusae distributions surrounding Magnetic Island and with previous studies indicating
nearshore distributions of C. fleckeri [22,32–34]. This finding was predicted based on previ-
ous studies [22,32–34]; however, eDNA’s use for exploring C. fleckeri distributions have only
been undertaken in semi-enclosed waters rather than open coastal waters. eDNA, being a
passive particle, can be influenced by oceanographic processes [38,50–54], such as transport
by currents [50] and isolation from surface waters due to water column stratification [38].
However, in this study, despite daily persistence of C. fleckeri eDNA (99% decay within
27 h) [29], the dispersion of eDNA appeared to be limited. Water is known to ebb out of
Horseshoe Bay along both sides of the bay (J. A. Schlaefer, E. Wolanski and M. J. Kingsford,
unpublished data); however, no detection was ever found at mid- and offshore sites along
these currents. Furthermore, no stratification was observed in mid- and offshore water
columns that could have potentially isolated eDNA below a pycnocline [38]. It was also
clear that despite 32 replicate samples being taken at samples sites that were hundreds
of meters to kilometres from shore, C. fleckeri eDNA was never detected. The combined
evidence, therefore, suggested restricted C. fleckeri eDNA dispersal, and the absence of
C. fleckeri at mid- and offshore sites. To validate this further, biophysical modelling of
eDNA dispersion may be employed [55,56]. Additionally, because we employed a highly
specific and sensitive detection assay, best practice control measures and optimised tech-
niques for elusive species detections that ensure precision, we are confident in the accuracy
of our findings [29]. Thus, eDNA has successfully identified the nearshore distribution
of the taxa for the area, further highlighting the ability of eDNA to expose elusive taxa
distributions [57–59].

Studying medusae detection throughout the 2020/2021 Australian box jellyfish season
may offer insights into the species’ movements. In December, C. fleckeri was solely detected
in Horseshoe Bay. However, in February and March, C. fleckeri was additionally detected
in neighbouring Maud Bay, suggesting potential movement. This aligns with Brown’s
observations [32] that initially, C. fleckeri medusae were only present in Horseshoe Bay but
later appeared in adjacent bays as large medusae. Brown [32] proposed this movement may
be due to strong northerly winds causing medusae to seek calmer waters. However, we con-
sistently found nearshore detections at multiple sampling times, so more data are required
on movements as there are few data on the movements of cubomedusae [11,37,60,61].

Persistent medusa eDNA detection was observed in the freshwater inflow of Horse-
shoe Bay during summer months. This may be a result of polyps being putatively present
in that area (see Section 4.2), as they are the source of medusae. Alternatively, or perhaps in
combination, medusae may opt to remain in areas with higher/appropriate prey abundance
to minimise energy expenditure [62]. Mangrove habitats are known for harbouring a higher
abundance of post larval, juvenile and small adult fish, along with juvenile crustaceans,
which serve as common medusa prey [63,64]. However, medusae were clearly venturing
to nearshore waters without mangroves where perhaps prey are still available. The de-
tection of C. fleckeri eDNA in Maud Bay may be due to a combination of some leakage of
medusae from Horseshoe Bay, as suggested by Brown [32], and/or recruitment from a local
source of polyps.

4.2. Detection of Chironex fleckeri Polyps

Outside of the Australian medusae box jellyfish season, Chironex fleckeri eDNA was
detected. Since C. fleckeri medusae are absent from waters during winter months due
to their seasonality [11,34,36,65], confirmed via SLSQ for Magnetic Island (no detection
or reported stings), these detections must arise from benthic polyp life history stages.
Additionally, detections were of a lower frequency in comparison to those during summer
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months when medusae were present. Polyps of multiple scyphozoan jellyfish species have
been observed to have restricted distributions, such as Cyanea sp. within the Niantic River,
USA [66] and Aurelia aurita within Mikawa Bay, Japan [67]. C. fleckeri polyps likely follow
suit, which subsequently explains the lower frequency and restricted eDNA detection of
C. fleckeri found during winter months. Further, the reliability and confidence in these
detections were ensured through the use of a [29] highly sensitive and specific C. fleckeri
detection assay and the use of eDNA methods optimised for elusive species [29]. This
study reinforces the validity of the eDNA technique to detect the putative presence of
C. fleckeri polyps [28].

During the first sampling time within the Austral winter (July 2020), C. fleckeri polyps
were putatively detected in Horseshoe Bay’s freshwater inflow and along the eastern side
of the bay. Later, in July 2022, C. fleckeri polyps were detected within the freshwater inflows
of both Horseshoe and Maud Bays. As suggested in a previous study undertaken by the
authors [28], rocky substrata is likely a suitable habitat for cubozoan polyps, and medusae
‘hotspots’ may be good indicators of their presence. All sites where polyps were detected
have rocky substrata, with Horseshoe and Maud Bays’ freshwater inflows containing
mangroves and granite boulders, and the eastern side of Horseshoe Bay containing granite
boulders, coral reef, and coral rubble. These detections subsequently aligned with the study
of Morrissey et al. [28] where polyp habitat was identified. Additionally, polyp presence
within Horseshoe Bay’s freshwater inflow was unsurprising as it consistently showed
medusa presence in summer months. This subsequently aligned with Morrissey et al.’s [28]
suggestion of medusae ‘hotspots’ being good indicators of polyp presence. These findings
additionally provide support to Brown’s [32] hypothesis surrounding Horseshoe Bay being
a source location of C. fleckeri.

As cubozoan polyps are difficult to find in their natural environment, resulting from
their tiny size, eDNA provides the most efficient technique for their detection [27–29].
Subsequently, the technique opens the door to studying this life history stage and the filling
of critical knowledge gaps surrounding C. fleckeri’s ecology [11,28]. As previously sug-
gested [28], environmental RNA (eRNA), which may enable a finer resolution of detection
due to its rapid decay [68], may assist physical in situ locating of C. fleckeri polyps. Recent
advancements in this technique, however, may completely remove this need. Parsley and
Goldberg [69] successfully utilised the technique to distinguish between amphibian life
history stages. Hence, eRNA, in addition to the known seasonality of medusae [11,34,36,65]
and lack of their presence during winter months, would undoubtably confirm detections of
C. fleckeri polyps. The authors hence suggest exploration of this application for cubozoan
and scyphozoan jellyfish, whose medusa stage is not seasonal.

4.3. Evaluating Distributions of Chironex fleckeri Medusae and Polyps for Informed Stock
Boundary Assessment and the Generality of eDNA for This Application

Through utilising eDNA to detect both Chironex fleckeri medusae and polyp life history
stages, we gain insights into the spatial extent of C. fleckeri’s population for the area.
Polyps, as they are the benthic source of medusae [11,19], likely play a key role in the
spatial boundaries of the species population stocks [17]. Studies exploring the role of
scyphozoan polyps in determining the abundance and distributions of medusae have
reported a strong relationship between the distribution of both life history stages [66,67,70].
Further, as cubozoans are gonochoristic [71], with C. fleckeri medusae undertaking external
fertilisation [72], medusae need to be in close proximity to each other and in areas of
suitable habitat and environmental conditions for polyps. Increasing evidence suggests
that some cubozoan jellyfish, including C. fleckeri, have population stocks of small spatial
scales, to the extent of bays and estuaries; however, polyp locations have largely not been
considered or were impossible to detect [17]. As polyps have been putatively detected
within this study, it allows for an exploration into potential population stock boundaries of
C. fleckeri for the study area.
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C. fleckeri medusae were exclusively detected nearshore in Horseshoe and Maud Bays,
highlighting their nearshore distribution. Additionally, the benthic polyp stage of the
species was consistently detected within Horseshoe Bay and once within Maud Bay. As
polyps are the source of medusae, and as medusae were found to reside within these bays
across the Australian box jellyfish season, it is reasonable to infer that the northern side
of Magnetic Island likely represents a population stock of the jellyfish. This is supported
by the lack of C. fleckeri captures by SLSQ in bays located on the south side of the island
(pers. comms. SLSQ) and aligns with Brown’s [32] observations on C. fleckeri medusae
distributions surrounding the island. This suggestion additionally aligns with evidence
from other sources [22,23,26,62].

A biophysical modelling and jellyfish behaviour study, undertaken by Schlaefer [26],
found C. fleckeri medusae to have strong swimming behaviour and an orientation to
nearshore environments. Additionally, Gordon and Seymour [62], via the use of acoustic
telemetry, observed multiple C. fleckeri medusae (n = 11) to not venture far from initial
tagging locations, covering hundreds of metres to a few kilometres over an average duration
of ~15 h. These studies findings suggest limited dispersal of C. fleckeri medusae, with
them staying close to home, and subsequently align with evidence presented within this
study. Further, Mooney and Kingsford [22,23] examined both the elemental chemistry and
morphometrics of C. fleckeri statoliths to investigate the structure and scale of the species
population units. An examination of C. fleckeri statolith morphometrics revealed variations
between sites separated by dozens of kilometres [23]. An examination of statolith elemental
chemistry revealed distinct variations between individuals located within Horseshoe Bay
and mainland Townsville, located ~10 km away [22]. Mooney and Kingsford’s [22,23]
findings subsequently suggested spatially small population units of C. fleckeri and provided
additional support to the northern side of Magnetic Island representing a population stock
of C. fleckeri. To validate this notion, examining the genetics of individuals in Horseshoe
Bay and the nearby mainland (~10 km away) would be valuable. Furthermore, since eDNA
has been successfully utilised as a population genetics tool [73–75], the use of both eDNA
and eRNA may enable the linking of medusae to detected polyps, thereby confirming
their origin. Leveraging genetic detection techniques for this use would significantly
contribute to our understanding of cubozoan jellyfish distributions, population structures,
and potential movements.

Prior to this study, eDNA was utilised to investigate a hypothesis surrounding a semi-
enclosed estuarine system representing a population stock of C. fleckeri [28]. The genetic
detection technique proved successful, providing evidence to support the hypothesis.
However, favourable currents, medusae swimming behaviour, and presence of polyps
within the estuary likely favour the retention of the jellyfish in that system. In contrast,
eDNA, in this current study, was utilised to inform C. fleckeri stock boundaries in an open
coastal environment, where oceanographic and geomorphic conditions were more likely to
facilitate dispersal of jellyfish rather than retention. Accordingly, based on the evidence
and discussion above, C. fleckeri population stocks appear common at small spatial scales,
in ecosystems of varying geomorphic and oceanographic conditions.

5. Conclusions

An in-depth understanding on cubozoan ecology is needed for effective mitigation
and management of their threat posed to both human health and enterprise [1,11]. This
study further demonstrated the ability of eDNA to investigate and fill critical knowledge
gaps surrounding cubozoan ecology. Chironex fleckeri medusae were exclusively detected
nearshore, with eDNA identifying their expected nearshore distribution despite potential
eDNA dispersal. Further, the genetic tool was again successful in detecting C. fleckeri’s
elusive benthic polyp stage. This finding concurred with a hypothesis suggesting that
Horseshoe Bay was an important source of medusae for Magnetic Island. Polyps were
consistently detected near freshwater inflows, and this aligned with a previous study where
polyp habitat was identified [28]. A comparison of these two life history stages added to
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existing evidence that the northern side of Magnetic Island is likely a robust population
stock of the jellyfish. This adds to growing evidence [17] suggesting that C. fleckeri have
population stocks of small spatial scales, in both semi-enclosed estuaries [26,28] and open
bays. Additionally, our study and other research have demonstrated that even in an
open coastal setting, medusae populations of C. fleckeri have a very restricted distribution
nearshore. Accordingly, eDNA offers a tool capable of testing ecological hypotheses and
filling critical knowledge gaps surrounding cubozoan ecology.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/coasts4010011/s1, Table S1: Species-specific Chironex fleckeri
and generic fish endogenous control assay information (adapted from Morrissey et al. (2022) [29]);
Table S2: eDNA sample collection sites with depth, depth-integrated temperature and salinity, number
of positive technical replicates, and eDNA concentrations (copies L−1) during the December 2020 and
February 2021 sampling periods; Table S3: eDNA sample collection sites with depth, depth-integrated
temperature and salinity, number of positive technical replicates, and eDNA concentrations (copies L−1)
during the March 2021 and December 2021 sampling periods. * indicates sites where data were
not collected; Table S4: eDNA sample collection sites with depth, depth-integrated temperature
and salinity, number of positive technical replicates, and eDNA concentrations (copies L−1) during
the July 2020 sampling period. Note, temperature and salinities were not measured during that
sampling period; Table S5: eDNA sample collection sites with depth, depth-integrated tempera-
ture and salinity, number of positive technical replicates, and eDNA concentrations (copies L−1)
during the December 2020 and July 2022 sampling periods. * indicates sites where data were not
collected; Figure S1: Labelled satellite image displaying the flora and landform of Horseshoe Bay,
Magnetic Island; Figure S2: Depth profiles of temperature and salinity at nearshore sample sites for
the December 2020 sampling time; Figure S3: Depth profiles of temperature and salinity at nearshore
sample sites for the February 2020 sampling time; Figure S4: Depth profiles of temperature and
salinity at offshore (sites 1 and 14), mid-shore (sites 3 and 15) and nearshore (sites 5 and 16) sample
sites for the March 2021 sampling time; Figure S5: Depth profiles of temperature and salinity at
offshore (sites 1 and 14), mid-shore (sites 3 and 15), and nearshore (sites 5 and 16) sample sites for the
December 2021 sampling time.
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