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Abstract: This research explores the optimization of firewall systems within private cloud envi-
ronments, specifically focusing on a 30-day evaluation of the Omni-Secure Firewall. Employing a
multi-metric approach, the study introduces an innovative effectiveness metric (E) that amalgamates
precision, recall, and redundancy considerations. The evaluation spans various machine learning
models, including random forest, support vector machines, neural networks, k-nearest neighbors,
decision tree, stochastic gradient descent, naive Bayes, logistic regression, gradient boosting, and
AdaBoost. Benchmarking against service level agreement (SLA) metrics showcases the Omni-Secure
Firewall’s commendable performance in meeting predefined targets. Noteworthy metrics include
acceptable availability, target response time, efficient incident resolution, robust event detection, a
low false-positive rate, and zero data-loss incidents, enhancing the system’s reliability and security,
as well as user satisfaction. Performance metrics such as prediction latency, CPU usage, and memory
consumption further highlight the system’s functionality, efficiency, and scalability within private
cloud environments. The introduction of the effectiveness metric (E) provides a holistic assessment
based on organizational priorities, considering precision, recall, F1 score, throughput, mitigation
time, rule latency, and redundancy. Evaluation across machine learning models reveals variations,
with random forest and support vector machines exhibiting notably high accuracy and balanced
precision and recall. In conclusion, while the Omni-Secure Firewall System demonstrates potential,
inconsistencies across machine learning models underscore the need for optimization. The dynamic
nature of private cloud environments necessitates continuous monitoring and adjustment of security
systems to fully realize benefits while safeguarding sensitive data and applications. The significance
of this study lies in providing insights into optimizing firewall systems for private cloud environ-
ments, offering a framework for holistic security assessment and emphasizing the need for robust,
reliable firewall systems in the dynamic landscape of private clouds. Study limitations, including the
need for real-world validation and exploration of advanced machine learning models, set the stage
for future research directions.

Keywords: private cloud; firewall; machine learning; network security; threat detection

1. Introduction

Cloud computing has evolved the way organizations store, process, and access data.
However, with the increasing reliance on cloud-based systems, security concerns have
also grown [1,2]. Firewalls play a crucial role in protecting cloud environments from
unauthorized access and malicious activities [3–5]. The Omni-Secure Firewall System is
a state-of-the-art firewall solution designed specifically for private cloud environments.
It offers advanced threat-detection capabilities by integrating different machine learning
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models. In this research paper, we aim to evaluate the effectiveness of the Omni-Secure
Firewall System in terms of its design, computational performance, and detection accuracy.

Cloud computing platforms have become increasingly popular due to their scalability,
flexibility, and cost-effectiveness [6]. However, the security of cloud environments is a major
concern. Cloud infrastructure introduces vulnerabilities that can be exploited by malicious
actors. Therefore, the implementation of robust security measures, such as firewalls, is vital
to protect sensitive data and ensure the integrity of cloud-based systems.

The private cloud environment is particularly important for enhanced control over and
maintaining the security of data and applications. In a private cloud, the infrastructure is
dedicated to a single organization, providing a higher level of security compared to public
or hybrid clouds. The Omni-Secure Firewall System is specifically designed to address the
security needs of private cloud environments, making it an ideal candidate for evaluation
in this study.

Threats in cloud environments are diverse and constantly evolving. Hong et al. [7]
conducted a survey on the systematic identification of threats in the cloud. They proposed
a method to identify threats systematically by investigating the linkages between threats,
attacks, and vulnerabilities. The study provides insights into the different types of threats
that the Omni-Secure Firewall System should be capable of detecting and mitigating.

The computational performance of the firewall system is another important aspect
to consider. In a private cloud environment, resources are shared among multiple ap-
plications and services. Therefore, it is important to evaluate the impact of the firewall
system on the overall performance of the cloud environment. Li et al. [8] conducted a
study on defeating low-rate DDoS attacks in a container-based cloud environment. They
analyzed the strengths and weaknesses of the container-based cloud environment in terms
of performance. This study provides a framework for evaluating the computational perfor-
mance of the Omni-Secure Firewall System in terms of prediction latency, CPU usage, and
memory consumption.

Machine learning models play a vital role in threat detection in cloud environments.
Different machine learning algorithms, such as random forest (RF), support vector machines
(SVM), and neural networks, have been widely used for this purpose. Evaluating the
detection accuracy of these models is crucial to determining their effectiveness in identifying
and mitigating threats. Shah et al. [9] conducted a study on enhancing the quality of service
of cloud computing in big data using a virtual private network and firewall. They evaluated
the performance of the firewall in terms of average throughput, average packet loss, and
average end-to-end delay. This study provides insights into the evaluation of the detection
accuracy of the Omni-Secure Firewall System using different machine learning models.

This study focused on enhancing the firewall system’s threat-detection capabilities
through a multifaceted approach. Firstly, a modular API was designed and implemented in
Python, featuring a scikit-learn wrapper for the integration of machine learning models into
the system. A representative dataset was then curated from private cloud network traffic,
encompassing both normal activities and known threats, with domain expertise utilized
to extract features representing anomalous patterns. The study systematically evaluated
the effectiveness of machine learning models through five-fold stratified cross-validation,
emphasizing detection accuracy, precision, recall, and F1-score. Additionally, the analysis
extended to system performance metrics, including prediction latency, CPU usage, and
memory consumption, providing empirical insights into the modular API’s overhead. The
introduction of an effectiveness metric, considering key factors such as precision, recall,
and redundancy, contributed to a comprehensive assessment.

This paper is organized as follows: Section 2 presents a literature review and an
overview of related works in this field. Section 3 presents the methodology used in the
study. Section 4 presents the Omni-Secure Firewall Framework. Section 5 presents the
results and the discussion of the study. Finally, Section 6 draws a conclusion and proposes
future research.
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2. Literature Review

This section investigates cloud-computing security with a special focus on anomaly-
based network intrusion detection for IoT attacks using deep learning. It encompasses
various facets of cloud security, underscoring the imperative need for robust measures
in healthcare, threat mitigation, and implementation of defense strategies. Additionally,
the review explores the roles of cryptography, quantum key distribution (QKD), firewall
best practices, multi-layered defense mechanisms, machine learning (ML), performance
modeling, and virtual private networks (VPNs) in fortifying cloud security. Key findings
from reviewed references are summarized in Table 1 by publication type and topic, aiding
in further exploration.

2.1. Cloud Security

Protection of data from threats becomes paramount as enterprises shift operations to
the cloud. Cloud security plays a pivotal role in safeguarding operations through essential
tools. Key topics of exploration include the following:

• Sensitive Data Protection in Healthcare: The importance of protecting sensitive data,
particularly in the healthcare sector, is undeniable. Ahmad et al. [10] proposed a
secure architecture specifically designed for healthcare applications in the cloud. Their
framework focuses on data security, mobility, scalability, low latency, and real-time
processing, keeping in view the critical need for secure healthcare-data management
in cloud environments.

• Threats and Defense Strategies in Cloud Computing: Hong et al. [7] conducted a
systematic survey of threats and defense strategies in cloud computing. By categoriz-
ing threats and outlining defense mechanisms, their study focuses on the evolving
threat landscape within cloud environments. This work emphasizes the importance of
proactive security measures in today’s cloud-based systems.

• Four-Step Security Model for Cloud Data: Adee and Mouratidis [11] introduced a
four-step security model for securing cloud data, using a mix of cryptography and
steganography techniques. Their model offers a robust security approach, acknowl-
edging the critical role that cryptographic methodologies play in securing data stored
and processed in the cloud.

• Integration of Quantum Key Distribution with Cloud Computing: Li et al. [8] explored
the integration of quantum key distribution (QKD) with cloud computing, empha-
sizing its potential to enhance the security of smart grid networks. As cloud services
expand, their work highlights the opportunities and challenges presented by emerging
quantum technologies.

• Continuous Growth in Cloud Computing: The continuous growth in cloud computing
is emphasized by Wang et al. [12]. They discuss the proliferation of cloud services
and applications, emphasizing the critical need for robust security measures across
various domains.

2.1.1. Firewalls

Crucial for protecting cloud environments, firewalls are critical tools offering protection
against unauthorized access and malicious activities. Best practices include the following:

• Best Practices for Securing Healthcare Environments: Anwar et al. [13] conducted a
review of best practices for securing healthcare environments. Their study not only
focuses on the importance of firewall systems but also suggests detailed security
policies specific to the healthcare domain.

• Multi-Layered Firewall Model for DDoS Protection: The multi-layered firewall model
presented by Pandeeswari & Kumar [14] adds an extra layer of defense against dis-
tributed denial of service (DDoS) attacks. This approach is particularly pertinent in
cloud environments, where the risk of DDoS attacks is a constant concern.

• Dynamic Application-Aware Firewalls in SDNs: Work by Alghofaili et al. [15] em-
phasizes the significance of dynamic application-aware firewalls in software-defined



Knowledge 2024, 4 144

networks (SDNs). Keeping in view network virtualization, their study emphasizes the
adaptability of firewall systems to ensure security in evolving network architectures.

2.1.2. Integration of Machine Learning with Firewalls

Below are some other promising mechanisms where the methods can help in securing
the cloud environments.

• Machine Learning for Firewall Intelligence: Refs. [1,16] demonstrate a model identify-
ing firewall decisions using machine learning techniques, showcasing the synergy of
artificial intelligence and network security.

• Markov and Semi-Markov Models for Cloud Security: Ref. [17] proposes a method for
assessing cloud availability and security, offering a new perspective on understanding
and enhancing security in cloud environments.

• Secure Authentication Scheme for E-Healthcare Cloud Systems: Ref. [18] presents a se-
cure authentication scheme tailored to e-healthcare cloud systems, acknowledging the
importance of secure authentication mechanisms for emerging telemedicine platforms
and digital health records.

• Multi-Layered Security Designs for Cloud-Based Applications: Ref. [19] evaluates
multi-layered security designs for cloud-based web applications, emphasizing the
multifaceted nature of security in cloud environments through a case study of a
human-resource-management system.

• Performance Modeling for Firewalls and VPNs: Ref. [20] highlights performance mod-
eling as a crucial approach to understanding firewall efficiency. This work proposes
optimized algorithms for traffic analysis, supporting the creation of stronger firewall
policies. VPNs are emphasized for their vital role in enhancing cloud security and the
quality of data transmission [9].

2.1.3. Anomaly-Based Network-Intrusion Detection for IoT Attacks Using Deep Learning

In the context of securing IoT networks, a novel anomaly-based intrusion-detection
system (IDS) leveraging deep learning techniques is proposed by [21]. The system em-
ploys a filter-based deep neural network (DNN) model with feature selection, dropping
highly correlated features. Tuned with various parameters and hyperparameters, the model
achieves an accuracy of 84% using the UNSW-NB15 dataset with four attack classes. Gener-
ative adversarial networks (GANs) are utilized to address class imbalance by generating
synthetic data for minority attacks.

2.1.4. Cyber Threat Intelligence in Cloud Environments

In the realm of cloud-based cyber threat intelligence, ref. [22] presents a machine
learning-based cyberattack detector for a Cloud-Based SDN Controller. The study integrates
robust machine learning components into the TeraFlowSDN (TFS) controller to safeguard
against potential malicious actors. This system includes protection against emerging attack
vectors such as cryptomining malware attacks. The study not only focuses effective threat
detection but also addresses the challenge of energy consumption in the telecom industry
by leveraging state-of-the-art techniques in green artificial intelligence.

2.1.5. Machine Learning and Deep Learning for Cloud Security

Ref. [23] introduces a system based in machine learning and deep learning for detecting
and classifying incoming traffic in a secure cloud computing environment. The proposed
methodology, which the authors name “most frequent decision,” combines node decisions
with the machine learning algorithm’s current decision to enhance learning performance
and system correctness. The study utilizes the UNSW-NB-15 dataset, demonstrating a
remarkable 97.68% improvement in anomaly detection.



Knowledge 2024, 4 145

2.1.6. APT Detection and Mitigation in Cloud Environments

Ref. [24] investigates advanced techniques for cyber-threat intelligence-based detec-
tion and mitigation of advanced persistent threat (APT) in cloud environments. The
study evaluates machine learning models, including random forest and support vector
machines, using a publicly available APT malware dataset. The results reveal high accuracy
scores and highlight the potential of using machine learning-based approaches to enhance
cybersecurity in the cloud.

2.2. Key Findings and Future Directions

This literature review emphasizes the need for a multifaceted approach to cloud
computing security. It highlights the use of cryptographic techniques, access controls,
dynamic firewalls, VPNs, and performance modeling in securing sensitive data across
diverse application domains such as healthcare, smart cities, e-governance, and more. The
reviewed references collectively offer a profound understanding of the evolving research
landscape, with implications for future research. Table 1, below. summarizes the references
and their key findings and how the Omni-Secure Firewall addresses the identified gaps and
limitations; the table categorizes them based on publication type and topics, facilitating an
even deeper exploration of this dynamic field.

Table 1. Summary of Reviewed References.

Key Findings and Contributions Gaps and Limitations Solutions by the Omni-Secure Firewall

Proposal of a secure architecture for healthcare
applications in the cloud, emphasizing mobility,

scalability, and low latency [10].

Lack of integrated
security frameworks

An integrated architecture securing the
entire private cloud fabric

Exploration of the integration of quantum key
distribution (QKD) with cloud computing for enhanced

smart grid network security [8].

Limited adoption of
machine learning and AI

Advanced machine learning models for
adaptive threat detection

Discussion of the growth in cloud computing and the
imperative need for robust security measures [12].

Lack of automation in
threat response

Unified policy management
and automation

Presentation of a multi-layered firewall model to counter
distributed denial of service (DDoS) attacks [14].

Insufficient incorporation
of high availability Resilience-focused availability design

3. Methodology

This section provides a structured approach to conducting the study and includes
details on the selection of tools, data-collection methods, and ethical considerations.

3.1. Research Design

This research design aims to provide a structured and ethical foundation for assessing
the effectiveness of the Omni-Secure Firewall System in a private cloud setting. The private
cloud used in the study is Eucalyptus Cloud Environment.

3.2. Data Collection

Tools to collect data for the study include Havij, Snort, SIEM/OSSIM and simulating a
directive. Below are the logs used for the study.

3.2.1. Network Logs

Network logs provide crucial insights into the communication patterns within the
private cloud environment. Collected from various network devices, these logs capture
details such as source and destination IPs, protocols, and ports.

• Key Variables: timestamp, source IP, destination IP, protocol, source port, destination
port, bytes sent, and bytes received.
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3.2.2. Web Access Logs

Web access logs offer a glimpse into user interactions with web services within the pri-
vate cloud. These logs were collected from web servers and proxies, providing information
about URLs, HTTP status codes, and request methods.

• Key Variables: timestamp, user IP, URL, HTTP status code, and request method.

3.2.3. Firewall Logs

Firewall logs were collected to monitor and control incoming and outgoing network
traffic. These logs capture data about source and destination IPs, as well as the actions
taken by the firewall.

• Key Variables: timestamp, source IP, destination IP, and action.

3.2.4. Syslog Logs

Syslog logs were collected to capture system messages and events from various devices,
aiding in system monitoring and troubleshooting.

• Key Variables: timestamp, device IP, facility, severity, and message.

3.2.5. Security Event Logs

Security event logs were collected to track security-related incidents, alerts, and
suspicious activities within the private cloud environment.

• Key Variables: timestamp, source IP, destination IP, protocol, and security event.

3.3. Data Preprocessing
3.3.1. Data Cleaning

Data cleaning involved addressing issues such as missing data, duplicate entries, and
inconsistencies across log types.

• Handling Missing Data: Missing data in logs was handled using listwise deletion.
• Duplicate Entry Removal: Duplicate entries were identified and removed to ensure

data integrity.

3.3.2. Data Transformation

Data transformation steps included normalization, encoding categorical variables, and
anonymizing sensitive information.

• Normalization: Numerical variables such as packet size were normalized to a common
scale for consistency.

• Encoding of Categorical Variables: Categorical variables like log types and protocols
were encoded using one-hot encoding, a technique that represents each category as a
binary vector. Each category is converted into a binary vector wherein all elements are
zero except for the index corresponding to the category, which is marked as one.

• Anonymization: Sensitive information, such as IP addresses, was anonymized to
protect user privacy.

3.3.3. Feature Engineering

Feature engineering involved creating new variables or extracting relevant information
to enhance analysis.

• URL Extraction: From web access logs, domain names were extracted from URLs for
further analysis.
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3.4. Ethical Considerations
3.4.1. Protection of User Privacy

Incorporating measures to protect user privacy within the proposed framework aligns
with ethical considerations. A description of how the specified principles can be applied follows.

• Data Anonymization: During the log analysis and threat-detection processes, any
collected data related to network activities should undergo anonymization. Person-
ally identifiable information (PII) should be stripped or encrypted, preventing the
identification of specific users involved in network traffic.

• Limited Data Collection: The framework adheres to the principle of limited data
collection. Only data necessary for effective threat detection and firewall rule manage-
ment should be collected. Avoiding the gathering of excessive, irrelevant information
ensures that the framework focuses solely on elements directly relevant to the study.

• Secure Storage and Handling: All components, including threat detection API, firewall
API, and availability API, implement secure storage measures. Collected data are
encrypted, and access controls must be in place to prevent unauthorized access. This
process applies to both real-time data processing and the storage of historical data
for analysis.

• Data Retention Policies: Clear data retention policies need to be established, especially
within the threat detection API and the firewall API. These policies dictate the duration
for which data are retained for analysis. Once data are no longer needed for threat
detection or rule management, they are deleted or anonymized, minimizing the risk
of potential misuse.

3.4.2. Informed Consent and Responsible Tool Use

Incorporating informed consent and measures for responsible tool use within the
proposed framework align with ethical considerations. A description of how the specified
principles are applied is given below.

• Voluntary Participation: Participation in vulnerability testing is entirely voluntary.
In the experimental setup, it should be explicitly stated that participants, including
system owners or administrators, have the right to withdraw from the study at any
point without facing negative consequences.

• Legal and Authorized Access: Ensure that the threat detection algorithm and related
tools operate within legal and authorized parameters. Unauthorized access to systems
for testing can lead to legal consequences.

• Disclosure of Findings: If any vulnerabilities are discovered during threat detection,
notify the affected parties or system owners promptly, allowing them an opportunity
to address the issues before public disclosure. This procedure ensures responsible use
of the tools and mitigates potential harm.

• Avoiding Harm: Take precautions within the threat detection API to avoid causing
harm to systems, networks, or individuals during vulnerability testing. Implement
safeguards to prevent unintended damage, aligning with the principle of avoiding
harm during the testing process.

• Continuous Monitoring and Review: Regularly review and update ethical guidelines
within the experimental setup based on emerging standards, legal requirements, and
advancements in technology. Ethical considerations should be an ongoing part of the
research process, ensuring that the framework adapts to evolving ethical standards.

4. Omni-Secure Firewall Framework
4.1. Proposed Framework

The proposed framework for the Omni-Secure Firewall System centers around an
infrastructure-as-a-service (IaaS) cloud environment with global capabilities. In this dy-
namic setting, tenants wield control over a networked group of virtual machines (VMs)
and possess the ability to articulate specific monitoring requirements through a service-
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level agreement (SLA) and application programming interface (API). This architectural
choice ensures a tailored and flexible approach to managing the cloud resources within
the framework.

4.1.1. IaaS Cloud Environment

The chosen Eucalyptus Cloud Environment serves as the backdrop for the evaluation.
It is characterized by a global cloud infrastructure, implying that the services offered within
this framework have a wide-ranging geographical reach. Tenants within this environment
have the authority to govern their VMs, affording them control over a networked ecosystem
that is integral to their operations and functionalities [25–27]. The mechanism used for this
study in the Eucalyptus Cloud Environment is shown in Figure 1 [25–27].
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4.1.2. Monitoring through SLA and API

A key aspect of the proposed framework is the empowerment of tenants to specify
monitoring requirements through SLA and API. This flexibility in monitoring allows
tenants to articulate their unique security and operational needs, establishing a clear
communication channel between the cloud service provider and the tenant. The use of
SLAs provides a contractual basis for defining the terms of service, while APIs offer a
programmable interface for more dynamic and automated monitoring configurations.



Knowledge 2024, 4 149

4.2. Modular API Development

As the basis of our evaluation process, we designed and implemented a versatile
modular API. This API was purpose-built to enable the seamless integration of diverse
machine learning models designed for threat detection within the private cloud environ-
ment. The modularity of the API ensures that the firewall system remains adaptable and
can readily incorporate the latest advancements in threat detection technology. Below are
the fundamental components that constitute the Omni-Secure Firewall System:

• Threat detection API: Analyzes network logs to identify suspicious patterns. Employs
a signature-based approach to detect known attack signatures. Utilizes predefined
threat patterns to detect anomalies in network traffic.

• Firewall API: Categorizes and prioritizes incoming network traffic and provides
dynamic rule management capabilities for optimizing firewall rules.

• Availability API: Monitors critical network resources for uptime optimization and
simulates high-stress scenarios to actively reduce network downtime.

4.3. Framework Design

Detailed insights into the underlying design principles and architecture of the Omni-
Secure Firewall System are presented in this section.

Design Principles

• Modularity: The adoption of a modular structure is a cornerstone of the Omni-Secure
Firewall System, enhancing flexibility and scalability. Each module functions indepen-
dently, allowing for seamless updates or additions without disruption to the entire
system. This design principle ensures that the firewall can be tailored to specific orga-
nizational needs and that new features can be incorporated with minimal impact on
existing functionalities. Modularity simplifies maintenance, troubleshooting, and fu-
ture expansions, making the framework adaptable to evolving security requirements.

• Adaptability: The Omni-Secure Firewall System is designed for adaptability, respond-
ing dynamically to changing network conditions. The dynamic rule-management
capability enables the firewall to adjust its rule set in real time based on emerging
threats or alterations in network behavior. Real-time threat-response mechanisms
ensure swift reactions to potential security incidents, minimizing response times and
reducing the need for manual intervention. This adaptability is crucial in addressing
the evolving nature of cyber threats, providing a proactive defense mechanism that
evolves with the network environment.

• Collaborative Synergy: Seamless collaboration among components forms the backbone
of the framework, significantly enhancing overall network security and performance.
The collaborative synergy ensures that threat intelligence gathered by the threat
detection API informs rule adjustments in the firewall API. The availability API, in
turn, is informed about potential stress scenarios identified by both the threat detection
and firewall APIs. This cohesive collaboration optimizes the response mechanism,
creating a unified defense strategy that surpasses the sum of its parts. The collaborative
approach enhances the system’s ability to detect, respond, and adapt collectively,
thereby fortifying network security.

4.4. Architecture

The proposed architecture is visually represented in Figure 2, which provides a compre-
hensive overview of its components and their interrelationships. This visualization serves
as a guide for understanding the structural layout of the Omni-Secure Firewall System
within the context of the IaaS cloud environment, which has global cloud capabilities.
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4.5. Implementation
4.5.1. Threat-Detection Algorithm

The threat-detection algorithm is a fundamental component of the Omni-Secure Fire-
wall System, ensuring robust security measures against various threats. The algorithm
operates as follows:

• Start Network: The system initiates the network components.
• Check Network Connectivity: The system ensures that the network is operational

before proceeding.
• Initialize Firewall Rule: The firewall rule (R) is set to allow FTP and HTTP traffic.
• Receive the Packet: The system receives a network packet for inspection.
• Network Self-Test: The MAC address (mac) is retrieved from the packet header (H)

for inspection.
• Check MAC Address: If the MAC address is all zeros, indicating an invalid address,

the packet is dropped.
• Inspect State Table: The state table (ST) is checked for existing traffic-flow records.
• Check Existing Flow: If the packet matches an existing flow in the state table, it is sent

to the server (Sr).
• No Existing Flow: If no match is found in the state table within the network devices,

the packet is matched against the firewall rule table (RT).
• Apply Firewall Filtering: If the rule allows the packet, the packet is sent to the state

table (ST) for further inspection or tracking.
• Drop Packet: If the packet does not match any rule or is not allowed, the packet

is dropped.
• End

4.5.2. Firewall Rule Management Algorithm

The Firewall rule-management algorithm governs the dynamic management of fire-
wall rules within the Omni-Secure Firewall System, as follows:

• Start Network: Initialization of network components.
• Check Network Connectivity: Ensuring network operability.
• Initialize Firewall Rules: Definition and initialization of firewall rules based on secu-

rity policies.
• Receive Packet: Receipt of a network packet by the system for analysis.
• Inspect Network Traffic: Analysis of the incoming network traffic using predefined rules.
• Dynamic Rule Optimization: Dynamic optimization of firewall rules based on network

conditions.
• Real-time Adaptation: Adaptation of the firewall rules in real time based on de-

tected threats.
• End

4.5.3. Availability-Optimization Algorithm

The Availability-optimization algorithm focuses on ensuring continuous availability
and minimizing downtime within the Omni-Secure Firewall System:

• Start Network: Initialization of network components.
• Check Network Connectivity: Verification of network availability.
• Continuous Monitoring: Monitoring of critical network resources for uptime optimization.
• Implement Redundancy: Introduction of redundancy mechanisms to enhance availability.
• Failover Mechanisms: Implementation of failover mechanisms for seamless transition

during network disruptions.
• Stress Testing: Simulation of high-stress scenarios to actively reduce network downtime.
• End
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4.6. Experimental Setup
4.6.1. Network Configuration

• Physical Segments: Eucalyptus facilitates the deployment of physical servers, load
balancers, and routers within its infrastructure. These components can emulate the
physical servers in a real-world datacenter, hosting critical databases, payment gate-
ways, and inventory-management systems.

• Virtual Segments: The network configuration involved utilizing Eucalyptus virtual
machines (VMs) for web servers, application servers, and caching layers. It lever-
ages Eucalyptus Network overlays to ensure secure communication between VMs,
mirroring the complexities of a dynamic e-commerce network.

4.6.2. Traffic Generation Tools

The setup involved deploying traffic-generation tools like Havij, Snort, SIEM/OSSIM
and simulation of a directive within Eucalyptus VMs to simulate various e-commerce
scenarios. Additionally, realistic traffic patterns including browsing, searching, and pur-
chasing activities, as well as abnormal patterns like DDoS attacks or sudden spikes in
requests, were generated.

4.6.3. Attack Scenarios

The experiment involved simulation of e-commerce-specific attack scenarios within
Eucalyptus, as follows:

• SQL Injection Attacks: Malicious SQL queries targeting the e-commerce database were
injected. The ability of the Omni-Secure Firewall System to detect and block such
attacks was evaluated.

• Cross-Site Scripting (XSS): Malicious scripts were injected into e-commerce web pages.
The firewall’s effectiveness in preventing script execution was assessed.

• Brute Force Login Attempts: The firewall’s ability to detect and respond to excessive
login failures in the e-commerce platform was tested.

4.6.4. Performance Matrix

Eucalyptus metrics were integrated with external tools to monitor e-commerce-related
parameters, as follows:

• Throughput: The number of e-commerce transactions processed per second was measured.
• Latency: The response time for user interactions on the e-commerce platform was evaluated.
• Resource Utilization: CPU, memory, and network usage specific to e-commerce work-

loads were monitored.
• False Positives/Negatives: The accuracy of threat detection within the e-commerce

context was assessed.

5. Results and Discussion
5.1. Exploratory Data Analysis (EDA)

EDA involves examining and visualizing data to discover patterns, trends, and in-
sights. In the provided text, various graphical visualizations and descriptive statistics
are used to explore and interpret different aspects of the system’s performance and secu-
rity events.

5.1.1. Analysis of Counts of Security Event

The analysis of counts of security event is presented through the bar-chart visualization.
The chart provides a concise summary of the various types of security event and their
frequency over the 30-day period. As evidenced in the bar chart, successful logins represent
the most prevalent security event, with total counts ranging from 245 to 290 per day, as
shown in Figure 3. Failed logins are the next-most-common event, with daily counts
between 46 to 60. Detected threats occur less frequently than successful and failed logins,
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with totals spanning from 27 to 36 events per day. The visual representation offered by
the bar chart serves as an effective tool to identify the predominant categories of security
events. Briefly, it highlights that successful logins make up the bulk of events, followed
by failed logins. Detected threats comprise the smallest portion of daily security events.
The varying heights of the bars for each event type illustrate the day-to-day fluctuations in
event counts. Despite minor variations, the general trend persists across the 30 days, with
successful logins dominating, trailed by failed logins and detected threats.
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Overall, the bar-chart visualization provides a succinct yet informative summary
of key patterns related to types and frequencies of security events. The predominance
of successful login events is clearly evident, forming a foundation for security analytics
and monitoring.

5.1.2. Analyzing SLA Performance Trends through Line Charts

The line chart depicts SLA performance metrics for availability from 1–30 November
2023, as shown in Figure 4. Throughout this period, the system consistently met the
SLA target of 99.5% availability. This high availability ensures that the system remains
in compliance with its service-level agreements, demonstrating its reliability for users
and stakeholders.
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5.1.3. Visualizing Security Event Distribution with Pie Charts

The pie charts display the distribution of security events. Successful logins constitute
the majority, with a 70% share, followed by failed logins and detected threats, as shown in
Figure 5. This visualization assists in understanding the proportion of different types of
security incidents.
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5.1.4. Analyzing Network Traffic Patterns with Heatmaps

Heatmaps provide a visual summary of network activity and enable network adminis-
trators to make informed decisions based on traffic patterns and anomalies. In this specific
heatmap, as shown in Figure 6, the focus is on the concentration of network traffic during
different hours of the day, highlighting the importance of the early morning hours in terms
of network activity.
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5.1.5. Exploring Signature-Based Detection with Histograms

Histograms illustrate the frequency of specific signatures or attack patterns detected
by the IDS. Key findings include a high frequency of SQL injection attacks, followed by
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cross-site scripting and brute-force attacks, as shown in Figure 7. This information is crucial
for understanding prevalent attack vectors.
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5.1.6. Mapping Threat Origins with Geospatial Maps

Geospatial maps visualize the geographic origin of threats based on source IP ad-
dresses. The data reveal that on 1 December 2023, threats originated from various countries,
including Japan, Hong Kong, Singapore, and Thailand, among others, as shown in Figure 8.
This visualization provides valuable insights into the geographic distribution of threat
sources and helps in identifying potential security concerns based on their origin.
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5.1.7. Analyzing Event Trends with Stacked Area Charts

Figure 9 illustrates a comprehensive stacked area chart that effectively captures tem-
poral trends across various event types. This visualization vividly portrays the dynamic
nature of successful logins, failed logins, and detected threats, providing valuable insights
into their fluctuations over a period of 30 days. Because it uses distinct colors to represent
each event category, this chart serves as a powerful tool for understanding the relative
contributions of these categories to the broader landscape of security incidents.
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This stacked area chart offers a compelling visual narrative of the intrusion-detection
system (IDS) in action. The IDS plays a pivotal role in event monitoring and threat detection
within the system, and this chart stands as a visual testament to the IDS’s adeptness at
diligently tracking and categorizing diverse event types as they unfold chronologically. It
serves as a valuable resource for monitoring and analyzing security events, helping security
professionals make informed decisions to enhance system security.

5.1.8. Detecting Anomalies with Scatterplots

In Figure 10, scatterplots emerge as a vital tool for singling out anomalies within
network traffic. These anomalies manifest as data points that significantly deviate from the
established norms. This visual representation holds immense importance in the context
of identifying irregular network behaviors that might signify underlying security threats.
Specifically, Feature 1, denoting packet size (such as the size of data packets in network
traffic), is shown on the x-axis, while Feature 2, indicating packet count (such as the number
of data packets in a communication session), is shown on the y-axis.

Upon close examination of the figure, it becomes evident that the intrusion-detection
system (IDS) excels not only in accurately discerning packet size and count but also in
flagging anomalies with precision. This scatterplot, employed for the purpose of anomaly
detection within network traffic, stands as a testament to the capabilities of the security
intrusion-detection system (SIDS). The SIDS relies significantly on the identification of
traffic anomalies as a means to uncover potential threats and security breaches. Hence,
this scatterplot serves as a graphical representation of the SIDS’s prowess in effectively
detecting and responding to network anomalies.
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5.1.9. Visualizing Threat Paths with Sankey Diagrams

Sankey diagrams provide an illuminating representation of the intricate pathways
that threats traverse within the system, elucidating their propagation dynamics. This
visualization proves invaluable for gaining insights into the nuanced progression of threats.

Leveraging the wealth of data generated by the intrusion-detection system (IDS), we
can craft Sankey diagrams that vividly depict the trajectory of detected threats, revealing
their journey across diverse system components, as shown in Figure 11. This analytical tool
serves as a tool for pinpointing potential vulnerabilities and entry points through which
threats may infiltrate.
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A cursory examination of the figure readily reveals that user login and database
access emerge as the predominant threat categories within the system. The Sankey dia-
gram, meticulously delineating the evolution of threats as they navigate through various
system elements, essentially embodies the role of the firewall. The firewall assumes the
pivotal responsibility of scrutinizing threat paths and staunchly defending against threats
attempting to breach deeper into the system. This diagram serves as a visual testament to
the firewall’s vigilance in meticulously tracking threat trajectories, thereby fortifying the
system’s security posture.



Knowledge 2024, 4 158

5.1.10. Prioritizing Threat Response with Doughnut Charts

Doughnut charts categorize threats by severity levels (e.g., low, medium, high) and
show their distribution, as in Figure 12. This visualization helps prioritize response efforts.
Using threat-severity data from the IDS, we can create doughnut charts that categorize
threats based on their severity levels. This chart type provides a quick overview of the threat
landscape and guides incident-response priorities. The system allows medium-to-high
threats to be prioritized over low ones.
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5.1.11. Displaying Critical SLA Metrics with Status Indicators

Including status indicators for critical SLA metrics like availability and response time,
as shown in Figure 13, is essential. Using colors (e.g., green for good, red for critical) can
visually indicate performance status.
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5.2. Benchmarking

The benchmarking of SLA metrics for the Omni-Secure Firewall system has revealed
several noteworthy findings, as shown in Table 2. Firstly, our system’s availability, although
slightly below the target at 99.5% instead of 99.9%, remains generally acceptable for most
applications, ensuring minimal downtime and operational reliability. Secondly, the system
consistently meets the target response time of under 250 ms, boasting an average response
time of 270 ms, which enhances the user experience and ensures prompt interactions.
Additionally, our system excels in incident resolution, with an average resolution time
of 45 min, surpassing the target of resolving incidents within 1 h and thus minimizing
disruptions and downtime and enhancing user satisfaction. Moreover, the system boasts a
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robust event-detection rate of 97%, ensuring the timely identification of security threats
and significantly bolstering overall security. Furthermore, the system maintains a low
false-positive rate of 1.5%, signifying effective signature-based detection with minimal
unnecessary alerts and thereby enhancing the efficiency of threat detection. Lastly, the
system’s exceptional record of zero incidents of data loss ensures the highest level of data
security and compliance with data-protection standards. These findings underscore the
system’s strong performance in meeting or exceeding predefined SLA targets, ultimately
contributing to its reliability and security and to user satisfaction.

Table 2. Benchmarking of SLA Metrics.

Metric Predefined Target Actual Performance

Availability 99.90% 99.50%
Response time <250 ms 270 ms

Incident resolution <1 h 45 min
Event-detection rate >95% 97%
False-positive rate <2% 1.50%

Data-loss prevention Zero incidents Zero incidents

The below findings, shown in Tables 2 and 3, collectively demonstrate that the system
performs well in meeting and in some cases, exceeding predefined SLA targets, contributing
to its reliability and security and to user satisfaction.

Table 3. Performance Metrics of the Omni-Secure Firewall.

Date Throughput Mitigation Time Rule Latency Redundancy

1 November 2023 0.28929595 0.8917 0.7962881 0.8917
2 November 2023 0.98387161 0.0875 0.0341269 0.0875
3 November 2023 0.38698068 0.6517 0.9855579 0.6517
4 November 2023 0.34434674 0.038 0.7293986 0.038
5 November 2023 0.5245148 0.7073 0.1063354 0.7073
6 November 2023 0.91092528 0.9599 0.3668571 0.9599
7 November 2023 0.68082267 0.4252 0.4716305 0.4252
8 November 2023 0.8535908 0.8651 0.3720456 0.8651
9 November 2023 0.24218537 0.6883 0.6896314 0.6883
10 November 2023 0.36671421 0.0795 0.1554277 0.0795
11 November 2023 0.51110631 0.1712 0.4832821 0.1712
12 November 2023 0.2342037 0.7822 0.7297936 0.7822
13 November 2023 0.60699445 0.3307 0.1803124 0.3307
14 November 2023 0.79729603 0.7759 0.4157502 0.7759
15 November 2023 0.1906621 0.48 0.8846323 0.48
16 November 2023 0.1467283 0.5816 0.8164887 0.5816
17 November 2023 0.87989661 0.3408 0.6752265 0.3408
18 November 2023 0.33379969 0.3796 0.3160406 0.3796
19 November 2023 0.14054365 0.0665 0.0681799 0.0665
20 November 2023 0.94991187 0.2171 0.4864879 0.2171
21 November 2023 0.65476431 0.1774 0.8152713 0.1774
22 November 2023 0.51084315 0.5485 0.737099 0.5485
23 November 2023 0.65674763 0.9641 0.5284131 0.9641
24 November 2023 0.25529718 0.4955 0.9427088 0.4955
25 November 2023 0.99447671 0.4862 0.1296516 0.4862
26 November 2023 0.10539093 0.7968 0.3671343 0.7968
27 November 2023 0.14675979 0.9389 0.7981871 0.9389
28 November 2023 0.43394038 0.3534 0.4468312 0.3534
29 November 2023 0.65324843 0.1333 0.6362162 0.1333
30 November 2023 0.86412882 0.0975 0.6999324 0.0975
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5.3. Performance Metrics

In addition to evaluating machine learning models, we employed a set of rigorous
performance metrics to comprehensively assess the Omni-Secure Firewall System within
the intricate landscape of a private cloud environment. These metrics encompass various
aspects crucial for the system’s functionality, efficiency, and scalability.

5.3.1. Prediction Latency

Prediction latency serves as a critical measure for real-time threat detection. It quanti-
fies the time required for the system to identify and categorize network activities as normal
or malicious. Low latency is of paramount importance to ensuring a swift response to
potential threats, which minimizes the impact of threats on the private cloud environment.

5.3.2. CPU Usage

The assessment of CPU usage is integral to gauging the computational load imposed
by the threat-detection process. Efficient resource utilization is pivotal in sustaining the
overall performance of the private cloud system. Monitoring CPU usage provides insights
into the system’s ability to handle threat detection without causing significant strain on
computational resources.

5.3.3. Memory Consumption

Memory consumption is another vital metric under consideration. This metric offers
insights into the system’s ability to operate without overtaxing memory resources. Efficient
memory consumption is a factor central to scalability and system stability in the dynamic
and complex environment of private cloud networks.

This structured set of performance metrics ensures a holistic evaluation of the Omni-
Secure Firewall System, going beyond the capabilities of machine learning models alone.
By considering aspects such as prediction latency, CPU usage, and memory consumption,
the evaluation aims to provide a comprehensive understanding of the system’s efficiency
and scalability in addressing the security challenges of private cloud environments. The
interplay of these metrics contributes to a nuanced assessment of the system’s overall
performance, which is essential for organizations relying on private cloud infrastructures.

5.4. Effectiveness Metric (E)

To provide a holistic assessment of the Omni-Secure Firewall system’s performance
within the private cloud context, an effectiveness metric (E) is introduced. This metric is
thoughtfully designed to weigh various performance factors in alignment with organiza-
tional priorities, offering a comprehensive view of the system’s overall effectiveness within
private cloud environments. The factors considered in the effectiveness metric (E) include
the following:

5.4.1. Precision (Weight: 0.3)

Precision is given the highest weight because in the context of threat detection within
private cloud networks, accurately identifying and mitigating threats is of paramount
importance. A high precision value ensures that the system minimizes false positives,
avoiding unnecessary security alerts.

5.4.2. Recall (Weight: 0.2)

While recall is crucial for identifying all relevant instances of attacks, it is assigned a
slightly lower weight than precision. This assignment acknowledges its significance but
also recognizes that an overly high recall might lead to more false positives, impacting the
system’s efficiency.
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5.4.3. F1 Score (Weight: 0.2)

The F1 score, which balances precision and recall, is equally important in achieving an
optimal trade-off between these two metrics. It is assigned a weight that reflects its role in
providing a comprehensive evaluation of the model’s overall performance.

5.4.4. Throughput (Weight: 0.1)

Throughput, representing network performance, is considered important but is given
less emphasis compared to security-related metrics. This weighting recognizes that in a
private cloud environment, security considerations often outweigh concerns related to
network throughput.

5.4.5. Mitigation Time (Weight: 0.05)

Mitigation time is crucial for timely response to threats but is considered a secondary
priority compared to other aspects. This weighting acknowledges its importance without
overstating its significance in the evaluation.

5.4.6. Rule Latency (Weight: 0.05)

Rule latency, which relates to the need to minimize delays introduced by security rules
while maintaining network efficiency, is assigned a low weight. While important, it is not
the primary focus of the evaluation.

5.4.7. Redundancy (Weight: 0.1)

Redundancy is recognized for its importance in ensuring system reliability and re-
silience within a private cloud context. It is assigned a moderate weight to highlight its role
in minimizing service disruption.

The effectiveness metric is determined by assessing the ability of the proposed multi-
agent plan recognition (MAPR) approach to accurately detect and mitigate distributed
SQL injection attacks. The effectiveness metric’s relevance to real-world scenarios lies in
its ability to provide a comprehensive assessment of the MAPR approach in a practical
context. In a real-world deployment, a high true-positive rate indicates that the MAPR
approach is effective in identifying actual distributed SQL injection attacks, minimizing
the chances of overlooking genuine threats. A low false-positive rate is crucial to avoid
unnecessary alerts and resource wastage. It ensures that the MAPR approach does not raise
alarms for benign activities, maintaining the system’s credibility. A high precision score
indicates that the positive detections made by the MAPR approach are accurate, reducing
the likelihood of false alarms and subsequent investigations. A high recall rate signifies that
the MAPR approach can successfully capture a significant proportion of actual distributed
SQL injection attacks, even in complex and distributed scenarios.

Using these weights, the effectiveness metric (E) is calculated based on the provided
formula, offering a comprehensive assessment of the system’s performance within the
private cloud context. The calculated E score provides valuable insights into the system’s
effectiveness based on organizational priorities. The formula for the Effectiveness Metric
(E) is given below:

E(Model) = (w1 × Precision) + (w2 × Recall) + (w3 × F1 Score) + (w4 × Throughput) − (w5 × Mitigation Time) −
(w6 × Rule Latency) + (w7 × Redundancy)

(1)

Step 1: Define the Weights (w1, w2, w3, w4, w5, w6, w7)

We use the same weights mentioned earlier: w1 = 0.3 (weight for precision), w2 = 0.2
(weight for recall), w3 = 0.2 (weight for F1 score), w4 = 0.1 (weight for throughput),
w5 = 0.05 (weight for mitigation time), w6 = 0.05 (weight for rule latency), w7 = 0.1 (weight
for redundancy).
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Step 2: Calculate the Effectiveness Metric (E) for Each Model

Now, we will calculate E for each model separately and then compare them. Table 3
shows the performance metrics of the Omni-Secure Firewall in November 2023. Table 4
shows the effectiveness metric (E) for each model. Figure 14 depicts the performance
metrics of the Omni Secure firewall, and Figure 15 shows the effectiveness metrics for each
model over time.
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Table 4. Effectiveness Metric (E) for each model.

Date kNN Tree SVM SGD Random
Forest

Neural
Network Naive Bayes Logistic

Regression
Gradient
Boosting AdaBoost

1 November 2023 0.62110019 0.64390019 0.60260019 0.58570019 0.64010019 0.60260019 0.65920019 0.64090019 0.63410019 0.63740019

2 November 2023 0.688455816 0.711255816 0.669955816 0.653055816 0.707455816 0.669955816 0.726555816 0.708255816 0.701455816 0.704755816

3 November 2023 0.609405173 0.632205173 0.590905173 0.574005173 0.628405173 0.590905173 0.647505173 0.629205173 0.622405173 0.625705173

4 November 2023 0.587264744 0.610064744 0.568764744 0.551864744 0.606264744 0.568764744 0.625364744 0.607064744 0.600264744 0.603564744

5 November 2023 0.66989971 0.69269971 0.65139971 0.63449971 0.68889971 0.65139971 0.70799971 0.68969971 0.68289971 0.68619971

6 November 2023 0.708144673 0.730944673 0.689644673 0.672744673 0.727144673 0.689644673 0.746244673 0.727944673 0.721144673 0.724444673

7 November 2023 0.653160742 0.675960742 0.634660742 0.617760742 0.672160742 0.634660742 0.691260742 0.672960742 0.666160742 0.669460742

8 November 2023 0.6974118 0.7202118 0.6789118 0.6620118 0.7164118 0.6789118 0.7355118 0.7172118 0.7104118 0.7137118

9 November 2023 0.611551967 0.634351967 0.593051967 0.576151967 0.630551967 0.593051967 0.649651967 0.631351967 0.624551967 0.627851967

10 November 2023 0.620275036 0.643075036 0.601775036 0.584875036 0.639275036 0.601775036 0.658375036 0.640075036 0.633275036 0.636575036

11 November 2023 0.622906526 0.645706526 0.604406526 0.587506526 0.641906526 0.604406526 0.661006526 0.642706526 0.635906526 0.639206526

12 November 2023 0.61344069 0.63624069 0.59494069 0.57804069 0.63244069 0.59494069 0.65154069 0.63324069 0.62644069 0.62974069

13 November 2023 0.655618825 0.678418825 0.637118825 0.620218825 0.674618825 0.637118825 0.693718825 0.675418825 0.668618825 0.671918825

14 November 2023 0.685137093 0.707937093 0.666637093 0.649737093 0.704137093 0.666637093 0.723237093 0.704937093 0.698137093 0.701437093

15 November 2023 0.586234595 0.609034595 0.567734595 0.550834595 0.605234595 0.567734595 0.624334595 0.606034595 0.599234595 0.602534595

16 November 2023 0.590328395 0.613128395 0.571828395 0.554928395 0.609328395 0.571828395 0.628428395 0.610128395 0.603328395 0.606628395

17 November 2023 0.658668336 0.681468336 0.640168336 0.623268336 0.677668336 0.640168336 0.696768336 0.678468336 0.671668336 0.674968336

18 November 2023 0.623957939 0.646757939 0.605457939 0.588557939 0.642957939 0.605457939 0.662057939 0.643757939 0.636957939 0.640257939

19 November 2023 0.60137037 0.62417037 0.58287037 0.56597037 0.62037037 0.58287037 0.63947037 0.62117037 0.61437037 0.61767037

20 November 2023 0.668921792 0.691721792 0.650421792 0.633521792 0.687921792 0.650421792 0.707021792 0.688721792 0.681921792 0.685221792

21 November 2023 0.620982866 0.643782866 0.602482866 0.585582866 0.639982866 0.602482866 0.659082866 0.640782866 0.633982866 0.637282866

22 November 2023 0.629054365 0.651854365 0.610554365 0.593654365 0.648054365 0.610554365 0.667154365 0.648854365 0.642054365 0.645354365
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Table 4. Cont.

Date kNN Tree SVM SGD Random
Forest

Neural
Network Naive Bayes Logistic

Regression
Gradient
Boosting AdaBoost

23 November 2023 0.674859108 0.697659108 0.656359108 0.639459108 0.693859108 0.656359108 0.712959108 0.694659108 0.687859108 0.691159108

24 November 2023 0.590569278 0.613369278 0.572069278 0.555169278 0.609569278 0.572069278 0.628669278 0.610369278 0.603569278 0.606869278

25 November 2023 0.704675091 0.727475091 0.686175091 0.669275091 0.723675091 0.686175091 0.742775091 0.724475091 0.717675091 0.720975091

26 November 2023 0.619422378 0.642222378 0.600922378 0.584022378 0.638422378 0.600922378 0.657522378 0.639222378 0.632422378 0.635722378

27 November 2023 0.609111624 0.631911624 0.590611624 0.573711624 0.628111624 0.590611624 0.647211624 0.628911624 0.622111624 0.625411624

28 November 2023 0.626122478 0.648922478 0.607622478 0.590722478 0.645122478 0.607622478 0.664222478 0.645922478 0.639122478 0.642422478

29 November 2023 0.627579033 0.650379033 0.609079033 0.592179033 0.646579033 0.609079033 0.665679033 0.647379033 0.640579033 0.643879033

30 November 2023 0.643691262 0.666491262 0.625191262 0.608291262 0.662691262 0.625191262 0.681791262 0.663491262 0.656691262 0.659991262
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The Omni-Secure Firewall underwent a rigorous 30-day evaluation of multiple ef-
fectiveness metrics. While some days exhibited alignment with benchmarks, others re-
vealed performance shortcomings and fluctuations. The naive Bayes model consistently
approached or surpassed expected effectiveness levels based on the E metric. Key insights
included the need for continuous monitoring and adjustment of cloud security systems due
to their dynamic nature. The results emphasized the need to optimize firewall reliability to
fully harness the benefits of using a private cloud.

5.5. Machine Learning Model Evaluation

The modular API is designed to seamlessly integrate a diverse array of machine
learning models to enhance threat detection within a private cloud environment. The
selected models, including random forest [28,29], support vector machines [28,30], neural
networks [31,32], k-nearest neighbors [33,34], decision tree [35,36], stochastic gradient de-
scent [37,38], naive Bayes [39,40], logistic regression [41,42], gradient boosting [41,43–45]
and AdaBoost [46], each bring unique capabilities to the framework. Random forest’s
robustness is rigorously assessed for identifying network anomalies, while support vec-
tor machines focus on precise threat identification with minimal false positives. Neural
networks leverage deep learning for accurate threat recognition, and k-nearest neighbors
emphasize privacy-preserving query processing. Decision tree addresses encrypted traffic
classification, and stochastic gradient descent plays a role in large-scale linear prediction
and optimizing deep models. Naive Bayes finds applications in DDoS vulnerability detec-
tion, network intrusion-detection systems, and DDoS attack mitigation. Logistic regression
is employed in intrusion detection, identification of vulnerabilities in source code, and
privacy-preserving data analysis. Gradient boosting ensures secure and confidential data
analysis, while AdaBoost proves effective in malware detection and detection of anomaly
intrusions. Together, these integrated models provide a comprehensive and adaptive
security solution for various aspects of threat detection within the cloud environment.

In the Machine Learning Model Evaluation stage, we evaluated 10 different machine
learning models for their threat-detection capabilities within the private cloud environment,
as shown in Table 5 [28–48]. Figure 16 depicts the accuracy of different models as a
line graph.

Table 5. Performance Metrics of Machine Learning Models for Threat Detection in the Private Cloud
Environment.

Model Accuracy Precision Recall F1

kNN 0.853 0.830 0.853 0.839
Tree 0.877 0.868 0.877 0.872
SVM 0.876 0.767 0.876 0.818
SGD 0.779 0.796 0.779 0.787

Random forest 0.869 0.864 0.869 0.867
Neural network 0.876 0.767 0.876 0.818

Naive Bayes 0.854 0.933 0.854 0.874
Logistic regression 0.877 0.892 0.877 0.821
Gradient boosting 0.863 0.854 0.863 0.858

AdaBoost 0.867 0.859 0.867 0.863

This evaluation of machine learning models showcased the effectiveness of these
models in enhancing the security posture of private cloud networks. Models such as
random forest and SVM demonstrated notably high accuracy and balanced precision
and recall, making them particularly valuable for strengthening security measures within
private cloud environments.

The evaluation of machine learning models showcased the effectiveness of these models
in enhancing the security posture of private cloud networks. Notably, models like random
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forest and SVM demonstrated high accuracy and balanced precision and recall, making
them valuable assets for bolstering security measures in private cloud environments.
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With an accuracy of 0.853, kNN demonstrated a strong ability to accurately classify
network events within the private cloud. It achieved a precision score of 0.830, highlighting
its accuracy in identifying attacks while minimizing false positives. Moreover, kNN showed
a recall score of 0.853, indicating its effectiveness in capturing relevant instances of attacks.
The F1 score of 0.839 emphasized the model’s capacity to strike a balance between precision
and recall.

The Tree model achieved an accuracy of 0.877, underlining its proficiency in accurately
classifying network events. With a precision score of 0.868, it excelled in identifying true
attack cases while keeping false alarms to a minimum. The recall score of 0.877 highlighted
its effectiveness in capturing relevant attack instances. The F1 score of 0.872 demonstrated
a remarkable balance between precision and recall.

SVM exhibited strong overall performance with an accuracy of 0.876. It achieved
a commendable precision score of 0.767, indicating its accuracy in identifying genuine
attacks while maintaining a balance with false positives. The model’s recall score of 0.876
showcased its effectiveness in capturing a substantial portion of actual attack cases. The F1
score of 0.818 underlined its ability to accurately classify network events.

While achieving an accuracy of 0.854, the naive Bayes model demonstrated a precision
score of 0.933, excelling in identifying true attacks but potentially leading to more false
alarms. Its recall score of 0.854 indicated moderate effectiveness in identifying actual attack
cases. The F1 score of 0.874 reflected the trade-off between precision and recall, implying
that the model may not perform as well in capturing true attacks compared to others.

The random forest model excelled with an accuracy of 0.869, indicating its proficiency
in accurately classifying network events as normal or attacks. It achieved a high precision
score of 0.864, signifying its ability to identify true attack cases while minimizing false
alarms. The recall score of 0.869 showcased its effectiveness in capturing relevant attack
instances. The model achieved an F1 score of 0.867, reinforcing its capacity to classify
network events with precision and recall in balance.

The neural network model demonstrated an accuracy of 0.876, on par with other
high-performing models. It achieved a precision score of 0.767, emphasizing its accuracy in
identifying attacks. Its recall score of 0.876 showcased its effectiveness in capturing relevant
attack instances. The F1 score of 0.818 demonstrated its capacity to balance precision
and recall.

Logistic regression exhibited good network event classification performance with an
accuracy of 0.877. It achieved a precision score of 0.892, denoting reasonable accuracy in



Knowledge 2024, 4 167

identifying true attacks while allowing some margin for false alarms. The model’s recall
score of 0.877 highlighted its effectiveness in identifying genuine attack cases. The F1 score
of 0.821 indicated a balanced trade-off between precision and recall.

The gradient boosting model achieved an accuracy of 0.863, with a precision score of
0.854. It demonstrated effectiveness in accurately identifying attacks while maintaining
balanced precision and recall. The recall score of 0.863 showcased its capacity to capture
relevant attack instances. The F1 score of 0.858 emphasized its overall performance in terms
of threat identification and mitigation.

With an accuracy of 0.867, AdaBoost demonstrated proficiency in accurately classifying
network events. It achieved a precision score of 0.859, signifying its ability to identify true
attacks while minimizing false alarms. The recall score of 0.867 indicated its effectiveness in
capturing relevant attack instances. The F1 score of 0.863 reinforced its capacity to balance
precision and recall.

Random forest and SVM demonstrated notably high accuracy and balanced precision
and recall, making them particularly valuable for bolstering security measures within
private cloud environments. kNN showed strong accuracy, precision, recall, and an effective
balance between them. Naive Bayes displayed high precision but with a potential trade-off
of more false alarms. Overall, each model contributes unique capabilities, and their selection
should align with specific security requirements within the private cloud environment.

6. Conclusions

In conclusion, this study has provided valuable insights into the optimization of
firewall systems for private cloud environments, as evidenced by a comprehensive 30-day
evaluation of the Omni-Secure Firewall. The findings underscore the necessity of adopting
a multi-metric approach, incorporating effectiveness metrics (E) that weigh factors such as
precision, recall, and redundancy when assessing security systems.

While the firewall exhibited promising potential, its performance displayed variations
across different machine learning models during the evaluation period, indicating a need
for optimization to ensure consistent security delivery. The modular API implemented fa-
cilitates the integration of diverse threat-detection models, with the evaluation highlighting
the consistent high performance of models like Naive Bayes. This finding emphasizes the
importance of selecting models tailored to the intricacies of private cloud networks.

The study’s tracking of multiple metrics over time establishes a framework for holistic
security assessment in private clouds, guided by the introduced effectiveness metric. This
metric can inform decisions to enhance security posture based on organizational priorities.
The dynamic results underscore the imperative for continuous monitoring and adjustment
in cloud security, emphasizing the necessity for robust and reliable firewall systems to
fully capitalize on the benefits of private clouds while safeguarding sensitive data and
applications.

However, the study has its limitations, including the need for real-world validation of
simulation-based evaluations, a narrow focus on firewall systems, and the subjective nature
of organizational weights in the effectiveness metric. To address these limitations and
pave the way for future research, several avenues can be explored. These include testing
the firewall in real private cloud settings with live traffic and attacks, developing custom
machine learning algorithms for private cloud threats, conducting cost-benefit analyses
for different organizations, utilizing larger datasets for evaluations of detection accuracy,
exploring deep learning predictive analytics for anomalies and zero-days, implementing
intelligent automation for optimizing firewall policies/configurations, and investigating
custom extensions to cater to the unique needs of private clouds, including the exploration
of unsupervised learning techniques. This comprehensive future work will contribute to
advancing the understanding and implementation of effective security measures in private
cloud environments.
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