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Abstract: One of the major problems in classifying network attack tactics is the imbalanced nature of
data. Typical network datasets have an extremely high percentage of normal or benign traffic and
machine learners are skewed toward classes with more data; hence, attack data remain incorrectly
classified. This paper addresses the class imbalance problem using resampling techniques on a newly
created dataset, UWF-ZeekData22. This is the first dataset with tactic labels, labeled as per the MITRE
ATT&CK framework. This dataset contains about half benign data and half attack tactic data, but
specific tactics have a meager number of occurrences within the attack tactics. Our objective in this
paper was to use resampling techniques to classify two rare tactics, privilege escalation and credential
access, never before classified. The study also looks at the order of oversampling and undersampling.
Varying resampling ratios were used with oversampling techniques such as BSMOTE and SVM-
SMOTE and random undersampling without replacement was used. Based on the results, it can be
observed that the order of oversampling and undersampling matters and, in many cases, even an
oversampling ratio of 10% of the majority data is enough to obtain the best results.

Keywords: imbalanced data; network intrusion datasets; BSMOTE; SVM-SMOTE; random oversampling;
random undersampling; random forest classifier

1. Introduction

Digital technological advances have made life ever more convenient, but this boon
is not without its downsides. As much as it enables the purchase of a product from the
comfort of a home using a credit card, it carries the risk of the card information being stolen
by adversaries. Approximately 5.18 billion people worldwide use the internet daily, roughly
65% of the world’s population [1], and that count increases daily. Since the internet runs on
data exchanged between entities, there is a definite risk of hackers stealing information for
fraudulent purposes. In 2022, 44% of credit card users reported two or more fraudulent
charges [2]. Identity theft is also a cyberattack, leaving adults and children vulnerable.
In 2022, more than 915,000 children in the US were affected by identity theft [2]. Hence,
it is not only personal users but also organizations such as banks, government agencies,
telecommunication networks, armed forces, state elections, and even hospitals that have
come under cyberattack recently [3]. Cyberattacks cost individuals and organizations
significant revenues, reputation, public trust, legal issues, and possible ransom payments.
In its 2022 “Cost of a Data Breach” report, IBM stated that a data breach in the US costs
roughly double the global average [4]. Such ramifications have pushed companies to invest
in cyber security measures after they happen and prepare strategies for identification and
prevention before attacks happen.

Many cyberattacks start with exploring systems, such as open-access scanning for
vulnerabilities, before homing in on specific systems [5]. Our work focuses on classifying
network cyberattack tactics, which analyze how adversaries are planning an attack before
the attack happens. These tactics, defined per the MITRE Adversarial Tactics, Techniques,
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and Common Knowledge (ATT&CK) Framework [6], present the motives of the adversary
and are used to identify vulnerabilities in the system. To date, the MITRE ATT&CK
framework has 14 tactics and several techniques and sub-techniques belonging to one or
more tactics [6].

For classification, machine learning (ML) models are widely used [7]. However, the
major issue with using ML models is that attack tactics often form a tiny percentage of the
normal network traffic, making it extremely difficult to detect these scarce attack tactics
using ML models. For correct classification using ML models, there is a need for lots of
data. ML results are skewed to classes that have more data (majority classes) and correctly
classify classes that have more data [7–9], and oftentimes do not even detect classes that
have very few instances (minority classes or rare tactics) [9]. The objective of our work was
to identify these extremely rare tactics after applying different resampling techniques. The
resampling techniques undersample (or reduce) the majority class (the class with more
data) and oversample the minority class (the class with very less data) until the tactics
can be identified with predictable results. In relation to resampling, we also intended to
determine whether we need to oversample the minority data to the amount of the majority
data or whether a lower resampling ratio would work as well.

Most of the attack datasets available today are highly imbalanced in nature. This
paper used a newly created dataset, UWF-ZeekData22 [10,11]. UWF-ZeekData22 [10,11]
has a couple of tactics, reconnaissance (TA0034) [12] and discovery (TA0007) [13], that
have a good number of occurrences, but the dataset also has several tactics that have a
minimal number of occurrences. In this study, we tried to classify two rare tactics, privilege
escalation [14] and credential access [15], which comprise only 0.00014% and 0.00033%,
respectively, of the total tactic data in this dataset.

To summarize, the points that make this paper unique are: it classifies the rare tactics
privilege escalation (TA0004) [14] and credential access (TA0006) [15], which have never
before been classified, from UWF-ZeekData22. In determining the best classification results,
this paper defines the best resampling ratios (oversampling percentages) to classify these
rare tactics that make up such low percentages of the total data. This work also looks at the
difference between two oversampling techniques, BSMOTE and SVM-SMOTE, and studies
the effect of various KNN values on these oversampling techniques for these two tactics.

The rest of this paper is organized as follows. Section 2 presents the background;
Section 3 offers work related to oversampling and undersampling; Section 4 details the
data used in this paper; Section 5 presents the experimental design; Section 6 presents
the metrics used for presentation of results; Section 7 presents the results and discussions;
Section 8 collates the conclusions; and Section 9 presents the future works.

2. Background: The Class Imbalance Problem and Resampling

Though the number of attacks on networks is increasing, most of the network traffic
is still normal or benign traffic, that is, non-attack traffic. Hence, network traffic data
suffer from a class imbalance problem. This means there is inherently disproportionately
more benign traffic than attack traffic instances on any set of network traffic data collected.
Moreover, of the attack traffic, there are usually many different types of attack traffic. The
normal or benign traffic usually forms the majority class, while the attack traffic usually
forms the minority class(es). This is known as the class imbalance problem and leads
ML models to be biased towards the majority class, whereas minority data might carry
significant importance. Data imbalance problems are usually dealt with using resampling,
and various resampling techniques exist [9]. Additionally, the class imbalance problem
does not mean that both datasets (benign as well as attack data) have to be at a 50–50 ratio,
respectively [16]. This paper will show that even lower ratios of the attack data will be
enough to identify the attack tactics in most cases. Hence, this work uses various resampling
ratios in combination with various resampling techniques.
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2.1. Data Resampling Techniques

Resampling is a technique where samples are taken repeatedly from the same dataset,
either with or without replacement, until the model is sufficiently trained to produce
the optimum performance [17]. This paper uses standard resampling techniques such as
oversampling and undersampling.

2.1.1. Oversampling and Undersampling

Oversampling increases the count of the minority class instances, and undersampling
reduces the majority class instances to the level of balance desired. The simplest way of
dealing with oversampling or undersampling is randomly oversampling (RO) or randomly
undersampling (RU). Both random oversampling and random undersampling can be
considered brute force techniques with their fair share of problems that would affect
the ML model’s predictive capability. In the case of oversampling, possible duplication
of data points at specific regions might lead to overfitting. On the other hand, random
undersampling may remove data points essential for arriving at the decision boundaries [9].

Oversampling Techniques

Since RO runs the risk of overfitting, we use other oversampling techniques in this
work. Another widely used oversampling technique is the synthetic minority oversampling
technique (SMOTE) [9,18]. SMOTE is an enhanced oversampling technique where new
samples are created synthetically instead of oversampling by replacement [18]. This paper
compares two variations of SMOTE: borderline SMOTE (BSMOTE) and support vector
machine (SVM) SMOTE.

BSMOTE is a version of SMOTE where borderline minority samples are identified
using the k-nearest neighbor (KNN) technique. KNN is a non-parametric technique used
to classify any given instance; it looks at its k neighbors and assigns the instance to the
nearest class based on a distance measure. K-nearest neighbor (KNN) generates samples
between the line connecting that sample and the selected neighbors [18–20].

On the other hand, SVM-SMOTE uses SVM instead of KNN to locate the minority
samples, and then synthetic samples are generated along the lines connecting minority
support vectors and the neighboring minority points identified [18]. In SVM-SMOTE, KNN
values are not used to create the decision boundary but to select the k-th nearest neighbor
to create the new instances. So, KNN plays different roles in BSMOTE and SVM-SMOTE.

Undersampling Techniques

In this paper, RU without replacement was used to bring the majority class (benign
data) to 50% of the original data.

3. Related Works

The theme of this paper is the class imbalance problem and resampling; hence, the
related works section contains papers on the class imbalance problem and resampling.
Additionally, since this paper uses BSMOTE and SVM-SMOTE, we focused on related
works that focused on different forms of SMOTE.

The effect of data imbalance on learners has been analyzed in numerous scientific
research papers for decades. Elreedy and Atiya [21] provide a very comprehensive theo-
retical analysis of SMOTE. They studied the impact of SMOTE on LDA, KNN, as well as
SVM classifiers.

Kubat et al. [19] discuss the effect of imbalance on nearest neighbors, Bayesian classi-
fiers, and decision trees. Chawla et al. [22] devised the SMOTE algorithm, which formed
the basis for many further classifiers in the subsequent years. Batista et al. [23] compared
the results of ten different heuristic and non-heuristic methods to achieve a balance in
training data. Their analysis concludes that the oversampling methods’ results are more
accurate than those of the undersampling methods in the AUC-ROC curve. Additionally,
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a combination of algorithms, SMOTE + Tomek and SMOTE + ENN, performed better for
datasets with fewer positive samples.

Fernández et al. [24] analyzed the properties for categorizing the SMOTE-based exten-
sions, including the initial selection of instances, how it is integrated with undersampling,
and how the synthetic samples are generated, to name a few. The authors also summarized
all the extensions of the SMOTE algorithm in numerous research papers published to
date. They also discussed the limitations of SMOTE in areas such as disjoint datasets,
overlap among classes, dataset shifts, dimensionality, real-time processing, and imbalanced
classification in big data.

In another research on the cybersecurity dataset, NSL-KDD, Tauscher et al. [25] utilized
SVM-SMOTE for oversampling the minority instances in a four-class classification problem.
They observe that oversampling, despite having a minor impact on the accuracy and
the micro F1 score, helps the deep neural network based model in learning patterns and
improving the F1 score of the U2R attack category. Liu et al. [26] tried to reduce the effect of
a single feature dimension on resampling. They used different feature subsets in different
subtrees. This resulted in increasing the diversity of the base classifier. The authors used
SMOTE, BSMOTE, and ADASYN resampling techniques in combination with random
forest and various optimization algorithms to classify the imbalanced dataset.

Chakravarthy et al. [27] studied the effectiveness of SMOTE and random oversampling
techniques by varying the resampling ratios and concluded that it is a multivariate function
depending on the algorithms, ratios, and dataset characteristics. They found that the
classifier’s performance improved when the test dataset had the same imbalance as the
training dataset.

Douzas et al. [28] presented an oversampling method using k-means clustering and
SMOTE. This work claimed that their method consistently outperformed other popular
oversampling methods.

Wang et al. [29] proposed a different oversampling method, DEBOHID, based on a
differential evolutionary algorithm that uses nearest neighbors of the minority class to
synthesize samples.

Li et al. [30] proposed a general weighted oversampling framework based on relative
neighborhood density that can be combined with most SMOTE-based sampling algorithms
to improve performance.

Joloudari et al. [31] proposed a CNN-based model combination with SMOTE. They
found that mixed SMOTE with normalization gave the best results in CNN.

Bagui and Li [9] examined the effect of several resampling techniques on several
datasets using ANN. This work showed that with oversampling, more of the minority
data were detected. Bagui et al. [16] also studied resampling using UNSW-NB15. This
paper found that 10% oversampling was enough to give good results for both BMOTE and
SVM-SMOTE, irrespective of the order of resampling.

However, the main unique point of this paper is that all previous works used at-
tack data; this work is based on tactic data. There is no previous work on tactic data.
Moreover, this paper analyzes both oversampling as well as undersampling and looks
at whether it is better to perform oversampling before undersampling or undersampling
before oversampling. Additionally, different ratios of oversampling were studied, keeping
the undersampling constant at 50%. This work has not previously been carried out on
tactic data.

4. The Data

UWF-Zeekdata22 [10,11], a new dataset created in 2022, is a crowd-sourced dataset
comprising benign as well as attack tactic data collected from Zeeklogs, an open-source
network-monitoring tool used to collect data. This dataset, labeled using the MITRE
Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework [32], has
9280 million tactic records and 9281 million benign records. The breakdown of the tactic
data in UWF-ZeekData22 is presented in Figure 1. As can be seen from the dataset, the
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reconnaissance tactic makes up 99.97% of the attack tactics, and the second highest tactic is
the discovery tactic, making up 0.02247%. The reconnaissance and discovery tactics were
easily detectable using ML algorithms, as seen from [32]. These results will show that,
though the discovery tactic made up a much smaller percentage of the dataset, this tactic
was still detectable using ML algorithms without resampling.

Figure 1. UWF-ZeekData22: distribution of MITRE ATT&CK tactics [10,11].

The other tactics in this dataset, exfiltration lateral movement, resource development,
credential access, privilege escalation, persistence, defense evasion, and initial access, have
meager representation. These tactics are rare and would not be detectable using regular
ML algorithms without resampling measures.

Out of the eight rare tactics in UWF-ZeekData22, in this study, we focused on only
two rare tactics, privilege escalation, and credential access, which comprise 0.00014% and
0.00033% of the tactic data, respectively. These two tactics had the highest number of
occurrences among the rare tactics in this dataset.

Privilege escalation is a tactic that refers to 14 different techniques that adversaries
may use to obtain greater permissions in a system or network. This allows the adversary
to access more resources and perform more actions that would have been impossible
with their previous privileges; techniques involving exploiting software vulnerabilities or
misconfigurations in the system, allowing them to gain higher-level privileges.

Credential access is a tactic that involves 17 different techniques that adversaries may
use to obtain account credentials. These credentials can then access systems, applications,
and sensitive information. Techniques for this tactic involve brute forcing, network sniffing,
using credentials from dumping password stores, and even adversary-in-the-middle, where
the attacker intercepts credentials.

Since the Zeek Conn log files are used for the analysis, each attack tactic, including
privilege escalation and credential access, contains 22 attributes or features, as shown
in [10,33].

5. The Experimental Setup

Figure 2 presents an overview of the experimental setup. As shown in Figure 2, the
first step was to preprocess the data and then create training and testing datasets using
stratified sampling; following this, the resampling was carried out. The ML model, random
forest, was then trained on the resampled datasets, and the results were captured.
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Figure 2. Experimental design.

5.1. Preprocessing

Preprocessing followed [32], in which, first, the data were binned, and then the
information gain [33] of the attributes was calculated.

After preprocessing, the training and testing datasets were created to perform binary
classification. The first training and testing dataset was created with benign plus privilege
escalation data and the second training and testing dataset was created with benign plus
credential access data.

Stratified sampling was used to create these training and testing datasets. Stratified sam-
pling was used to ensure that actual minority class instances were present in the trainingand
testing datasets before performing synthetic generation using resampling techniques.

5.2. Approach to Resampling

Using the training and testing data, resampling was carried out using two approaches:
(i) oversampling the minority data followed by undersampling, and (ii) undersampling
the majority data followed by oversampling. These two approaches were compared in this
study to analyze the order of resampling effectiveness.

Two oversampling techniques, BSMOTE and SVM-SMOTE, were used in both ap-
proaches, with RU of the majority class kept constant at 50% of the majority (benign) data.
Oversampling ratios of 10% to 100% were used. Ten percent oversampling means the data
were oversampled until 10% of the majority class was reached. Three values of KNN are
selected for analysis—3, 5, and 8.

5.3. Machine Learning Model Used to Train Model

In this work, the random forest (RF) algorithm, initially proposed by Breiman [34] and
a widely used ML algorithm, was used for classification. RF, which utilizes many decision
trees to classify data, is less susceptive to overfitting and has gained its merit from its fast
learning speed and high classification accuracy.
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6. Metrics Used for Presentation of Results

In this section, we present the classification metrics as well as the Welch t-test results
and analysis.

6.1. Classification Metrics Used

Accuracy, precision, recall, and macro-precision were used to evaluate the classification
of the random forest results.

Accuracy is the number of correctly classified instances (i.e., true positives (TP) and
negatives (TN)) divided by the total number of classifications [35].

Precision is the proportion of predicted positive cases correctly labeled positive [35].
Precision by label considers only one class and measures the number of times a specific
label was predicted correctly, normalized by the number of times that label appears in
the output.

Precision = Positive Predictive Value =
TP

TP + FP
(1)

where FP is the false positives.
Recall is the ability of the classifier to find all the positive samples or the true positive

rate. Recall is also known as sensitivity and is the proportion of real positive cases that are
correctly predicted as positive [35].

All Real Positives = TP + FN (2)

All Real Negatives = TN + FP (3)

when FN is the false positives and TN is the true negatives.

Recall = True Positive Rate =
TP

TP + FN
(4)

F-Score is the harmonic mean of a prediction’s precision and recall metrics. It is another
overall measure of the test’s accuracy [35].

F-Score =
2(Precision × Recall)
(Precision + Recall)

(5)

Macro-precision is the arithmetic mean of each individual class’s precision.

6.2. Welch’s t-Tests

The final objective was to find the best classification results with the lowest oversam-
pling ratios. Welch’s t-tests were used to compare two population means (in this case, the
results of two oversampling ratios) with unequal variances. Because of unequal variances,
the Satterthwaite approximation was used to obtain the degrees of freedom (d.f.).

7. Results and Discussion

This section presents the results of ML runs for binary classification using random
forest. Binary classification means that data from each attack were separately combined
with benign data.

Four sets of runs were performed for each minority class tactic, privilege escalation
and credential access: (i) the first set of runs used data composed of oversampling using
BSMOTE followed by undersampling; (ii) the second set of runs used data composed of
undersampling followed by oversampling using BSMOTE; (iii) the third set of runs used
data composed of oversampling using SVM-SMOTE followed by undersampling; (iv) and
the fourth set of runs used data composed of undersampling followed by oversampling
using SVM-SMOTE. And all results presented are an average of 10 runs.

KNN was varied for each set of runs and, for all processing, undersampling (without
replacement) was limited to 50% of the majority class and oversampling was varied from
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10% to 100% of the majority class. In all the datasets, the non-attack (benign) data was the
majority class, and the particular tactic was the minority class. Each combination was run
ten times and all results presented are an average of ten runs.

First, the BSMOTE oversampling followed by random undersampling results are
presented using privilege escalation and credential access and then the SVM-SMOTE
oversampling followed by random undersampling results are presented using privilege
escalation and credential access. Then, the random undersampling followed by BSMOTE
oversampling for privilege escalation and credential access followed by the corresponding
SVM-SMOTE oversampling results are presented.

All the resulting metrics were analyzed using Welch’s t-tests. The means were com-
pared. The first mean was compared to the second, and the better of the two results were
compared with the next mean, and so on. The best results are highlighted in green. In
some cases, when two paths were taken, the best results are highlighted in green as well as
yellow. For brevity’s sake, all the tables have not been presented for Welch’s t-tests. Ater
the first table showing the analysis for Privilege Escalation for BSMOTE oversampling
using KNN = 3 followed by random undersamping, only the tables that had a divergence
in the results were presented.

7.1. Selection of KNN

Since the SMOTE algorithms use KNN, the effect of varying KNN was studied.
KNN = 3, 5, and 8 were used.

7.2. BSMOTE Oversampling Followed by Random Undersampling

This section presents the results for BSMOTE oversampling using varied KNN, fol-
lowed by random undersampling. Using UWF-ZeekData22, we are considering two
minority attack tactics, privilege escalation and credential access, which have 0.00007% and
0.00016% of tactic data, respectively [10,11].

7.2.1. Privilege Escalation: BSMOTE Oversampling with Varying KNN Followed by
Random Undersampling

For KNN = 3, 0.1 BSMOTE oversampling gave better overall results, as shown in
Table 1, and probabilistic analysis of the Welch’s t-test results shown in Table 2 found
that 0.1 oversampling consistently had better precision, F-score, and macro-precision than
higher oversampling percentages.

Table 1. Privilege escalation: BSMOTE oversampling using KNN = 3 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision
0.1 0.999 1.000 0.850 0.880 0.999
0.2 0.999 0.766 0.600 0.600 0.883

0.3 0.999 0.780 0.900 0.833 0.889

0.4 0.999 0.620 0.650 0.627 0.809

0.5 0.999 0.933 0.950 0.931 0.966

0.6 0.999 0.707 0.800 0.716 0.853

0.7 0.999 0.698 0.850 0.750 0.849

0.8 0.999 0.826 0.900 0.831 0.913

0.9 0.999 0.853 0.950 0.886 0.926

1.0 0.999 0.626 0.600 0.585 0.813
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Table 2. Welch’s t-test: privilege escalation: BSMOTE oversampling using KNN = 3 followed by RU.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall
t Value

F-Score
t Value

Macro-Precision
t Value Analysis

0.1 vs. 0.2 2.608 1.234 2.013 2.608 0.1 has better precision, F-score, and macro-precision
than 0.2

0.1 vs. 0.3 3.074 −0.310 0.353 3.074 0.1 has better precision and macro-precision than 0.3

0.1 vs. 0.4 3.849 1.240 1.785 3.849 0.1 has better precision, F-score, and macro-precision
than 0.4

0.1 vs. 0.5 1.118 −0.707 −0.451 1.118 No statistical diffrerence between 0.1 and 0.5

0.1 vs. 0.6 3.685 0.288 1.335 3.685 0.1 has better precision and macro-precision than 0.6

0.1 vs. 0.7 3.302 0.000 0.962 3.302 0.1 has better precision and macro-precision than 0.7

0.1 vs. 0.8 2.589 −0.310 0.413 2.589 0.1 has better precision and macro-precision than 0.8

0.1 vs. 0.9 2.536 −0.707 −0.062 2.536 0.1 has better precision and macro-precision than 0.9

0.1 vs. 1 2.482 1.165 1.672 2.482 0.1 has better precision, F-score, and macro-precision
than 0.9

The average metric values for the KNN = 5 runs are presented in Table 3. Probabilistic
analysis of the Welch’s t-test results found that the 0.3 BSMOTE oversampling ratio had
better recall and F-score than the rest of the oversampling ratios. Welch’s t-test results also
found no significant differences between the variations in precision and macro-precision.

Table 3. Privilege escalation: BSMOTE oversampling using KNN = 5 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.866 0.900 0.853 0.933

0.2 0.999 0.693 0.900 0.777 0.846
0.3 0.999 0.933 1.000 0.960 0.966
0.4 0.999 0.845 0.850 0.820 0.922

0.5 0.999 0.866 0.800 0.807 0.933

0.6 0.999 0.706 0.750 0.682 0.853

0.7 0.999 0.866 0.800 0.828 0.933

0.8 0.999 0.793 0.750 0.758 0.896

0.9 0.999 0.700 0.550 0.580 0.849

1.0 0.999 0.920 0.750 0.768 0.959

Table 4 shows the metric values for KNN = 8. When 0.1 and 0.2 oversampling ratios
were compared, as shown in Tables 5 and 6, respectively, Welch’s t-test results showed that
the former had better precision and macro-precision while the latter had a better recall. At
this juncture a divergence was observed, and analysis was performed on the two courses
possible—continuing the study with 0.1 and 0.2 separately. When continuing with 0.1,
as shown in Table 5, it was observed that 0.5 had better recall than the former, and there
were no statistical differences from the rest of the oversampling results. This result is
highlighted in green color in Table 4. On the other hand, with 0.2, as shown in Table 6,
it had a better F-score than 0.3 and 0.7 and better recall than 0.7 and 0.1. There were no
statistical differences observed with the rest of the oversampling percentages. Hence, 0.2 is
highlighted in yellow in Table 4.
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Table 4. Privilege escalation: BSMOTE oversampling using KNN = 8 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.624 0.650 0.510 0.812
0.2 0.999 0.240 1.000 0.347 0.620
0.3 0.999 0.101 0.900 0.180 0.550

0.4 0.999 0.089 0.750 0.159 0.544
0.5 0.999 0.407 1.000 0.465 0.703
0.6 0.999 0.263 0.900 0.251 0.631

0.7 0.999 0.236 0.550 0.148 0.618

0.8 0.999 0.384 0.900 0.408 0.692

0.9 0.999 0.255 0.850 0.301 0.627

1.0 0.999 0.447 0.800 0.455 0.723

Table 5. Welch’s t-test: privilege escalation: BSMOTE oversampling using KNN = 8 followed by RU.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall t
Value

F-Score t
Value

Macro-
Precision t Value Analysis

0.1 vs. 0.2 1.696 −2.608 0.869 1.696 0.1 has better precision and macro-precision than 0.2,
except for recall, which is better in the latter.

0.1 vs. 0.3 2.541 −1.550 2.085 2.541 0.1 is better than 0.3 across all metrics except recall,
where 0.3 performs better.

0.1 vs. 0.4 2.592 −0.512 2.192 2.592 0.1 has better precision, F-score, and macro-precision
than 0.4.

0.1 vs. 0.5 0.791 −2.608 0.189 0.791 0.5 has better recall than 0.1.

0.5 vs. 0.6 0.586 1.118 1.080 0.586 No statistical difference between 0.5 and 0.6

0.5 vs. 0.7 0.683 2.515 1.709 0.683 0.5 has better recall and F-score than 0.7

0.5 vs. 0.8 0.092 1.118 0.248 0.092 No statistical difference between 0.5 and 0.8

0.5 vs. 0.9 0.616 1.118 0.697 0.616 No statistical difference between 0.5 and 0.9

0.5 vs. 1.0 −0.161 1.825 0.047 −0.161 0.5 has better recall than 1.0

Table 6. Welch’s t-test: privilege escalation: BSMOTE oversampling using KNN = 8 followed by RU.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall t
Value

F-Score t
Value

Macro-
Precision t Value Analysis

0.1 vs. 0.2 1.696 −2.608 0.869 1.696 0.1 has better precision and macro-precision than 0.2,
except for recall, which is better in the latter.

0.2 vs. 0.3 1.432 1.118 1.593 1.432 0.2 has a better F-score than 0.3

0.2 vs. 0.4 1.538 1.767 1.747 1.538 0.2 is better than 0.4 across all metrics

0.2 vs. 0.5 −0.812 0.000 −0.579 −0.812 No statistical difference between 0.2 and 0.5

0.2 vs. 0.6 −0.122 1.118 0.700 −0.122 No statistical difference between 0.2 and 0.6

0.2 vs. 0.7 0.018 2.515 1.679 0.018 0.2 has better recall and F-score than 0.7

0.2 vs. 0.8 −0.736 1.118 −0.331 −0.736 No statistical difference between 0.2 and 0.8

0.2 vs. 0.9 −0.078 1.118 0.248 −0.078 No statistical difference between 0.2 and 0.9

0.2 vs. 1.0 −1.066 1.825 −0.661 −1.066 0.2 has better recall than 1.0
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7.2.2. Credential Access: BSMOTE Oversampling with Varying KNN Followed by
Random Undersampling

In this section, credential access is oversampled using BSMOTE, with varying KNN,
at the various oversampling percentages, and then benign data are undersampled to 0.5.
Table 7 shows the average metric values for KNN = 3, highlighting the best result at 0.4
oversampling. Welch’s t-test calculations showed 0.2 had a better F-score than 0.1, but there
were no statistical differences from 0.3, but 0.4 had better precision and macro-precision
than 0.2, 0.8, and 0.9. No statistical differences were observed in the Welch’s t-test scores
for the other percentages.

Table 7. Credential access: BSMOTE oversampling using KNN = 3 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.655 0.888 0.740 0.827

0.2 0.999 0.703 0.977 0.815 0.851

0.3 0.999 0.745 0.911 0.801 0.872
0.4 0.999 0.802 0.888 0.831 0.901
0.5 0.999 0.736 0.866 0.788 0.868

0.6 0.999 0.760 0.911 0.814 0.880

0.7 0.999 0.727 0.911 0.795 0.863

0.8 0.999 0.669 0.911 0.760 0.834

0.9 0.999 0.662 0.755 0.688 0.831

1.0 0.999 0.845 0.933 0.885 0.922

For KNN = 5, as shown in Table 8, the best oversampling percentage was 0.1. Welch’s t-
test results showed that there were no statistical differences with oversampling percentages
from 0.1 to 0.4 but had better recall and F-score than 0.5. Along with its precision and
macro-precision values, 0.1 had better recall than 0.7. No other significant differences were
found with the remaining oversampling percentages until 1.0.

Table 8. Credential access: BSMOTE oversampling using KNN = 5 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision
0.1 0.999 0.770 0.955 0.843 0.885
0.2 0.999 0.700 0.888 0.778 0.850

0.3 0.999 0.773 0.933 0.839 0.886

0.4 0.999 0.806 0.911 0.850 0.903

0.5 0.999 0.713 0.755 0.728 0.856

0.6 0.999 0.718 0.911 0.802 0.859

0.7 0.999 0.625 0.911 0.737 0.812

0.8 0.999 0.568 0.822 0.663 0.784

0.9 0.999 0.748 0.933 0.803 0.874

1.0 0.999 0.670 0.822 0.727 0.835

Table 9 shows the best oversampling percentage as 0.4 for KNN = 8. The p-values
calculated for the analysis of Welch’s t-test scores showed that, initially, 0.3 performed better
than 0.1 in precision and macro-precision, but it was replaced by 0.4, which performed better
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than the former. There were no statistical differences from 0.5 to 0.8 and 0.1. Additionally,
0.4 also performed better than 0.9 in precision, F-score, and macro-precision.

Table 9. Credential access: BSMOTE oversampling using KNN = 8 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.647 0.733 0.670 0.823

0.2 0.999 0.604 0.977 0.741 0.802

0.3 0.999 0.731 0.933 0.809 0.865
0.4 0.999 0.768 0.955 0.846 0.884
0.5 0.999 0.780 0.977 0.861 0.889

0.6 0.999 0.686 0.911 0.773 0.843

0.7 0.999 0.671 1.000 0.800 0.835

0.8 0.999 0.713 0.933 0.798 0.856

0.9 0.999 0.588 0.933 0.717 0.794

1.0 0.999 0.708 0.866 0.771 0.854

7.3. SVM-SMOTE Oversampling Followed by Random Undersampling

This section varies SVM-SMOTE oversampling percentages with KNN = 3, 5, and 8
while keeping the RU constant at 0.5.

7.3.1. Privilege Escalation: SVM-SMOTE Oversampling with Varied KNN Followed by
Random Undersampling

For KNN = 3, as shown in Table 10, 0.1 oversampling had better overall results. With
Welch’s t-test, probabilistic value calculations showed that 0.1 had better recall and F-score
than 0.2, 0.3, and 1.0. There were no statistical differences observed with 0.4, 0.5, and 0.7.
Additionally, 0.1 was better than 0.9 across all metrics.

Table 10. Privilege escalation: SVM-SMOTE oversampling using KNN = 3 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision
0.1 0.999 0.960 1.000 0.977 0.980
0.2 0.999 0.933 0.600 0.674 0.966

0.3 0.999 0.900 0.700 0.751 0.949

0.4 0.999 0.933 0.900 0.914 0.966

0.5 0.999 0.960 1.000 0.977 0.980

0.6 0.999 0.883 0.850 0.864 0.941

0.7 0.999 0.866 1.000 0.920 0.933

0.8 0.999 0.893 0.750 0.751 0.946

0.9 0.999 0.680 0.850 0.743 0.839

1.0 0.999 0.900 0.650 0.733 0.949

For KNN = 5, no statistical differences were observed between 0.1 and higher oversam-
pling percentages, and thus, 0.1 was selected as the overall better-performing oversampling
percentage, as shown in Table 11.
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Table 11. Privilege escalation: SVM-SMOTE oversampling using KNN = 5 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision
0.1 0.999 0.807 0.900 0.816 0.903
0.2 0.999 0.933 0.900 0.914 0.966

0.3 0.999 0.933 0.900 0.893 0.966

0.4 0.999 0.700 0.900 0.780 0.849

0.5 0.999 0.920 0.950 0.933 0.959

0.6 0.999 0.853 0.950 0.886 0.926

0.7 0.999 0.826 0.750 0.768 0.913

0.8 0.999 0.822 0.850 0.763 0.911

0.9 0.999 0.900 0.750 0.800 0.949

1.0 0.999 0.893 0.900 0.892 0.946

For KNN = 8, two oversampling percentages gave better results, as highlighted in
yellow and green color in Table 12. As for the Welch’s t-test analysis, it was observed
that 0.3 had better recall than 0.1, and it was selected for further analysis. As the analysis
progressed, 0.5 had better precision, F-score, and macro-precision than 0.3, while the latter
had a better recall. Since it was difficult to conclude which was better, 0.3 or 0.5, two
branches of analysis were performed—one with 0.3 and the other with 0.5. The Welch’s
t-test results with 0.3 are presented in Table 13 and the analysis with 0.5 is shown in Table 14.
When 0.5 was chosen, 0.6 had better results than 0.5, with better recall, while 0.6 also had
better precision, F-score, and macro-precision than 0.9 and 1.0. These results are presented
in Table 12. On the other branch where 0.3 was selected, 0.3 showed no statistical difference
from 0.4, 0.6, 0.7, 0.9, and 1.0. It had a better recall than 0.8.

Table 12. Privilege escalation: SVM-SMOTE oversampling using KNN = 8 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.110 0.800 0.189 0.555

0.2 0.999 0.119 0.900 0.207 0.559
0.3 0.999 0.119 1.000 0.208 0.559
0.4 0.999 0.121 1.000 0.213 0.560

0.5 0.999 0.477 0.650 0.393 0.738
0.6 0.999 0.372 1.000 0.449 0.686
0.7 0.999 0.176 0.950 0.292 0.588

0.8 0.999 0.211 0.750 0.252 0.605

0.9 0.999 0.084 0.850 0.153 0.542

1.0 0.999 0.099 1.000 0.180 0.549

Table 13. Welch’s t-test: privilege escalation: SVM-SMOTE oversampling using KNN = 8 followed
by RU.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall t
Value

F-Score t
Value

Macro-
Precision t Value Analysis

0.1 vs. 0.2 −0.202 −0.707 −0.278 −0.202 No statistical difference between 0.1 and 0.2

0.1 vs. 0.3 −0.207 −1.825 −0.301 −0.207 0.3 has better recall than 0.1
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Table 13. Cont.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall t
Value

F-Score t
Value

Macro-
Precision t Value Analysis

0.3 vs. 0.4 −0.065 0.000 −0.095 −0.065 No statistical difference between 0.3 and 0.4

0.3 vs. 0.5 −2.321 2.608 −1.951 −2.321 0.5 is better than 0.3 in precision, F-score and
macro-precision. 0.3 has better recall than 0.5

0.5 vs. 0.6 0.470 −2.608 −0.312 0.470 0.6 has better recall than 0.5

0.6 vs. 0.7 1.181 1.118 0.960 1.181 No statistical difference between 0.6 and 0.7

0.6 vs. 0.8 0.833 1.767 1.129 0.833 0.6 has better recall than 0.8

0.6 vs. 0.9 1.748 1.118 1.841 1.748 0.6 has better precision, F-score, and macro-precision
than 0.9

0.6 vs. 1.0 1.667 0.000 1.700 1.667 0.6 has better precision, F-score, and macro-precision
than 1.0

Table 14. Welch’s t-test: privilege escalation: SVM-SMOTE oversampling using KNN = 8 followed
by RU.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall t
Value

F-Score t
Value

Macro-
Precision t Value Analysis

0.1 vs. 0.2 −0.202 −0.707 −0.278 −0.202 No statistical difference between 0.1 and 0.2

0.1 vs. 0.3 −0.207 −1.825 −0.301 −0.207 0.3 has better recall than 0.1

0.3 vs. 0.4 −0.065 0.000 −0.095 −0.065 No statistical difference between 0.3 and 0.4

0.3 vs. 0.5 −2.321 2.608 −1.951 −2.321 0.5 is better than 0.3 in precision, F-score, and
macro-precision. 0.3 has better recall than 0.5

0.3 vs. 0.6 −1.532 0.000 −1.485 −1.532 No statistical difference between 0.3 and 0.6

0.3 vs. 0.7 −1.475 1.118 −1.423 −1.475 No statistical difference between 0.3 and 0.7

0.3 vs. 0.8 −0.873 1.767 −0.512 −0.873 0.3 has better recall than 0.8

0.3 vs. 0.9 1.123 1.118 1.101 1.123 No statistical difference between 0.3 and 0.9

0.3 vs. 1.0 0.740 0.000 0.673 0.740 No statistical difference between 0.3 and 1.0

7.3.2. Credential Access: SVM-SMOTE Oversampling with Varying KNN Followed by
Random Undersampling

For credential access, for KNN = 3 (Table 15), 0.7 oversampling percentage gave better
results than the other values. From initial p-value calculations, it appeared that 0.3 had
better precision than 0.1 and better precision, F-score, and macro-precision than 0.4, and no
statistical differences from 0.5 and 0.6 results. However, 0.7 had better recall than 0.1 and
better precision, F-score, and macro-precision than 0.8 and 0.9. No statistical differences
were observed between 0.7 and 1.0.

Table 15. Credential access: SVM-SMOTE oversampling using KNN = 3 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.657 0.888 0.752 0.828

0.2 0.999 0.663 0.844 0.739 0.831

0.3 0.999 0.815 0.888 0.846 0.907

0.4 0.999 0.633 0.866 0.717 0.816

0.5 0.999 0.701 0.866 0.764 0.850
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Table 15. Cont.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.6 0.999 0.697 0.955 0.798 0.848
0.7 0.999 0.775 1.000 0.859 0.887
0.8 0.999 0.629 0.888 0.727 0.814

0.9 0.999 0.619 0.844 0.709 0.809

1.0 0.999 0.698 0.955 0.803 0.849

For KNN = 5 (Table 16), probabilistic calculations resulted in 0.1 having the overall
best results. No statistical differences were present for lower oversampling percentages
until 0.6. Additionally, 0.1 consistently had better recall, F-score, and macro-precision
values than higher percentages from 0.7 to 1.0.

For KNN = 8, average metrics results are presented in Table 17. Welch’s t-test calcula-
tions showed that 0.3 consistently performed better than higher oversampling percentages.
Hence, it was chosen as the best oversampling percentage for KNN = 8 credential access
data with SVM-SMOTE executed first, followed by RU.

Table 16. Credential access: SVM-SMOTE oversampling using KNN = 5 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision
0.1 0.999 0.775 0.955 0.852 0.887
0.2 0.999 0.697 0.777 0.725 0.848

0.3 0.999 0.765 0.933 0.837 0.882

0.4 0.999 0.672 0.911 0.762 0.836

0.5 0.999 0.748 0.955 0.818 0.874

0.6 0.999 0.783 0.933 0.849 0.891

0.7 0.999 0.733 0.822 0.758 0.866

0.8 0.999 0.686 0.866 0.763 0.843

0.9 0.999 0.675 0.911 0.772 0.837

1.0 0.999 0.673 0.888 0.755 0.836

Table 17. Credential access: SVM-SMOTE oversampling using KNN = 8 followed by RU.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.709 0.888 0.784 0.854

0.2 0.999 0.731 0.866 0.790 0.865
0.3 0.999 0.838 0.955 0.882 0.919
0.4 0.999 0.662 0.977 0.784 0.831

0.5 0.999 0.641 0.866 0.731 0.820

0.6 0.999 0.724 0.955 0.822 0.862

0.7 0.999 0.891 0.933 0.904 0.945

0.8 0.999 0.778 0.888 0.808 0.889

0.9 0.999 0.753 0.955 0.835 0.876

1.0 0.999 0.634 0.955 0.760 0.817
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7.4. Random Undersampling Followed by BSMOTE Oversampling

In this section, RU to 0.5 was first performed on the majority class or benign data
before oversampling using BSMOTE using different KNN values.

7.4.1. Privilege Escalation: Random Undersampling Followed by BSMOTE Oversampling
with Varying KNN

For KNN = 3 (Table 18), probabilistic analysis of Welch’s t-tests resulted in 0.2 over-
sampling giving the best results. We found 0.2 had better recall and F-score than 0.1, 0.9,
and 1.0, better recall than 0.4, 0.7, and 1.0. No statistical differences were observed with 0.3,
0.5, 0.6, and 0.8.

For KNN = 5 (Table 19), 0.1 had better recall than 0.4, and 0.5 oversampling was better
than 0.1 across all metrics in Welch’s t-test calculations. We found 0.5 was better than other
higher oversampling percentages until 0.9 and had no statistical differences from 1.0.

For KNN = 8 (Table 20), no statistical differences were observed between results
0.1, 0.2, and 0.3. When 0.1 was compared with 0.4, the former had better precision, F-
score, and precision, while the latter had a better recall. A divergence was observed (see
Tables 21 and 22) where there was an option to proceed with 0.1 or 0.4. When 0.4 was
taken as the successor (Table 21), 0.5 had a better recall than 0.4. While there were no
statistical differences with 0.6, 0.7, 0.9, and 1.0, 0.5 had a better F-score than 0.8; hence,
0.5 was considered the best overall (highlighted in yellow in Table 20).

Table 18. Privilege escalation: RU followed by BSMOTE oversampling using KNN = 3.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.866 0.750 0.733 0.933
0.2 0.999 0.910 0.950 0.927 0.954
0.3 0.999 0.808 0.850 0.793 0.904

0.4 0.999 0.750 0.650 0.683 0.874

0.5 0.999 0.960 0.900 0.911 0.979

0.6 0.999 0.960 0.800 0.844 0.979

0.7 0.999 0.900 0.650 0.733 0.949

0.8 0.999 0.733 0.700 0.714 0.866

0.9 0.999 0.893 0.800 0.804 0.946

1.0 0.999 0.920 0.600 0.648 0.959

Table 19. Privilege escalation: RU followed by BSMOTE oversampling using KNN = 5.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.870 0.750 0.772 0.934

0.2 0.999 0.914 0.900 0.878 0.957

0.3 0.999 0.900 0.800 0.833 0.949

0.4 0.999 0.920 0.900 0.888 0.959
0.5 1.000 1.000 1.000 1.000 1.000
0.6 0.999 0.933 0.750 0.794 0.966

0.7 0.999 0.920 0.950 0.926 0.959

0.8 0.999 0.780 0.900 0.833 0.889

0.9 0.999 0.733 0.450 0.527 0.866

1.0 0.999 0.960 1.000 0.977 0.980
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Table 20. Privilege escalation: RU followed by BSMOTE oversampling using KNN = 8.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.078 0.900 0.142 0.539

0.2 0.999 0.101 1.000 0.181 0.550

0.3 0.999 0.069 0.850 0.127 0.534

0.4 0.999 0.392 0.650 0.300 0.696
0.5 0.999 0.212 0.900 0.300 0.606
0.6 0.999 0.216 0.850 0.260 0.608

0.7 0.999 0.106 1.000 0.188 0.553

0.8 0.999 0.066 0.900 0.123 0.533

0.9 0.999 0.116 0.900 0.194 0.558
1.0 0.999 0.509 0.800 0.448 0.754

Table 21. Welch’s t-test: privilege escalation: RU followed by SVM-SMOTE oversampling using
KNN = 8.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall t
Value

F-Score t
Value

Macro-
Precision t Value Analysis

0.1 vs. 0.2 −1.162 −1.118 −1.181 −1.162 No statistical difference between 0.1 and 0.2

0.1 vs. 0.3 0.573 0.310 0.550 0.573 No statistical difference between 0.1 and 0.3

0.1 vs. 0.4 −1.873 1.550 −2.112 −1.873 0.4 has better precision, F-score, and macro-precision
than 0.1, while the latter has better recall

0.4 vs. 0.5 0.919 −1.550 −0.002 0.919 0.5 has better recall than 0.4

0.5 vs. 0.6 −0.026 0.395 0.296 −0.026 No statistical difference between 0.5 and 0.6

0.5 vs. 0.7 1.017 −1.118 0.950 1.017 No statistical difference between 0.5 and 0.7

0.5 vs. 0.8 1.427 0.000 1.560 1.427 0.5 has a better F-score than 0.8

0.5 vs. 0.9 0.913 0.000 0.898 0.913 No statistical difference between 0.5 and 0.9

0.5 vs. 1.0 −1.435 0.707 −1.044 −1.435 No statistical difference between 0.5 and 1.0

Table 22. Welch’s t-test: privilege escalation: RU followed by SVM-SMOTE oversampling using
KNN = 8.

Welch’s t-Test
(p < 0.10)

Precision
t Value

Recall t
Value

F-Score t
Value

Macro-
Precision t Value Analysis

0.1 vs. 0.2 −1.162 −1.118 −1.181 −1.162 No statistical difference between 0.1 and 0.2

0.1 vs. 0.3 0.573 0.310 0.550 0.573 No statistical difference between 0.1 and 0.3

0.1 vs. 0.4 −1.873 1.550 −2.112 −1.873 0.4 has better precision, F-score, and macro-precision
than 0.1, while the latter has a better recall

0.1 vs. 0.5 −1.312 0.000 −1.384 −1.312 No statistical difference between 0.1 and 0.5

0.1 vs. 0.6 −1.353 0.395 −1.593 −1.353 0.6 has a better F-score than 0.1

0.6 vs. 0.7 1.057 −1.677 0.903 1.057 0.7 has better recall than 0.6

0.7 vs. 0.8 1.638 1.118 1.680 1.638 0.7 has better recall than 0.8

0.7 vs. 0.9 −0.310 1.118 −0.138 −0.310 No statistical difference between 0.7 and 0.9

0.7 vs. 1.0 −2.218 1.825 −2.773 −2.218 1.0 is better than 0.7 across all metrics
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In the alternate scenario (Table 22), when 0.1 was taken for further comparisons, no
statistical differences were observed with 0.5. However, 0.6 had a better F-score than 0.1. In
the next comparison between 0.6 and 0.7, the latter had better recall; 0.7 had better recall
than 0.8, and there were no statistical differences with the 0.9 results. Compared with 1.0,
0.7 had a better recall. However, 1.0 had better precision, F-score, and macro-precision than
0.7 (highlighted in green in Table 20).

7.4.2. Credential Access: Random Undersampling Followed by BSMOTE Oversampling
with Varying KNN

This section presents an analysis of the credential access tactic with RU followed by
BSMOTE oversampling with varying KNN results. Table 23 shows the results of runs with
KNN = 3, where 0.5 BSMOTE oversampling gave better results in the probabilistic analysis.
The Welch’s t-test results showed that, initially, 0.3 had better precision and macro-precision
than 0.1, but 0.5 had even better precision, F-score, and macro-precision than the former.
When compared with higher oversampling percentages, 0.5 had a better F-score than 0.6,
precision, F-score, and macro-precision than 0.9 and 1.0.

Table 23. Credential access: RU followed by BSMOTE oversampling using KNN = 3.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.639 0.888 0.741 0.819

0.2 0.999 0.619 0.800 0.686 0.809

0.3 0.999 0.733 0.888 0.799 0.866

0.4 0.999 0.739 0.866 0.781 0.869
0.5 0.999 0.893 0.866 0.872 0.946
0.6 0.999 0.819 0.755 0.714 0.909

0.7 0.999 0.828 0.888 0.843 0.914

0.8 0.999 0.796 0.888 0.822 0.898

0.9 0.999 0.662 0.866 0.743 0.831

1.0 0.999 0.734 0.777 0.746 0.867

For KNN = 5 (Table 24), 0.3 BSMOTE oversampling had better precision, F-score, and
macro-precision than 0.1, 0.4, 0.5, 0.7, and 1.0. This is highlighted in green. Welch’s t-test
results showed that the 0.3 oversampling ratio had no statistical difference between 0.3; it
had better precision and macro-precision than 0.7 and 0.8.

Table 24. Credential access: RU followed by BSMOTE oversampling using KNN = 5.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.657 0.822 0.728 0.828

0.2 0.999 0.756 0.955 0.837 0.878
0.3 0.999 0.938 0.822 0.862 0.969
0.4 0.999 0.676 0.844 0.740 0.838

0.5 0.999 0.677 0.911 0.769 0.838

0.6 0.999 0.836 0.911 0.860 0.918

0.7 0.999 0.690 0.844 0.756 0.844

0.8 0.999 0.730 0.933 0.815 0.865

0.9 0.999 0.758 0.888 0.801 0.879

1.0 0.999 0.792 0.755 0.766 0.896
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For KNN = 8 (Table 25), p-value calculations revealed that 0.1 BSMOTE oversampling
did not have any statistical difference from most of the higher oversampling percentages
except for 0.7, where the former had better precision, F-score, and macro-precision. Hence,
0.1 was considered to give the best results, highlighted in green in Table 25.

Table 25. Credential access: RU followed by BSMOTE oversampling using KNN = 8.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision
0.1 0.999 0.746 0.844 0.780 0.873
0.2 0.999 0.697 0.933 0.786 0.848

0.3 0.999 0.635 0.888 0.719 0.817

0.4 0.999 0.702 0.911 0.769 0.851

0.5 0.999 0.684 0.911 0.779 0.842

0.6 0.999 0.647 0.911 0.747 0.823

0.7 0.999 0.629 0.888 0.714 0.814

0.8 0.999 0.741 0.844 0.773 0.870

0.9 0.999 0.811 0.888 0.823 0.905

1.0 0.999 0.706 0.933 0.789 0.853

7.5. Random Undersampling Followed by SVM-SMOTE Oversampling

In this analysis set, SVM-SMOTE using KNN 3, 5, and 8 was used for oversam-
pling the minority classes for privilege escalation and credential access in the UWF-
Zeekdata22 dataset.

7.5.1. Privilege Escalation: Random Undersampling Followed by SVM-SMOTE
Oversampling with Varying KNN

For KNN = 3, Table 26 contains the average metrics values. Welch’s t-test results
showed that 0.1 oversampling had better precision and macro-precision than 0.2, but
0.3 oversampling percentage had better recall than 0.1, 0.4, and 0.7. There were no statistical
differences between the metrics of 0.3, 0.5, 0.6, and 0.9. Additionally, 0.3 had better recall
and F-score than 0.8 and was better than 0.1 across all metrics; hence, 0.3 was selected as
having the best overall results.

Table 26. Privilege escalation: RU followed by SVM-SMOTE oversampling using KNN = 3.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.870 0.800 0.816 0.934

0.2 0.999 0.568 0.750 0.637 0.784
0.3 0.999 0.788 1.000 0.868 0.894
0.4 0.999 0.733 0.700 0.706 0.866

0.5 0.999 0.920 1.000 0.955 0.960

0.6 0.999 0.826 0.900 0.852 0.913

0.7 0.999 0.933 0.800 0.847 0.966

0.8 0.999 0.826 0.700 0.718 0.913

0.9 0.999 0.800 0.900 0.834 0.899

1.0 0.999 0.514 0.500 0.488 0.757

Table 27 shows the best oversampling ratio of 0.5 for KNN = 5. Welch’s t-test analysis
showed that 0.1 SVM-SMOTE oversampling had better recall than 0.2 and better precision
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and macro-precision than 0.3 and 0.4. Therefore, 0.5 replaced 0.1 as the best overall percent-
age with better recall. No statistical differences existed with 0.6, 0.7, and 0.8 oversampling
percentages. Additionally, 0.5 had better recall than 0.9 and 1.0 percentages; hence, 0.5 was
selected as the best oversampling percentage.

Table 27. Privilege escalation: RU followed by SVM-SMOTE oversampling using KNN = 5.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.910 0.800 0.807 0.954

0.2 0.999 0.700 0.450 0.533 0.849

0.3 0.999 0.708 0.950 0.798 0.854

0.4 0.999 0.786 0.800 0.763 0.893
0.5 0.999 0.853 1.000 0.915 0.926
0.6 0.999 0.874 0.950 0.894 0.937

0.7 0.999 0.900 0.900 0.866 0.949

0.8 0.999 0.826 1.000 0.897 0.913

0.9 0.999 0.800 0.600 0.666 0.899

1.0 0.999 0.860 0.700 0.724 0.929

The best overall percentage decreased to 0.2 for KNN = 8 (Table 28) for privilege
escalation. Welch’s t-tests results showed that 0.2 oversampling had a better F-score than
0.1 but had no statistical differences from 0.3 and 0.4 values. It also had better F-scores than
0.5 and 0.6 and better recall than 0.7. However, 0.2, 0.8, and 0.9 were statistically identical;
they had better recall than 1.0.

Table 28. Privilege escalation: RU followed by SVM-SMOTE oversampling using KNN = 8.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.079 0.850 0.142 0.539
0.2 0.999 0.303 1.000 0.378 0.651
0.3 0.999 0.088 0.850 0.159 0.544

0.4 0.999 0.137 1.000 0.237 0.568

0.5 0.999 0.095 0.800 0.167 0.547

0.6 0.999 0.302 0.650 0.248 0.651

0.7 0.999 0.081 1.000 0.149 0.540

0.8 0.999 0.093 1.000 0.170 0.546

0.9 0.999 0.221 0.900 0.270 0.610

1.0 0.999 0.175 0.750 0.233 0.587

7.5.2. Credential Access: Random Undersampling Followed by SVM-SMOTE
Oversampling with Varying KNN

Table 29 presents the results for RU of benign data followed by SVM-SMOTE over-
sampling using KNN = 3 of the minority tactic, credential access. When analyzing Welch’s
t-test results, 0.2 had better recall than 0.1 and better recall and F-score than 0.3. However,
it had no statistical differences from 0.4, 0.5, and 0.6. It had better precision and macro-
precision than 0.7. However, though 0.2 followed the same pattern as 0.8, it has a better
F-score. Though 0.2 has no significant differences from 0.9 and 1.0, it is chosen as the
best-performing oversampling percentage since it has the least data.
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For KNN = 5, as shown in Table 30, 0.1 SVM-SMOTE oversampling percentage gives
better results than other values. When p-values were analyzed, 0.1 did not have statistically
significant differences from the higher oversampling percentages except 0.5 and 0.8: 0.1
had better precision, F-score, and macro-precision than 0.5 and better recall and F-score
than 0.8; hence, 0.1 was chosen as the best result.

Table 29. Credential access: RU followed by SVM-SMOTE oversampling using KNN = 3.

Oversampling % Accuracy Precision Recall F-score Macro-Precision

0.1 0.999 0.774 0.777 0.758 0.887
0.2 0.999 0.731 0.933 0.815 0.865
0.3 0.999 0.720 0.800 0.755 0.860

0.4 0.999 0.734 0.955 0.820 0.867

0.5 0.999 0.700 0.911 0.776 0.850

0.6 0.999 0.666 0.888 0.756 0.833

0.7 0.999 0.663 0.911 0.754 0.831

0.8 0.999 0.618 0.933 0.740 0.809

0.9 0.999 0.717 0.977 0.821 0.858

1.0 0.999 0.758 0.822 0.749 0.879

Table 30. Credential access: RU followed by SVM-SMOTE oversampling using KNN = 5.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision
0.1 0.999 0.761 0.933 0.827 0.880
0.2 0.999 0.719 0.911 0.782 0.859

0.3 0.999 0.761 0.911 0.826 0.880

0.4 0.999 0.713 0.955 0.809 0.856

0.5 0.999 0.668 0.888 0.759 0.834

0.6 0.999 0.768 0.911 0.825 0.884

0.7 0.999 0.788 0.977 0.862 0.894

0.8 0.999 0.709 0.822 0.741 0.854

0.9 0.999 0.813 0.866 0.817 0.906

1.0 0.999 0.759 0.844 0.786 0.879

For KNN = 8, 0.3 SVM-SMOTE oversampling gave better results than other ratios,
as presented in Table 31. Welch’s t-test analysis showed that it had better recall and F-
score than 0.1 and 0.4 and better recall than 0.5. For the higher oversampling percentages,
0.3 gave better precision and macro-precision than 0.7 and a better F-score than 0.8. It
had no significant differences with the rest of the percentages; hence, 0.2 was selected as
the best.

Table 31. Credential access: RU followed by SVM-SMOTE oversampling using KNN = 8.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.1 0.999 0.703 0.777 0.726 0.851

0.2 0.999 0.707 0.888 0.784 0.853
0.3 0.999 0.746 0.955 0.834 0.873
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Table 31. Cont.

Oversampling % Accuracy Precision Recall F-Score Macro-Precision

0.4 0.999 0.746 0.800 0.762 0.873

0.5 0.999 0.750 0.777 0.762 0.874

0.6 0.999 0.744 1.000 0.851 0.872

0.7 0.999 0.640 0.955 0.763 0.820

0.8 0.999 0.710 0.844 0.722 0.855

0.9 0.999 0.789 0.888 0.826 0.894

1.0 0.999 0.700 0.933 0.789 0.850

7.6. Summary of the Findings

Figure 3 presents a summary of the findings. Figure 3a presents the best oversampling
ratios for oversampling then undersampling for privilege escalation; Figure 3b presents
the best oversampling ratios for oversampling then undersampling for credential access;
Figure 3c presents the best oversampling ratios for undersampling then oversampling for
privilege escalation; and Figure 3d presents the best oversampling ratios for undersampling
then oversampling for credential access in UWF-Zeekdata22.

Figure 3. Plot of best oversampling ratios.

For BSMOTE for oversampling then undersampling for KNN = 8 for privilege escala-
tion, precision was the best at the oversampling ratio of 0.5, but the recall was the best at
the oversampling ratio of 0.2. For SVM-SMOTE, precision was the best at the oversampling
ratio of 0.6, and recall was the best at recall of 0.3, as shown in Figure 3a.

7.7. Limitations of This Study

Since there were no other similar datasets available at the time of this work, this work
was performed on only one dataset. This work needs to be tested on other similar datasets.
Additionally, this dataset did not have enough data to test the other tactics.

8. Conclusions

This paper looks at the impact of the order of oversampling and undersampling on
network attack tactic classification. From the results, it can be observed that the order



Knowledge 2024, 4 118

of oversampling and undersampling matters; that is, it makes a difference whether we
perform oversampling first or undersampling first. The results show that oversampling
before undersampling provided better results. For oversampling before undersampling, for
privilege escalation, BSMOTE and SVM-SMOTE performed equally well at a resampling
ratio of 0.1, at KNN = 3. At KNN = 5, however, SVM-SMOTE performed better with a
lower resampling ratio, but for KNN = 8, BSMOTE again had a lower resampling ratio.
Of course, the final objective was to find the best classification results with the lowest
oversampling ratios.

For credential access, however, BSMOTE used a lower resampling ratio for oversam-
pling before undersampling.

For privilege escalation, KNN = 3 gave the best results with the lowest oversampling
ratios, but for credential access, KNN = 5 gave the best results with the lowest oversam-
pling ratios.

Contrary to the general notion, the data do not have to be oversampled to 50% (or the
two sample sizes do not have to be even) to obtain the best results. In many cases, as have
seen in our results, even oversampling of 10% of the minority data is enough.

These results conform to those of a previous work by Bagui et al. (2023) [16], so it can
be concluded that 10% oversampling of minority data is enough for ML classification of
attack data as well as tactic data. However, unlike with attack data, the order of resampling
matters with tactic data.

9. Future Works

Future works will determine if these results have any practical implications. Another
good study would to be test how these results compare when other oversampling techniques
are used.
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