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Abstract: Over the years, various software quality measurement models have been proposed and
used in academia and the software industry to assess the quality of produced code and to obtain
guidelines for its improvement. In this article, we describe the design and functionality of SQMetrics,
a tool for calculating object-oriented quality metrics for projects written in Java. SQMetrics provides
the convenience of measuring small code, mainly covering academic or research needs. In this context,
the application can be used by students of software engineering courses to make measurements
and comparisons in their projects and gradually increase their quality by improving the calculated
metrics. Teachers, on the other hand, can use SQMetrics to evaluate students’ Java projects and grade
them in proportion to their quality. The contribution of the proposed tool is three-fold, as it has been:
(a) tested for its completeness and functionality by comparing it with widely known similar tools, (b)
evaluated for its usability and value as a learning aid by students, and (c) statistically tested for its
value as a teachers’ aid assisting in the evaluation of student projects. Our findings verify SQMetrics’
effectiveness in helping software engineering students learn critical concepts and improve the quality
of their code, as well as in helping teachers assess the quality of students’ Java projects and make
more informed grading decisions.

Keywords: software quality; quality model; software metrics; metrics tool; object-oriented software
metrics; QMOOD; Java

1. Introduction

The primary objective of this research is the design and development of a complete,
functional and usable software tool for calculating object-oriented quality metrics for
projects written in Java. The overarching goal of the proposed SQMetrics tool is to provide
support within the realm of educational endeavors in software engineering (SE) academic
courses. It serves as a dual-purpose instrument, enabling students to quantify and jux-
tapose metrics within their projects, thereby incrementally enhancing their code quality.
Furthermore, it empowers instructors to assess the Java projects of their students, assigning
grades that commensurate with the quality of work produced.

The contribution of the proposed tool is three-fold, as it has been: (a) tested for
its completeness and functionality by comparing it with widely known similar tools;
(b) evaluated for its usability by the students who used it, using the SUS questionnaire; and
(c) tested experimentally for its assistance in the evaluation of student’s projects through
statistical analysis.

The motivation to develop SQMetrics arises from the desire and need to enhance
the quality of education in software engineering (SE) academic courses. By offering a
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platform for students to assess and compare various metrics, the tool encourages iterative
improvement in code quality over time. Also, students can compare their project metrics
with established benchmarks or exemplary projects, fostering a deeper understanding of
relative strengths and areas for improvement. The development of SQMetrics is driven by
the aspiration to align academic projects with industry practices. By introducing students
to industry-standard quality metrics and measurement tools, educators prepare them for
real-world software development scenarios. Finally, instructors seek tools like SQMetrics to
enable more comprehensive and objective assessments of student projects. By automating
the measurement of diverse quality metrics, instructors can move beyond solely evaluating
functional aspects and gain insights into the overall software quality.

Various quality metrics were invented over time, each one resulting in a number that
indicatively quantifies the quality of an attribute of a software entity (e.g., a class). There
is a plethora of such metrics, while new ones are constantly being added, depending on
software requirements and user needs. Several metrics are used to evaluate specifically
object-oriented software quality, including cohesion, coupling, complexity, inheritance, and
polymorphism [1]. Apart from software quality metrics, current software development
companies use agile processes and would also be interested in practical metrics related to
processes and team effectiveness [2].

In 1991, the International Organization for Standardization (ISO) issued the
9126 standard [3] that refers to the quality of software products, which was revised in
2001 and consists of four parts. The first part refers to the quality model proposed and
classifies the quality of software into a structured set of six characteristics: Functionality,
Usability, Reliability, Efficiency, Maintainability, and Portability. Those characteristics are
further configured in several sub-characteristics [3]. In 2011, the ISO 9126 standard was
replaced by the 25010 standard [4] and the characteristics were increased from six to eight.
These characteristics, concerning the quality of a software product, are: Functional Suitabil-
ity, Performance Efficiency, Compatibility, Usability, Reliability, Security, Maintainability,
and Portability. It should be noted here that although the term “measure” is used instead
of the term “metric” in the ISO 25000 family of standards [4], we will consistently use
the term “metric” throughout the article. These two standards do not state which met-
rics should be used to accurately measure the characteristics or sub-characteristics they
define. Moreover, the degree of importance of each sub-characteristic in relation to its
corresponding characteristic is not explicitly stated. In order to assign values to these
“external” characteristics, the internal characteristics of the software need to be computed
and then matched to external characteristics. Internal are the characteristics of the code
and its structure, such as lines of code, comments, number of branches, methods-functions,
etc. [5]. Internal metrics are used to evaluate the quality of the code itself, rather than its
behavior or performance.

Several contemporary software tools are available for measuring object-oriented soft-
ware quality metrics. These tools provide developers with a range of metrics that can be
used to evaluate software quality. Examples of such tools include Understand, Eclipse
Metrics Plugin, SonarQube, etc. [6]. These tools can help developers identify potential
problems in their software and improve its overall quality, but were not developed for
educational purposes.

One gap in contemporary software object-oriented metrics tools used for assisting
software engineering courses is the lack of emphasis on teaching students how to interpret
and apply the metrics effectively. While these tools can provide valuable insights into the
quality of software design and implementation, students may not always understand how
to use this information to improve their software development practices, as they cannot
interpret and apply the metrics correctly [7].

Although professional static code analyzers and refactoring tools are being used in
education, there are also some academic tools designed specifically for education that
provide feedback on Java code quality, e.g., ELP [8], Java Critiquer [9], FrenchPress [10],
and AutoStyle [11].
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ELP is an online interactive and constructive environment for learning how to program
that checks for unused variables and parameters, redundant logical expressions, numeric
literals that should be named constants, and other stylistic blunders. The framework uses
both software engineering metrics and relative comparison to a teacher’s model to judge
the quality of students’ programs. Except for cyclomatic complexity (CC), there are no
other metrics in common with SQMetrics. The Java Critiquer addresses localized stylistic
issues, including Boolean expressions, increment operators, unnecessary parentheses, and
floating-point data types. FrenchPress diagnoses flaws are characteristic of programmers
who have not yet assimilated the object-oriented idiom. Such shortcomings include the
misuse of the public modifier, fields that should have been local variables, and instance
variables that should have been class constants. AutoStyle provides stepwise feedback on
how to improve the style of correct programs, based on historical student data.

Scientific studies on educational tools in software engineering reveal crucial insights
into fostering effective learning environments. A systematic mapping study emphasizes
software engineering competencies (SEC) literature, presenting a comprehensive review
of available SEC frameworks and models [12]. This sheds light on the significance of
cultivating specific skillsets in software engineering education, aligning with the industry’s
demands and enhancing the relevance of educational programs. The evaluation and
enhancement of software quality in educational settings pose multifaceted challenges.
Several studies delve into the complexities of software engineering education, unveiling
challenges in teaching, assessment methods, and alignment with industry needs [13–15],
while most of them emphasize the need for a balance between theoretical concepts and
practical skills [16,17].

A growing body of research has shifted its focus toward evaluating the quality of
programs authored by beginners (mostly SE students), instead of their correctness [18,19].
Such studies highlight diverse quality issues in student programs that often persist [20,21].
Though reasons for these issues are unclear, students may prioritize passing tests over key
quality aspects, e.g., maintainability or reusability. Tools for code analysis often overlook
novices, so students are not motivated to improve their code quality. However, with the
correct guidance by the instructors, the impact of software quality measurement tools can
be transformative. The deployment of such tools empowers students to identify and rectify
flaws in their code, thereby honing their skills in writing clean, maintainable code. This
improvement extends beyond individual projects, contributing to an elevated standard of
code quality across various assignments and tasks [8,22]. SQMetrics is mainly targeted to
beginners in Java programming and, thus, it is suitable for use in SE courses.

A special kind of software tools facilitating the educational process is the Automated
Assessment Tools (AATs), which have gained prominence in automating the assessment
process for computer programs created by students [23]. These systems empower stu-
dents to independently verify whether their code solutions meet assignment requirements,
without requiring teacher assistance. Typically, this is achieved through automated compi-
lation and the execution of students’ code within a controlled environment, followed by a
verification of correctness using techniques like output comparison, unit testing, or other
established techniques [24]. Depending on the tool, students might or might not receive
detailed feedback on what is wrong with their work. By providing quick feedback and
pinpointing the mistakes, these tools can make computer science students more interested
in their programming classes and boost their motivation [25]. Lastly, most of these tools
can even automatically grade student work.

Several empirical studies have evaluated the effectiveness of software tools in
SE education. In [26], code quality tools and metrics to automatically assess student projects
were exploited. The results indicated that, to reduce the effort required to grade projects,
two traditional code metrics, namely method lines of code and number of statements,
perform best.

The software presented in this study (SQMetrics) implements some of the classic code
size metrics and cyclomatic complexity proposed by McCabe [27], but mainly focuses on
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object-oriented metrics and, in particular, those proposed by Shyam Chidamber and Chris
Kemerer (C&K) [28] and Jagdish Bansiya and Carl Davis (B&D) [29]. The latter introduced
the Quality Model for Object-Oriented Design (QMOOD). The software quality metrics
supported by the SQMetrics tool are thoroughly presented in Section 3.3. This part of
the literature review is devoted to a separate section, as it contains all useful concepts
and information for understanding the operation of the proposed tool. Together with the
computation logic of each metric, the computation methods adopted by the SQMetrics tool
are explained in this section. As some metrics have ambiguous definitions and each tool
interprets them at will, SQMetrics has been configured to support all prevailing methods
through a set of preferences which the user can configure.

The purpose of the SQMetrics application is not to compete with existing commercial
applications, but to provide the convenience of measuring small code, mainly covering
academic or research needs. In this context, the application can be easily used both by
software engineering students to make measurements and comparisons in their projects, with
a view to improving the indicators calculated, and by teachers to evaluate students’ Java
projects, which are graded in proportion to their quality. The use of feedback in software
engineering education is very important for students to improve their work; and therefore,
SQMetrics can be used to provide objective feedback on the quality of software projects [30].
Moreover, the efficiency of using SQMetrics as an AAT in assessing JAVA code quality was
tested and examined in the exploratory study in [31]. The results showed a positive correlation
between instructor rating and the overall quality index extracted from the software, indicating
that the software tool can be a reliable and accurate assistant to instructor grading.

Section 2 outlines the methodology followed for the development of the SQMetrics tool.
The software quality metrics it supports, together with its functionalities and challenges,
are presented in Section 3. Section 4 presents the design of the tool, while a comparison of
the tool measurements for an indicative Java project, with the corresponding measurements
calculated by alternative software quality tools, are presented in Section 5. The evaluation of
the tool in terms of effectiveness, usability, validity of results, functionality, and learnability
from students is presented in Section 6. A discussion of the main findings and suggestions
for future work follow in Section 7, while the conclusions of this study are summarized in
Section 8.

For readability purposes, all acronyms used in this article are listed in the list of
abbreviations in Appendix A.

2. Methodology

The structured methodology that was followed in this study comprises four distinct
phases, each meticulously detailed in separate sections of this article: Analysis (Section 3),
Design (Section 4), Implementation and Testing (Section 5), and Evaluation (Section 6). The
result of this study is a software tool, which has been developed as a specific solution for
overcoming the challenges discussed in this article. As it is explained in the next paragraphs,
well-known methods, such as surveys and case studies, have been used to evaluate the
proposed tool. This systematic approach is fundamental to the successful development of a
new software system and ensures that the objectives are effectively achieved.

The Analysis phase involves a comprehensive examination of the problem domain.
Here, we define the requirements, identify stakeholders, and gain a deep understanding
of the challenges and constraints. In this step, the challenges, the goals, and the basic
functionality of the system are presented. Also, the metrics that the system supports are
selected. As detailed in Section 3, metrics put forth by C&K and B&D are implemented
in this study, encompassing code size metrics and the McCabe cyclomatic complexity.
The core ideas behind these metrics as originally presented by their respective authors
are examined and potential ambiguities associated with these concepts that could lead to
misinterpretation are addressed. Where multiple computation approaches exist for a given
metric, we provide clarity on the computation methods adopted by the SQMetrics tool.
This initial phase lays the foundation for the subsequent stages.
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Building upon the insights from the analysis, the Design phase focuses on creating a
blueprint for the software system. Architectural diagrams, data models, and user interfaces to
conceptualize the system’s structure and behavior are developed. The architecture of the tool is
presented in Section 4, where the class hierarchy and the design of the graphical environment of
the SQMetrics tool are explained. This phase guides the implementation process.

The Implementation and Testing phase is thoroughly presented in Section 5. In this step,
the system is implemented and its functional adequacy is tested. The implementation phase
involves translating the design specifications into a working system, including coding,
integration, and configuration. Also, rigorous testing is critical to ensure the software
functions as intended and meets quality standards. Test cases were developed and tests
on the SQMetrics tool were executed to see if it meets the functional requirements [32].
Demonstration measurements, functional tasks, and a comparison of results to other
software metrics tools are presented. To demonstrate the results derived from SQMetrics
computations, an analysis has been conducted using a Java project consisting of seven
classes, developed primarily for educational objectives. Next, the results of the SQMetrics
tool measurements are compared to the results of the four widely used software metrics
tools ckjm, cccc, Understand, and CodeMR. This comparison consists of a test for SQMetrics’
completeness and functionality. Finally, the functional comparison tasks that SQMetrics
can perform (comparison of different versions of a Java project; comparison of different
Java projects) are explained and discussed through two real-world test cases: comparison
between 9 different versions of the SQMetrics tool (from v0.2 to v0.9), and comparison
between 8 different Java projects.

The final Evaluation phase involves assessing the software’s performance and function-
ality against the initially defined requirements. This evaluation includes user testing and
comparison to well-known software quality metrics tools. The evaluation phase provides
valuable insights for fine-tuning and further enhancements. As detailed in Section 6, in this
step, the system is evaluated based on three axes:

1. Effectiveness: A Rubric-based evaluation of software quality metrics tools, based
on functional and usability criteria, is useful in assessing and comparing different
software tools [33]. A Rubric is a framework that sets out criteria and standards
for different levels of performance and describes what performance would look
like at each level. Our proposed framework incorporates a set of 17 meticulously
defined functional and usability criteria, which collectively provide a well-rounded
perspective on the capabilities and limitations of various software quality metric
tools. Some criteria also belong to certain sub-categories (e.g., security, compatibility,
portability, etc.). The outcomes of this assessment, presented in Section 6.1 of this
article, offer a detailed account of the SQMetrics tool’s performance, usability, and its
comparative placement among its peers in the field.

2. Usability: The perceived usability of the SQMetrics tool has been measured using the
System Usability Scale (SUS) questionnaire. The SUS questionnaire is a widely rec-
ognized and validated instrument for gauging the usability of software applications,
and is considered one of the most effective questionnaires in terms of the validity and
reliability of the results produced. It comprises a set of ten questions designed to elicit
user feedback on various aspects of the SQMetrics tool’s usability. The overall SUS
score for the SQMetrics tool was 70.67 (SD = 15.05), indicating good usability. The
study is presented in Section 6.2.1.

3. Other aspects: In our comprehensive evaluation of the SQMetrics tool, the multifaceted
nature of software quality assessment is acknowledged. In addition to measuring
perceived usability through the SUS questionnaire, our study focused on other critical
dimensions, including the validity and understandability of results, potential limita-
tions, and the tool’s learnability. To gather insights into these aspects, a customized
questionnaire tailored to the unique characteristics and goals of the SQMetrics tool
was designed. A Cronbach’s alpha result of 0.782 for the items in this custom-made
questionnaire suggests a relatively good level of internal consistency reliability. The
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findings from this questionnaire are presented in detail in Section 6.2.2, where a com-
prehensive study showcasing the SQMetrics tool’s performance across these critical
dimensions is provided. This holistic approach to evaluation ensures that this research
not only quantifies usability, but also offers a well-rounded assessment of the tool’s
overall quality and practicality.

User testing was performed with the volunteering participation of 78 postgraduate
students studying the course “Software Design and Management”, which is part of the
Postgraduate Program on Information Systems at Hellenic Open University. The study
was carried out from 20 April 2023 to 17 May 2023.

By following this structured methodology, a systematic and organized approach to
software development is ensured, enhancing the quality and reliability of the proposed
SQMetrics system. The conclusions of the article verify SQMetrics’ effectiveness in helping
SE students learn critical concepts and improve their code quality.

3. Analysis of the SQMetrics Tool
3.1. Goals and Functionalities

The main goal of this study is the development of an easy-to-use open-source tool
capable of calculating a complete set of quality metrics for code written in Java, with an
emphasis on object-oriented metrics, to support both students and teachers involved in SE
academic courses.

The developed SQMetrics (Software Quality Metrics) tool calculates the most common
code size metrics (lines of code, logical lines of code, and lines of comments); all metrics
proposed by C&K; all metrics included in the third level of the hierarchical QMOOD model,
as proposed by B&D; as well as the quality characteristics of the first level of this model.
QMOOD metrics were included in the tool as they allow for overall high-level quality
indices to be calculated.

Namely, our tool calculates the third-level metrics of QMOOD (DSC, NOH, ANA,
DAM, DCC, CAM, MOA, MFA, NOP, CIS, NOM); the first-level quality characteristics
of QMOOD (REUSABILITY, FLEXIBILITY, UNDERSTANDABILITY, FUNCTIONALITY,
EXTENDIBILITY, EFFECTIVENESS); the common ‘Lines of Code’ metrics (PLOC, LLOC,
LC); and the object-oriented metrics that are commonly used in research studies (DIT, NOC,
CBO, WMC, LCOM1, LCOM2, LCOM3, RFC).

The adopted metrics play a crucial role in software quality assessment and improve-
ment. The third-level metrics of QMOOD offer insights into design complexity, main-
tainability, and encapsulation [34,35]. The first-level quality characteristics are critical
attributes assessed using these metrics [36]. Common ‘Lines of Code’ metrics provide
size-based estimates, aiding in project planning and effort estimation. Finally, the most
popular object-oriented metrics offer insights into design complexity, coupling, cohesion,
and maintainability [35]. These metrics collectively guide software developers and ar-
chitects in making informed decisions about code design, refactoring, and optimization
to enhance software quality, maintainability, and overall performance. There are several
research publications that identify these metrics as “popular”, e.g., [37,38]. The popularity
of these metrics can also be seen in the fact that they are included in widely used software
tools for measuring software quality, such as Eclipse Metrics Plugin, Understand, and
SonarQube, as well as in industry standards such as ISO/IEC/IEEE 12207 and 25010 [4].

Finally, from the above metrics, SQMetrics can produce overall Total Quality Indices
(TQIs), thus providing the ability to compare (a) different versions of the same application
code or (b) different software applications (by adapting the approach proposed by B&D).

3.2. Challenges

Software quality and metrics tools are essential for software developers to assess the
quality of their code and ensure it meets the required standards. There are various tools
available in the market that offer different features, capabilities, and metrics. SonarQube,
CAST Application Intelligence Platform, and JIRA Software are some of them. Each tool has
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its strengths and weaknesses, and a more thorough contemporary tools overview together
with their Rubric-based evaluation is presented in Section 6.1.

In order to compute the set of metrics described in the previous section, relevant tools
capable of providing such measurements were studied. It was found that there are tools
that calculate some of the metrics of the above models, but not all of them. Apart from the
metrics, none of the tools examined in this study could fully support the high-level quality
features of the QMOOD model [29]. More particularly, none of them can: (a) compute the
quality characteristics of the QMOOD model, (b) compare different versions of the same
project, or (c) compare different projects according to the QMOOD model.

Moreover, the various tools adopt different methods of computation for some metrics
but do not provide the user with configuration options, so that they can choose the desired
method with which each metric will be computed. In other words, different tools make
their own assumptions on how to compute some conceptually ambiguous metrics.

In addition to the above, the various tools are often not suitable for inexperienced
users, as they either run in the shell, or constitute add-ons to other applications (with all
that implies in terms of compatibility with new versions of the main application), or require
extensive configuration in order to work properly.

Finally, the existing metrics tools were not made for educational purposes and as such
may not be suitable for students and teachers of a SE course. The tool could be useful to
teachers and students by providing a quantitative measure of the quality of their code.
Students can benefit from such measures since they can identify areas for improvement
and track their progress over time. It can also help teachers assess student performance
and provide targeted feedback to help students improve their code. Additionally, the use
of the tool can help students develop critical thinking skills and a deeper understanding of
object-oriented principles by analyzing and improving the quality of their Java code.

The proposed SQMetrics tool fully supports the above models and tries to overcome
these challenges. The tool provides a simple GUI, which is suitable for inexperienced
users (such as SE students) as well, together with a fully parametrized environment in
order to support different methods of computation for certain metrics. It also supports the
high-level quality features of the QMOOD model in order to assess the overall quality of a
Java project. SQMetrics has been developed for educational purposes considering various
pedagogical issues (tool design, educational objectives, pedagogical strategies, etc.). The
metrics supported by the tool are presented in the next section.

3.3. Software Quality Metrics Supported by the Tool

As mentioned before, the metrics considered in this study are those proposed by
C&K and B&D, code size metrics, as well as the McCabe cyclomatic complexity. The
following sub-sections present the main concepts related to those metrics (as proposed by
their authors), as well as certain ambiguities that accompany these concepts and may be
misinterpreted. In cases where there are several alternatives for the computation logic of a
metric, the computation methods adopted by the SQMetrics tool are clarified.

3.3.1. Structured (Procedural) Programming Metrics

The most common metric used to measure the typical size of code is LOC (Lines Of
Code). This metric can be analyzed into three sub-metrics, which are:

• Physical Lines Of Code (PLOC), where all the lines of code are counted along with the
blank lines and comments. It is essentially the number of “ENTER” or “CR” characters.

• Logical Lines Of Code (LLOC), that is, the command lines. A logical line is any line
that contains actual code. Comment lines do not count. Instead, lines containing code,
along with comments, are normally calculated. Blank lines and lines containing only a
curly brace { are not counted.

• Lines of Comments (LC), i.e., the lines containing comments. They may contain only a
single comment or a comment together with actual code (in the same line). Comments
that extend to more lines are calculated for each line separately.
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Lines of code metrics can provide an indication of the effort required to develop
the code [39]. To calculate the above metrics, the tool “reads” the class code line-by-line
(parsing) from the corresponding java file.

Another fundamental metric is the complexity of the code. The metric of cyclomatic
complexity (CC) was proposed by McCabe [27]. For the calculation of CC, decision or
branching nodes are counted and a graph of the code execution flow with nodes and edges
is created. Then, cyclomatic complexity for a flow graph G is given by Equation (1):

V(G) = e − n + 2, (1)

where V(G) is the cyclomatic complexity, e is the number of edges, and n is the number of
nodes [27].

The cyclomatic complexity V(G) for a flow graph G can also be defined as

V(G) = p + 1, (2)

where p is the total number of predicate nodes contained in the flow G [40]. Finally, V(G) is
equal to the total number of regions in the flow graph (the closed regions bounded by nodes
and edges plus the outer open region not bounded by nodes and edges). V(G) assumes
discrete integer values.

As an example, the calculation of the cyclomatic complexity of the method that
computes the NOC metric of the C&K model is presented in Figures 1 and 2 (the metric
and the tool are presented thoroughly in the next sections). The code in Figure 1 consists of
a part of the metrics.Metrics class.
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Watson and McCabe proposed to measure keywords (decisions–branches) and opera-
tors. Therefore, starting from 1, one unit is added for each keyword [20]. In the previous
example, we have three keywords (one FOR and two IFs). The last appearance of the “Re-
turn” statement does not count. Thus, starting from 1 and adding 3, we have a cyclomatic
complexity of 4 (the same result as above).

The upper bound established by McCabe for its complexity measure equals 10, as
higher values make the code more prone to errors and debugging more difficult [9]. How-
ever, in practice, especially when experienced programmers are involved, values of up to
15 or even higher can be present and acceptable [41] (p. 15), as it depends on the code’s
nature. Moreover, the object-oriented paradigm can be a factor that influences the threshold.
In [42], a sample of 694 Java products has been measured, and it was found that more than
90% of the measured methods have a cyclomatic complexity of less than 5 and only 2%
of the methods have a complexity greater than 10. This illustrates the fact that measure
thresholds are context-dependent.

This latter approach of Watson and McCabe is the one adopted also by the present
study, as it greatly simplifies the code required to calculate this metric. The code of
each method is parsed and the presence of particular reserved words is counted: “if”,
“case”, “default”, “for”, “while”, “break”, “continue”, “catch”, “finally”, “throw”, “throws”,
“return”, and the operators “&&”, “||”, “:”, “?” [41], (p. 25). Regarding “return”, its last
instance is not counted. Of course, any presence of the above words in comments does not
affect the metric calculation.

It should be noted here that in object-oriented programming languages, it does not
make sense to calculate the cyclomatic complexity for the whole code, but for specific
elements of it, such as individual methods (functions) or even classes.
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3.3.2. Object-Oriented Metrics
Chidamber and Kemerer (C&K) Metrics

C&K’s proposed metrics are [28,43,44]:

• Number of Children (NOC): It is the number of direct descendants of a class, that is, the
classes that directly inherit from it; its subclasses. A modification of the parent class has a
potential impact on the offspring (child class). The higher the NOC, the greater the control
required to make changes to the offspring if changes are made to the parent. Because
there is no specific method of the java.lang.Class to return the direct descendants of a
class, the tool detects the classes that have the class under consideration as a superclass.
For each one of them, the NOC of the class is increased by 1.

• Depth of Inheritance Tree (DIT): It is the “depth” (or the “height”) of the inheritance
tree of a class, within a software project. The more ancestors the class has, the greater
the DIT. A high value of DIT means that there is an increased chance of influencing the
class, in case changes are applied to its ancestors. Classes that inherit directly from the
Object class, or from other external classes (such as javax.swing.Jframe, for example),
are considered to be at the top (or, in another sense, at the root) and have DIT = 1. The
tool checks whether the class under consideration has a superclass within the project,
and if so, retroactively calls itself to check if the superclass also has a parent, increasing
the DIT by 1 each time, until it reaches the root.

• Coupling Between Objects (CBO): Two objects are coupled, when and only when at
least one of them interacts with the other. This coupling can occur through method
calls, field accesses, inheritance, arguments, return types, and exceptions. Although
there are studies that do not consider the inheritance relationship as coupling [45], the
definition of CBO explicitly includes coupling via inheritance [44] (a change from the
earlier definition [28]). Our tool increases a class’s CBO by 1 for each other class with
which it communicates, that is, it calls its methods, uses its fields, or objects of its type,
or when the other class performs at least one of the above forms of communications.
First, the code of the class is checked, and all the classes to which it refers are stored in
a list. Then, the code of all the other classes is checked and the ones referring to that
class are registered in the list. In the end, duplicates are deleted and the tool returns
the size of the list. SQMetrics provides the option to accept inheritance as coupling or
not. The default choice is that inheritance relations are normally calculated.

• Weighted Methods per Class (WMC): It is the complexity of the class. That is, the sum
of the complexities of the class methods. It is given by Equation (3).

WMC = ∑n
i=1 ci, (3)

where ci is the complexity of method i and n is the number of methods. WMC assumes
discrete integer values.

C&K do not explicitly define the concept of complexity. Therefore, the complexity of
each method can either be considered equal to 1, or the McCabe cyclomatic complexity can
be calculated for each method. C&K suggested the McCabe cyclomatic complexity to be
used [43], but later in their final publication, they simply state that any “traditional” metric
can be applied [44]. In general, the number of methods and the complexity constitutes an
indicator of the effort required to develop and maintain the class. The greater the number
of methods in a class, the greater the potential impact on the offspring, as they inherit all the
methods defined in the superclass. The SQMetrics tool calculates the sum of the cyclomatic
complexity of all the methods in the class. Obviously, McCabe’s cyclomatic complexity is
calculated for each method separately. When a method calls another one, the cyclomatic
complexity of the method being called is not added to that of the caller method. Note
that constructors are not counted. For each class method, the tool calculates its cyclomatic
complexity by calling the relevant method

• Lack of Cohesion of Methods (LCOM): Cohesion refers to the degree to which the
elements inside a module belong together. Two methods in a class are cohesive when
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using at least one instance variable together. The higher the number of such pairs of
methods, the greater the cohesion of the class. For the calculation of LCOM1 (the first
version of the metric), one unit is added for each non-coherent pair and one unit is
subtracted for each coherent pair. If the result is negative, then LCOM1 is 0 and the
class is considered completely coherent. Note that according to C&K, only the instance
variables are considered and not the static ones [44] (p. 488). A high cohesion of a
class is desirable, as it promotes encapsulation. A lack of cohesion implies that the
class should probably be divided into two or more classes. Low cohesion increases
complexity, thus increasing the likelihood of errors in the development process. Two
alternative forms of LCOM1 are LCOM2 and LCOM3, which are calculated according
to Equations (4) and (5), respectively (LCOM2 and LCOM3 assume real values):

LCOM2 = 1− sum(µAj)
m ∗ a

, (4)

LCOM3 =
m− sum(µAj)

m− 1
, (5)

where:
m: The number of class methods;
a: The number of variables in the class;
µAj: The number of methods that access the variable Aj;
sum (µAj): The sum of µAj for all variables in the class.
Apart from LCOM1, LCOM2, and LCOM3, there are a few other variations and ex-

tensions of the LCOM metric (e.g., LCOM4, LCOM5, LCOMHS, etc.), which provide more
specialized perspectives on measuring cohesion within classes and systems. Among the
various Lack of Cohesion in Methods (LCOM) metrics, LCOM1, LCOM2, and LCOM3 are
the most commonly known and used in the software engineering community. The tool
calculates the lack of cohesion between the methods of a class by using those three popular
versions, since they are the foundational variations of LCOM. Getters and setters, as well
as constructors, are not considered. Of course, if the class has no fields (properties), then
LCOM is 0. In all three cases, the code of each method is parsed in order to detect the
non-static object fields they use. To speed up the tool process, LCOM2 and LCOM3 are
calculated by the same method.

• Response For a Class (RFC): The RFC metric is defined by C&K as the set of class methods
that can be executed in response to a message received from an object in that class. It is
the union of all the methods of this class with the set of methods of other classes called
by the methods of this class [44] (p. 487). As a set, each method must be counted only
once. If the RFC for a class is large, it means that there is a high complexity. In this
case, the debugging of the class becomes more difficult, as it requires a higher level of
understanding, on the part of the tester. The greater the number of methods that can
be used by a class, the greater its complexity. In SQMetrics, the proposal of C&K is
implemented; and therefore, the methods of other classes that call methods of the class
under consideration are not calculated. However, the tool provides the user with the
option for those methods to be considered, as well. The class constructors are included.
The tool code that computes this metric is quite complex, as it parses the code of all the
methods of the class word-by-word, while its complexity increases sharply, in case the
user chooses to include the methods of other classes that call methods of this class. In
this case, the code of all the methods of all the classes should be analyzed in order to
determine if there is communication between classes.

Kaur and Maini’s view is worth noting, as they use C&K metrics (but not only them),
to detect code problems (bad smells) [46].

The model proposed by C&K is one of the first models for metrics concerning object-
oriented programming and therefore enjoys wide acceptance. However, its metrics do not
cover aspects of object-oriented programming, such as encapsulation (except for LCOM)
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and polymorphism. For this reason, proposals have been made to extend this model to
better support such properties. Abreu and Melo suggest additional metrics, such as MHF
(Method Hiding Factor) and AHF (Attribute Hiding Factor) for information hiding and PF
(Polymorphism Factor) for polymorphism [47,48]. Moreover, Li and Henry presented more
detailed metrics for calculating cohesion, such as MPC (Message Passing Coupling) and
DAC (Data Abstraction Coupling) [49].

One model that extends the capabilities of the C&K model and is also widely accepted
is the Hierarchical Model presented in the next section.

Hierarchical Model (QMOOD)

In 2002, Bansiya and Davis (B&D) presented the Quality Model for Object-Oriented
Design (QMOOD) [29]. Referring to previous models, but mainly to ISO 9126, they pointed
out that “they are vague in their definition of the lower-level details and metrics needed to
attain a quantitative assessment of product quality” [29] (p. 5).

The model refers to four levels and three links between the levels (Figure 3).
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To determine the quality characteristics of the first level, B&D modified the character-
istics of ISO 9126, from Functionality, Usability, Reliability, Efficiency, Maintenance, and
Portability to Reusability, Flexibility, Understandability, Functionality, Extendibility, and
Effectiveness. Then, the properties needed for the calculation of the first-level characteris-
tics were determined, and they came up with the following: Abstraction, Encapsulation,
Coupling, Cohesion, Complexity, Design Size, Composition, Messaging, Inheritance, Poly-
morphism, and Hierarchies.

These properties can be assessed directly by examining the internal and external
structure, the relationship, and functionality of the design elements, features, methods, and
classes [50]. They are easy to calculate and, therefore, combinations between them can be
used to calculate the characteristics of the first level (L1 in Figure 3). Table 1 shows the
relationships between the quality characteristics of the first level with the design properties
of the second level (L12), as well as the corresponding weights. Each attribute is calculated
as the sum of the values of the corresponding properties on the corresponding factor and
assumes real values, e.g.,

Reusability = 0.5 X Design Size− 0.25 X Coupling + 0.25 X Cohesion + 0.5 X Messaging (6)

In order to numerically estimate each of the second-level design properties, B&D
proposed level-three metrics and correlated them with the properties through one-to-one
matching (L23). The proposed metrics by B&D are presented next (before each third-level
metric’s acronym is its correlated second-level design property in brackets):

• (DESIGN SIZE) Design Size in Classes (DSC): It is the total number of classes of the
project. The tool obtains the size of the list of classes, which has already been created,
in the initial stages of the tool execution.

• (HIERARCHIES) Number Of Hierarchies (NOH): It is essentially the number of classes
that have DIT = 1 (i.e., they are at the top/root of the tree) and NOC> 0 (i.e., they have
at least one subclass).
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• (ABSTRACTION) Average Number of Ancestors (ANA): This metric can be computed
in a straightforward way since it is a simple function of DIT and DSC.

Table 1. L12 association of second-level design properties (rows) with first-level quality characteristics
(columns) [29].

Reusability Flexibility Understandability Functionality Extendibility Effectiveness

Design Size 0.5 −0.33 0.22
Hierarchies 0.22
Abstraction −0.33 0.5 0.2

Encapsulation 0.25 0.33 0.2
Coupling −0.25 −0.25 −0.33 −0.5
Cohesion 0.25 0.33 0.12

Composition 0.5 −0.33 0.2
Inheritance 0.5 0.2

Polymorphism 0.5 0.22 0.5 0.2
Messaging 0.5 0.22
Complexity −0.33

The above three metrics (DSH, NOH, and ANA) are not class metrics, but they concern
the whole project and should only be calculated once for the entire project. However,
because their computation complexity is very low, they do not burden the system at all
and in consequence, they can be computed along with each class’s analysis. Otherwise,
the output table would be more complex, which would cause unnecessary overload to the
system and some degree of difficulty in exporting the results to a file.

• (ENCAPSULATION) Data Access Metric (DAM): It indicates the percentage of the
“protection” of the properties (fields or variables) of a class. Essentially, it is the ratio of
the number of private and protected properties to the total number of properties of a
class. It should be mentioned here that B&D vaguely discuss which properties should be
considered. They state “the number of the private (protected) attributes” [29], (p. 8). In
object-oriented programming, there are two different concepts: private properties are only
accessible within the class, while protected properties can be accessed throughout the
package (but not within the entire project if there are more packages). It is not explicitly
explained whether the term “protected” refers to the term “private”; and therefore,
only the private ones should be considered, or it refers to both private and protected
ones, so both should be considered. Of course, different programming languages have
slightly different semantics (e.g., C++ vs. Java) for the keyword, and when B&D wrote
their metric, they probably merely wanted to make their basic idea clear and did not
have a particular language in mind. Nevertheless, regarding the metric’s calculation,
the dominant view seems to be that only the private properties are considered, as, for
example, in [50], where the term “protected” is not even mentioned. Another view
supports the idea that excluding protected attributes from the calculation of the DAM
may result in an incomplete picture of data access complexity [51]. Specifically, protected
attributes can be accessed by subclasses, which may result in more complex data access
functions and therefore impact the maintainability and quality of the software design.
SQMetrics provides the option for only the private properties (fields) to be calculated
(default) or both private and protected properties (fields) to be calculated. The fact is that
the decision of whether or not to exclude protected properties depends on the specific
needs and goals of the project. In case there are no class or instance variables, the tool
returns the value “1”, which is the highest (and the best) for DAM, as it is a ratio, and not
the value “0”, which is the lowest.

• (COUPLING) Direct Class Coupling (DCC): This is the number of classes to which a
class is related. A class is directly related to another class when they have a parent–
child relationship or has a field with its type, or its methods return a value or have a
parameter with a type of the other class. Initially, SQMetrics checks whether the class
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under consideration is connected through inheritance relationships with any of the
other classes. The tool subsequently validates whether the fields, method parameters,
or return values belong to another project class as their data type. Any classes found
to fall in the cases above are stored in a set. The same check is performed to each of the
other classes, and if coupling is detected, the class is added to the set. Finally, the value
of DCC coincides with the size of the set (in which, of course, there are no duplicates).

• (COHESION) Cohesion Among Methods (CAM) of class: For its calculation, the dis-
tinct parameter types of each method are considered, as well as the distinct parameter
types of all methods. It is calculated from Equation (7):

CAM =
∑n

i=1 Mi
n ∗ (T + 1)

, (7)

where, Mi is the number of discrete types of the parameters of the method i, n is the number
of methods of the class, and T is the number of discrete types of the parameters of all the
methods of the class. It takes real values between 0 and 1. Values close to 1 mean a greater
cohesion. It differs from the LCOM metric of C&K. To compute CAM, three variables are
required: the number of methods of the class; the number of distinct types of parameters
of all methods; and the sum of the distinct types of parameters of each method, for all
methods. The tool stores the parameter types of all the methods in the class in a list and
performs the calculations according to Equation (7).

• (COMPOSITION) Measure Of Aggregation (MOA): It is the number of variables whose
type is user-defined. In other words, these are variables that have another class of the
project as their type. B&D do not specify exactly which variables are considered for
this metric [29] (p. 8). Thus, for the calculation of this metric, each tool can consider
any variables, depending on its views and needs. In our tool, by default, only the
properties of the class (and object) that are defined by the user are calculated, that is,
those that have a class from the project as their type. To cover the remaining cases,
three user options have been added to the tool:

a. To include the constructors’ and methods’ parameters;
b. To include the returned method types;
c. To include the variables defined within the body of the constructors and methods.

Checking the class fields and the parameters of the constructors and methods as well
as the returned types of methods can be implemented with the use of the relevant methods
provided by Java. But checking the variables, defined in the “body” of constructors and
methods, requires the detection of their code, line by line. Thus, once the third option has
been selected by the user, the computation complexity increases.

• (INHERITANCE) Measure of Functional Abstraction (MFA): It is the ratio of the
number of inherited methods to the total number of methods to which a class variable
has access (i.e., all inherited methods plus class methods). For the computation of
MFA, the methods inherited from the class and the methods defined in the class are
considered. Inherited methods include private and protected ones, but not overridden
or hidden ones.

• (POLYMORPHISM) Number Of Polymorphic (NOP) methods: It is the number of
methods of a class, which have the ability to exhibit polymorphic behavior. Such
methods can be the abstract methods. Moreover, the methods of the class, which are
overlaid or hidden by some method of its descendants, are polymorphic. For the
computation of this metric, the tool checks for the existence of abstract methods within
the class. Such methods may exhibit polymorphic behavior. It also checks the methods
of the descendants of the class. If any of these override or hide a class method, this
method exhibits polymorphic behavior. NOP is the number of methods that may have
polymorphic behavior.

• (MESSAGING) Class Interface Size (CIS): It is the number of the public methods of
the class.
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• (COMPLEXITY) Number Of Methods (NOM): It is the total number of methods
declared in a class. The number of methods in the class is calculated by using the
Java method getDeclaredMethods, while the necessary “cleaning” is also performed, as
already discussed in a previous section.

We observe that each metric corresponds to one and only one property, and vice versa.
In their publication, B&D do not provide any additional clarifications about it [29].

Level 4 refers to the parts of object-oriented design, that is: objects, classes, and
the relationships between them. Properties are the fundamental components in defining
an object and their representation is directly supported in object-oriented programming.
Fourth-level parts can be computed directly from code and form the basis for the third-level
metrics computation (L34). Considering Table 1 and the mapping with the corresponding
metrics, we end up with the calculation of the quality attributes of the model, as shown
in Table 2.

Table 2. Equations for computing quality attributes.

Quality Attribute Index Computation Equation

Reusability −0.25∗DCC + 0.25∗CAM + 0.5∗CIS + 0.5∗DSC
Flexibility 0.25∗DAM–0.25∗DCC + 0.5∗MOA + 0.5∗NOP

Understandability −0.33∗ANA + 0.33∗DAM–0.33∗DCC +
0.33∗CAM–0.33∗NOP–0.33∗NOM–0.33∗DSC

Functionality 0.12∗CAM + 0.22∗NOP + 0.22∗CIS + 0.22∗DSC + 0.22∗NOH
Extendibility 0.5∗ANA–0.5∗DCC + 0.5∗MFA + 0.5∗NOP
Effectiveness 0.2∗ANA + 0.2∗DAM + 0.2∗MOA + 0.2∗MFA + 0.2∗NOP

The computation of each of the six quality attributes of the model is a function of the
various metrics of the third level of the model, given by an equation with weighted indices
for each one. If a required metric has not been computed by the tool (e.g., because the user
did not select it), then the associated quality attributes will not be calculated and the result
will be 0.

SQMetrics can extract and compute all useful metrics of the QMOOD model: the
11 metrics of Level 3 (which correspond to the 11 design properties of Level 2), as well as
the six high-quality attributes of Level 1. The summation of the quality factors is computed
to reach the overall QMOOD total quality index [52]:

TQI = Reusability + Flexibility + Understandability + Functionality + Extendibility + Effectiveness (8)

TQIs have been used in various studies and assume real values.

4. Design of the SQMetrics Tool

The application consists of 15 classes, 6 of which mostly concern the graphical environ-
ment of the application. Figure 4 shows the class hierarchy diagram of the latest version of
the tool. The classes related to the graphical environment are highlighted in orange, while
the external classes (that do not belong to the application but are inherited) are highlighted
in green. The rest of the classes in the hierarchy (which are not highlighted) are the core
classes of the tool that perform the computation of the metrics. All classes of the SQMetrics
tool belong to the “metrics” package.

After the user defines the path containing the files of the code to be analyzed, the
tool detects the folder in question, as well as its subfolders, and two lists are created. One
contains all the * .java files to be detected, which are of JavaFile type, and the other one, the
corresponding * .class files, which are of ClassFile type. These two classes are subclasses of
the metrics.GenericFile class, which inherit from java.io.File.



Knowledge 2023, 3 572Knowledge 2023, 3, FOR PEER REVIEW 17 
 

 

 
Figure 4. SQMetrics class hierarchy. 

After the user defines the path containing the files of the code to be analyzed, the tool 
detects the folder in question, as well as its subfolders, and two lists are created. One con-
tains all the * .java files to be detected, which are of JavaFile type, and the other one, the 
corresponding * .class files, which are of ClassFile type. These two classes are subclasses of 
the metrics.GenericFile class, which inherit from java.io.File. 

It should be noted here that in some cases, during compilation, more than one * .class 
file is created for the same class (this is mainly observed in classes concerning GUI). In 
such cases, these files are “cleared” (i.e., ignored) and only the main class file is saved 
automatically in the list. 

Next, the * .class files are initialized, and another list of classes is created. This way, 
the application is capable of retrieving all the information of the classes available in Java 
(in java.lang.Class), such as name, ancestor, methods, fields (properties-parameters), etc. 

It should be also noted here that more than one method entity may be created by the 
compiler for a specific method. Again, in such cases, the application “cleans” these “enti-
ties” and calculates only the actual method. Otherwise, the number of methods would 
increase greatly and, as might be expected, lead to erroneous measurements. 

The tool mainly uses these three lists and the methods provided by Java in 
java.lang.Class, but also “reads” the code of the * .java files (parsing), in order to perform 
the calculation of all metrics. 

5. Implementation and Testing of the SQMetrics Tool 
The tool has been developed in Java in order to be independent of the execution en-

vironment and yet portable. SQMetrics runs on Windows, Mac OS, and Linux without 
installation required. The tool, its documentation, and the source code are freely available 
as it is an open-source project. The implemented approaches for calculating the supported 
metrics have been described in Section 3.3. 

Test cases were developed and sample measurements were executed on the SQMet-
rics tool to test its functional adequacy. Demonstration measurements, functional tasks, 

Figure 4. SQMetrics class hierarchy.

It should be noted here that in some cases, during compilation, more than one * .class
file is created for the same class (this is mainly observed in classes concerning GUI). In
such cases, these files are “cleared” (i.e., ignored) and only the main class file is saved
automatically in the list.

Next, the * .class files are initialized, and another list of classes is created. This way,
the application is capable of retrieving all the information of the classes available in Java
(in java.lang.Class), such as name, ancestor, methods, fields (properties-parameters), etc.

It should be also noted here that more than one method entity may be created by
the compiler for a specific method. Again, in such cases, the application “cleans” these
“entities” and calculates only the actual method. Otherwise, the number of methods would
increase greatly and, as might be expected, lead to erroneous measurements.

The tool mainly uses these three lists and the methods provided by Java in java.lang.Class,
but also “reads” the code of the * .java files (parsing), in order to perform the calculation of
all metrics.

5. Implementation and Testing of the SQMetrics Tool

The tool has been developed in Java in order to be independent of the execution
environment and yet portable. SQMetrics runs on Windows, Mac OS, and Linux without
installation required. The tool, its documentation, and the source code are freely available
as it is an open-source project. The implemented approaches for calculating the supported
metrics have been described in Section 3.3.

Test cases were developed and sample measurements were executed on the SQMetrics
tool to test its functional adequacy. Demonstration measurements, functional tasks, and a
comparison of results to other software metrics tools are presented in the next two sections.

5.1. Software Comparison

The SQMetrics tool can compare either different versions of the same software appli-
cation, or different software applications, as suggested by B&D. In both cases, the values
must first be normalized, as follows.
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5.1.1. Comparing Different Versions of the Same Software Product

The results computed for the first version are used as a basis. In other words, the
values derived from all versions are divided by those of the first one. Thus, the range will
be similar, regardless of the respective design property. Next, the quality attributes for
each version are computed, based on the normalized values. This shows the progress in
each feature, among the different versions of the software product. Accepting that each
feature has the same weight, summing the results of all six features, we have a value for
each version, which reflects its overall quality (TQI), as shown in the previous section.

5.1.2. Comparing Different Software Products

Let n be different software applications. For each design property, n corresponds to
the application with the highest value, followed by the rest in descending order. In case
two or more applications obtain the same value, then they will have the same ranking,
but the next one will be ranked in its normal position (where it would be if there were no
applications with the same ranking). For example, if three applications are ranked in the
same position 4 (because of the same value), then the next one (the one with the following
lower value) will be ranked in position 1, which is actually the lowest value.

In order to compare different software products, it has to be assured that the * .csv files
that will be selected have been created by the same version of the SQMetrics application
with the same options selected. Metrics values derived from different computation methods
may lead to invalid comparison results. Moreover, if the comparison concerns different
versions of the same software project, the *.csv file that corresponds to the older version
must be selected first. This is because the application normalizes the values, based on the
first selected file.

Each selected file is displayed on the screen. Related error messages are displayed if
(a) a file is selected twice, or (b) the “Compare” button is pressed without at least two .csv
files having been chosen and the comparison cannot be performed.

Depending on the type of comparison, the results are displayed on the screen, either
after comparing different applications (Figure 5), or after comparing different versions of
the same application (Figure 6).
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5.1.2. Comparing Different Software Products 
Let n be different software applications. For each design property, n corresponds to 

the application with the highest value, followed by the rest in descending order. In case 
two or more applications obtain the same value, then they will have the same ranking, but 
the next one will be ranked in its normal position (where it would be if there were no 
applications with the same ranking). For example, if three applications are ranked in the 
same position 4 (because of the same value), then the next one (the one with the following 
lower value) will be ranked in position 1, which is actually the lowest value. 

In order to compare different software products, it has to be assured that the * .csv 
files that will be selected have been created by the same version of the SQMetrics applica-
tion with the same options selected. Metrics values derived from different computation 
methods may lead to invalid comparison results. Moreover, if the comparison concerns 
different versions of the same software project, the *.csv file that corresponds to the older 
version must be selected first. This is because the application normalizes the values, based 
on the first selected file. 

Each selected file is displayed on the screen. Related error messages are displayed if 
(a) a file is selected twice, or (b) the “Compare” button is pressed without at least two .csv 
files having been chosen and the comparison cannot be performed. 

Depending on the type of comparison, the results are displayed on the screen, either 
after comparing different applications (Figure 5), or after comparing different versions of 
the same application (Figure 6). 
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5.2. Demonstration Measurements

To demonstrate the results derived from SQMetrics computations, an analysis has
been performed with the code of a small Java project with seven classes, programmed for
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educational purposes. It is a lightweight application with a limited amount of code, which
is fully functional and therefore ideal for cross-checking calculations manually. The UML
class diagram for this project is given in Appendix B.

5.2.1. Code Measurements

The SQMetrics measurements of the indicative Java project code had all the additional
options provided by the application disabled and are presented next.

Metrics concerning the whole project (DSC, NOH, and ANA from the QMOOD model)
are shown in Table 3. Size metrics for all classes (PLOC, LLOC, and LC) are presented in
Table 4. Table 5 shows the metrics derived from the C&K model, while the rest QMOOD
metrics are presented in Table 6.

Table 3. Project metrics calculated using the SQMetrics tool.

DSC NOH ANA

7 1 1.29

Table 4. Code size metrics calculated using the SQMetrics tool.

CLASS PLOC LLOC LC

Cosmetic 23 15 0
CosmeticsList 20 12 0
Paramedical 25 16 0

ParamedsList 23 12 0
Product 39 25 1

ProductsList 13 7 0
RunMe 145 104 11

Table 5. C&K metrics calculated using the SQMetrics tool.

CLASS DIT NOC CBO WMC LCOM 1 LCOM 2 LCOM 3 RFC

Cosmetic 2 0 2 2 0 0.0 0.0 3
CosmeticsList 1 0 2 5 0 0.0 0.0 3
Paramedical 2 0 2 2 0 0.0 0.0 3
ParamedsList 1 0 2 6 0 0.0 0.0 4

Product 1 2 1 5 0 0.42 1.0 4
ProductsList 1 0 1 2 0 0.0 0.0 3

RunMe 1 0 4 32 0 0.0 0.0 10

Table 6. QMOOD metrics calculated using the SQMetrics tool.

CLASS DAM DCC CAM MOA MFA NOP CIS NOM

Cosmetic 1.0 0 0.5 0 0.88 0 2 2
CosmeticsList 0.0 0 0.5 0 0.87 0 1 2
Paramedical 1.0 0 0.5 0 0.88 0 2 2
ParamedsList 0.0 0 0.33 0 0.8 0 1 3

Product 1.0 2 0.33 0 0.8 1 3 3
ProductsList 1.0 0 0.5 0 0.86 0 0 2

RunMe 1.0 0 0.14 0 0.63 0 1 7

Moreover, Table 7 shows the quality features of the QMOOD model, for each class
separately, but also the average values.
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Table 7. QMOOD quality features calculated using the SQMetrics tool.

CLASS REUSA-
BILITY FLEXI-BILITY UNDERSTANDABILITY FUNCTIO-

NALITY
EXTENDI-

BILITY
EFFECTI-
VENESS

Cosmetic 4.63 0.25 −2.9 2.26 1.09 0.63
CosmeticsList 4.13 0 −3.23 2.04 1.08 0.43
Paramedical 4.63 0.25 −2.9 2.26 1.09 0.63
ParamedsList 4.08 0 −3.62 2.02 1.05 0.42

Product 4.58 0.25 −4.28 2.68 0.55 0.82
ProductsList 3.63 0.25 −2.9 1.82 1.08 0.63

RunMe 4.04 0.25 −4.67 2 0.96 0.58
AVERAGE 4.25 0.18 −3.50 2.15 0.99 0.59

5.2.2. Comparing Software Metrics Tools

Next, the results of the SQMetrics tool measurements are presented along with the
results of the following four widely used software metrics tools: ckjm, cccc, Understand,
and CodeMR (a plugin for Eclipse and IntelliJ IDEA) [53–57]. These tools that were used for
the comparison do not support the computation of all the metrics that SQMetrics measures,
and also, they calculate others which are not examined by the present study. Especially
for ckjm, we present the measurements from two versions of the tool; version ckjm-ext
returns some class detection errors but supports more metrics than version ckjm-1.9. These
four particular tools were selected for the comparison as they meet the following criteria:
they support the Java language, they are free software or at least provide free trial use, and
they support (among others) object-oriented software metrics. Therefore, the comparison
to these widely known similar (in terms of supported metrics) tools was found to be
a satisfactory preliminary test for SQMetrics’ completeness and functionality. A more
thorough description and comparison of software quality metrics tools can be found in
Section 6.1.

Table 8 presents the aggregate results for the whole Java project, given by the various
tools. For the PLOC, LLOC, LC NOP, CIS, and NOM metrics, the sum of the individual val-
ues for each class was considered, while for the other metrics, the average was considered.
Measurements show that, for the same software project and metrics, the metrics values are
tool-dependent.

The results of the SQMetrics tool measurements for each metric are presented along
with the results of the other four tools in the next tables in detail. Tables 9–14 use the
following notation for the tools in this study: SQM (SQMetrics), ckjm-ext, ckjm 1.9, cccc,
UND (Understand), and CodeMR. Results for a tool are only presented in case the specific
measure is supported by the tool.

As it can be concluded from the previous comparison, small to very large deviations were
observed, mainly for the ckjm and cccc tools. The rest of the tools presented small deviations.
However, discrepancies were also found in certain metrics’ computing approach between
the tools. This is also confirmed by the tools’ documentation. The approach method for
computing certain metrics for each tool could not be criticized, since in many cases, even the
‘inventors’ of metrics, like the World Organization for Standardization, allow and support
relative freedom to the user to adapt metrics, according to their own needs.

Concerning the original sources for the various concepts analyzed, as published by
their creators, some confusion may arise as to the definition of the various metrics (for
what should be measured and what should not). Noteworthy is the B&D ambiguity as to
whether protected properties should be considered when calculating the DAM metric. This
has not been clarified yet and, for this reason, the SQMetrics tool provides an option to
calculate them or not, transferring the “responsibility” to the user. Also, concerning the
same metric, there is no clarification of what is measured in case no variables are present (in
this case there is division by zero). The SQMetrics tool presents a result equal to 1. Another
detail that has not been clarified is which variables are considered for the calculation of the
MOA metric. Again, SQMetrics provides several options.



Knowledge 2023, 3 576

Table 8. Comparative aggregate results.
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Table 9. Comparative results for PLOC, LLOC, and LC.

PLOC LLOC LC

Class SQM ckjm-ext UND SQM cccc UND CodeMR SQM cccc UND

Cosmetic 23 34 22 15 4 21 15 0 0 0

CosmeticsList 20 49 18 12 2 17 11 0 0 0

Paramedical 25 34 23 16 3 21 16 0 0 0

ParamedsList 23 49 22 12 2 18 11 0 0 0

Product 39 79 39 25 34 34 25 1 1 1

ProductsList 13 24 10 7 2 10 6 0 0 0

RunMe 145 469 140 104 106 127 102 11 11 11

Table 10. Comparative results for DIT and NOC.

DIT NOC

Class SQM ckjm-ext ckjm 1.9 cccc UND CodeMR SQM ckjm-ext ckjm 1.9 cccc UND CodeMR

Cosmetic 2 0 0 1 2 2 0 0 0 0 0 0

CosmeticsList 1 0 1 0 1 1 0 0 0 0 0 0

Paramedical 2 0 0 1 2 2 0 0 0 0 0 0

ParamedsList 1 0 1 0 1 1 0 0 0 0 0 0

Product 1 0 1 0 1 1 2 0 2 2 2 2

ProductsList 1 0 1 0 1 1 0 0 0 0 0 0

RunMe 1 0 1 0 1 1 0 0 0 0 0 0
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Table 11. Comparative results for CBO and WMC.

CBO WMC

Class SQM ckjm-ext ckjm 1.9 cccc UND CodeMR SQM ckjm-ext ckjm 1.9 cccc CodeMR

Cosmetic 2 4 3 1 2 1 2 3 3 0 3

CosmeticsList 2 2 1 0 2 1 5 5 5 0 5

Paramedical 2 4 3 1 2 1 2 3 3 0 3

ParamedsList 2 2 1 0 2 1 6 5 5 0 5

Product 1 2 0 3 0 0 5 4 4 2 6

ProductsList 1 1 1 0 1 1 2 3 3 0 2

RunMe 4 6 6 1 7 6 32 8 8 11 21

Table 12. Comparative results for LCOM1, LCOM2, and LCOM3.

LCOM1 LCOM2 LCOM3

Class SQM ckjm-ext ckjm 1.9 SQM UND SQM ckjm-ext CodeMR

Cosmetic 0 0 0 0 0 0 1 0

CosmeticsList 0 0 0 0 0 0 0.25 0

Paramedical 0 0 0 0 0 0 0 0

ParamedsList 0 0 0 0 0 0 0.25 0

Product 0 4 0 0.42 0.31 1 0.933 0.417

ProductsList 0 0 0 0 0 2 0 0

RunMe 0 28 28 0 0 0 2 0

Table 13. Comparative results for RFC, DSC, DAM, and CAM.

RFC DSC DAM CAM

Class SQM ckjm-ext ckjm 1.9 CodeMR SQM cccc UND SQM ckjm-ext SQM ckjm-ext

Cosmetic 3 11 11 8 7 8 9 1 1 0.5 0.5333

CosmeticsList 3 13 13 7 7 8 9 0 0 0.5 0.3125

Paramedical 3 11 11 8 7 8 9 1 1 0.5 0.5333

ParamedsList 4 13 13 7 7 8 9 0 0 0.33 0.3125

Product 4 7 12 6 7 8 9 1 0.2 0.33 0.4444

ProductsList 3 7 7 4 7 8 9 1 1 0.5 0.556

RunMe 8 33 33 25 7 8 9 1 0 0.14 0.125

Table 14. Comparative results for MOA, MFA, CIS, and NOM.

MOA MFA CIS NOM

Class SQM ckjm-ext SQM ckjm-ext SQM ckjm-ext ckjm 1.9 UND SQM cccc UND CodeMR

Cosmetic 0 1 0.88 0 2 3 3 3 2 0 3 3

CosmeticsList 0 0 0.87 0 1 2 2 1 2 0 3 1

Paramedical 0 1 0.88 0 2 3 3 3 2 0 3 3

ParamedsList 0 0 0.80 0 1 2 2 1 3 0 3 1

Product 0 5 0.80 0 3 2 4 4 3 4 4 4

ProductsList 0 0 0.86 0 0 1 1 0 2 0 2 2

RunMe 0 0 0.63 0 1 2 2 1 7 6 7 0

By studying the various metrics, other ambiguities can be identified. For example,
whether the constructors, the inherited, overloaded, overridden, private methods, etc.,
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should be calculated in the NOM metric, or how internal classes should affect the cyclomatic
complexity of the methods to which they belong [58]. In the SQMetrics tool, internal classes,
if defined within a method, are considered in calculating the cyclomatic complexity of the
method to which they belong, as they form part of its code.

5.2.3. Comparing Different Versions of a Java Project

As also shown in the tool’s results in Figure 6, Table 15 shows the results of the
comparison between nine different versions of the SQMetrics tool (from v0.2 to v0.9).
Version 0.1 supported running the application and displaying the results in the shell and,
therefore, comparing it to later versions would yield large deviations in results. Because of
v0.1’s different functionality, it was deemed appropriate not to include it in the evaluation.

Table 15. High-level features and overall quality metrics for different versions of the same project.

SQMetrics
Versions Reusability Flexibility Understandability Functionality Extendibility Effectiveness Overall

v0.2 1.00 1.00 −0.99 1.00 1.00 1.00 4.01
v0.3 1.35 0.48 −0.70 0.93 0.49 0.77 3.32
v0.4 1.32 0.48 −0.67 0.91 0.47 0.77 3.28
v0.5 1.31 0.49 −0.70 0.91 0.47 0.77 3.25
v0.6 1.35 0.49 −0.69 0.93 0.46 0.77 3.31

v0.6b 1.36 0.49 −0.70 0.93 0.45 0.77 3.30
v0.7 1.21 1.29 −1.28 1.00 −0.15 1.22 3.29
v0.8 1.22 1.29 −1.29 1.01 −0.15 1.22 3.30
v0.9 1.41 1.29 −1.42 1.09 −0.15 1.22 3.44

A noticeable index decreasing in the Understandability of the latest versions can
be observed. This is common for newer versions of a software tool, as there are more
functionality features, so it is usually more difficult and complicated for the system to be
comprehensible. Actually, it is expected for Understandability to decrease in value from
version to version [59].

Also, we can observe that the index of Extendibility is constantly decreasing, instead
of increasing. This is because in each updated version of the application, more classes were
added. Related to the Extendibility feature is the “Coupling” property, which corresponds
to the Direct Class Coupling (DCC) metric and has a negative value. Given the increase
in classes, but also the creation of objects with some of those classes as a type, the DCC
metric increases, so Extensibility decreases. The three latest versions even have a negative
value. This can be explained because it was decided to split several large classes that
existed until v0.6b into two or more classes. This resulted in greater coupling (DCC) values.
However, this also resulted in about a 35% better performance of the tool in terms of total
code analysis time.

These features, together with the obvious improvements in Flexibility, Functionality,
and Effectiveness indices of the latest SQMetrics version, result in very little increase in
the overall quality of the tool, which is more usable, stable, and effective than the previous
versions. Also, the latest version has the highest value of Reusability, which indicates that
the tool is more modular and easier to integrate into other systems.

5.2.4. Comparing Different Java Projects

Table 16 shows the results of the comparison between eight different Java projects.
There is a separate ranking for each design property and the project with the best perfor-
mance in a property is given the highest rank (in this case 8). The rest follow in the ranking,
based on the method mentioned above.
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Table 16. Design property rankings for different projects.

Project Design Size Hierarchies Abstraction Encapsulation Coupling Cohesion Composition Inheritance Polymorphism Messaging Complexity

Project1 2 4 4 8 4 7 7 2 8 2 2
Project2 8 4 4 6 4 2 7 8 6 6 6
Project3 3 4 4 2 4 1 7 4 6 3 3
Project4 5 8 8 1 7 3 7 5 8 5 5
Project5 5 8 7 4 6 6 7 6 7 4 4
Project6 2 4 4 8 4 8 7 7 6 2 1
Project7 6 8 6 5 5 4 7 1 6 7 8
Project8 7 8 5 3 8 5 8 3 6 8 7
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Although in most cases it is not meaningful to compare two completely different
projects, the tool can also provide the overall quality metrics for all projects. This could be
useful, for instance, in cases of projects with similar functionality, or projects of the same
development teams, in order to compare their quality features and lead to better software
design and implementation practices.

Such a methodology (by comparing TQIs to the manual grading of JAVA projects by
teachers through statistical analysis) was used in [31] to experimentally test SQMetrics for
its assistance in the evaluation of students’ Java programming assignments. The results
showed a positive correlation between the instructor’s rating and the overall quality index
extracted from the software, indicating that the SQMetrics tool could be a reliable assistant
to the instructor’s grading under certain circumstances.

6. Evaluation of the SQMetrics Tool
6.1. A Rubric-Based Evaluation of Software Quality Metrics Tools

An approach for evaluating software is based on the use of Rubrics, that is, tables that
contain characteristic criteria that are graded on a level scale (e.g., [60,61]). A Rubric-based
evaluation of software quality metrics tools, based on functional and usability criteria,
is useful in assessing and comparing the effectiveness of different software tools. The
placement of the SQMetrics tool using such an evaluation is presented next.

The proposed Rubric in this study is based on 17 criteria in order to evaluate a software
quality metrics tool at a holistic high level. The criteria are divided into two categories with
functional and usability features (as shown in detail in Table 17). Some criteria also belong
to certain sub-categories (e.g., security, compatibility, portability, etc.).

Table 17. Software quality metrics tools evaluation criteria (Rubric).

No. CATEGORY FEATURE Poor (0) Below
Average (1) Average (2) Good (3) Excellent (4)

1 Functionality
Supported

Size of Code
for Analysis

Very small
code (1–2
classes)

Relatively
small code (up
to 10 classes)

Medium code
(some 10 s of

classes)

Extensive code
(over 100
classes)

No size limit

2 Functionality User Login
Requirement

User login is
required for all

features.

User login is
required for

most features.

User login is
required for

some features,
many of which
are essential to

the average
user.

User login is
required for

some
advanced

features not
necessary for
the average

user.

No login is
required for

full
functionality.

3 Functionality
Account
Creation

Requirement

Account
creation is

required for
the free
version.

An account is
required for

the trial
version, which

has both
limited

features and a
time limit.

An account is
required for

the trial
version, which

has either
limited

features or a
time limit.

No account
creation is

required for
the free or
evaluation

version.

No account
creation is

required for
the full
version.

4 Functionality Cost

Very high, over
EUR 100/year

or EUR 500
once for the
full version.

High, over
EUR 50/year
or EUR 200
once for the
full version.

Moderate, over
EUR 20/year

or EUR 80 once
for the full

version.

Low, up to
EUR 20/year

or EUR 80 once
for the full

version.

The full
version is
available

completely
free.
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Table 17. Cont.

No. CATEGORY FEATURE Poor (0) Below
Average (1) Average (2) Good (3) Excellent (4)

5 Functionality/
Reliability

Fault
Tolerance

Unreliable. In
case of miscon-
figuration or
failure, the
application
will crash

without any
error

indication and
the system

may also crash.

Little reliability.
In case of mis-
configuration
or failure, the
application
may crash
without an

error
indication.

Partial
reliability. In

case of miscon-
figuration or
failure, the
application

may crash but
will display an
error message.

High reliability.
In case of mis-
configuration
or failure, the
application

will display an
error message
and continue

running.

Very high
reliability. The
application, in

case of
incorrect

configuration
or failure, will
return to the
immediately

previous
normal state of
operation and

display an
error

indication.

6 Functionality/
Compatibility

Support of
Different
Operating

Systems (OS)

Compatible
with a specific

version of a
desktop or
mobile OS.

Compatible
with a specific

desktop or
mobile OS,

regardless of
version.

Compatible
with a desktop

OS and a
mobile OS.

Compatible
with all

desktop OS or
all mobile OS.

Compatible
with all

desktop and
mobile OS.

7 Usability/
Compatibility

Third-Party
Applications

Requirements
for Proper
Execution

More than one
(not common)
application is
required to be

installed.

A (not
common)

application is
required to be

installed.

More than one
application,

which is
usually

pre-installed as
necessary for

other functions,
is required.

One
application,

which is
usually

pre-installed as
necessary for

other functions,
is required.

No other
applications

are required to
be installed.

8 Usability Ease of
Learning

The interface is
not clear about

its functions.
There is no

dynamic help
(help file).
Extensive

study of the
manual is
required.

The interface is
not clear about

its functions.
There is a

dynamic help
(help file) of a

small scale, but
the study of

the manual is
also required.

The interface is
relatively clear
in terms of its

functions.
There is a

small-scale
dynamic help

(help file).
Study of the

manual is
required.

The interface is
quite clear in
terms of its
functions.
There is

dynamic help
(help file).

Studying the
manual is not

required.

The interface is
very clear in
terms of its
functions.
There is

extensive
dynamic help

(help file).
Studying the
manual is not

required.

9 Usability
Completeness
of Documenta-

tion

No user
manual or

dynamic help
is available.

Only dynamic
help is

available, but
no detailed

manual.

A stand-alone
or online short

manual is
available, but
no dynamic

help.

A stand-alone
or online short

manual and
also dynamic

help are
available.

A complete,
easy to read
and compre-

hensive
stand-alone or
online manual,

as well as
dynamic help,
are available.

10 Usability Ease of Use

There is no
interface.

Handling is
performed
through the

shell.

There is an
interface, but it

is keyboard-
operated.

It is mouse-
operated, but
research and
configuration

are required to
perform a

specific
function.

The interface
options are

easy to use and
understand-
able, but not
immediately

visible.

The interface
allows the user
to immediately
understand the

various
functions.

11 Usability Aesthetics

There is no
interface.

Handling is
performed
through the

shell.

The user
interface is not
graphical and
the navigation
is performed

with the
keyboard.

The interface is
understand-
able, but not

self-contained.
It runs from

within another
application.

The interface is
stylish and

self-contained.
It runs in its

own window.

The interface is
elegant,

immediately
understand-

able, and
self-contained.
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Table 17. Cont.

No. CATEGORY FEATURE Poor (0) Below
Average (1) Average (2) Good (3) Excellent (4)

12 Usability Learning Time Over 5 h 3–5 h 1–3 h 10′–1 h Less than 10′

13 Usability
Making Use
of Previous
Experience

Experience
using similar
software and

user familiarity
with concepts
are required.

Experience
using similar
software is
desirable so
that the user

does not have
difficulty in the

operation of
the application.

Little
experience

using similar
software is
essential.

Some
experience

using similar
software is
desirable.

No experience
is required.

The interface
guides the

user.

14 Usability/
Security

Protection
Against User

Errors

No security. It
is the user’s

responsibility
to enter the

correct
parameters

and
commands. In
case of error,
there is no
feedback.

The user is
responsible for

entering the
correct

parameters
and

commands,
but there is
feedback, in
case of error.

There is a help
file. The user

remains
responsible for

the correct
syntax of

commands and
parameters.

There is a help
file, and the

user is guided
by the interface

to avoid any
mistakes.

There is a help
file as well as
dynamic help.
The interface

does not let the
user make a

mistake.

15 Functionality/
Compatibility Interoperability

The
application

must be
installed on a
system which
is required to
be authorized

in order to run.

The
application

must be
installed on a

computer with
a specific OS
and has high

hardware
requirements.

The
application can

run without
installation, on

computers
with low
hardware

requirements,
but on a

specific OS.

The
application can

run without
installation, on

computers
with low
hardware

requirements
and on many

OS.

The
application can

run on any
system.

16 Usability/
Portability Ease of Setup

Expert
knowledge of

using shell
commands is
required for
installation.

Installation is
performed

with simple
shell

commands.

The
installation

takes place in a
graphical

environment,
where various

parameters
must be set.

Installation
takes place in a

graphical
environment

automatically.

No installation
required.

17 Functionality/
Maintainability

Configuration
Options

No
configuration
available. The

user cannot
modify the
functions of

the application
nor the

interface.

Little
configurability.
The user can

configure some
functions of

the application.

Partially
configurable.
The user can

configure
several

functions of
the application.

Great
configurability.
The user can

configure
many

functions of
the application.

Fully
configurable.
The user can
configure the

entire interface
environment

and
application
functions.

Features 1, 2, 3, 4, 6, 7, 15, and 17 can be largely graded quite objectively, so the score
is put by the writers, after reviewing the relative documentation of each tool. The score
of the rest features (most of which concern the usability of the tools) resulted after their
evaluation by the first author of the article.

Next, we present a short overview of the tools being evaluated in the present article:
Understand, CodeMR, ckjm_ext, cccc, YASCA, AppPerfect, SpotBugs, CodeClimate, and
SonarQube [53–57,62–66]:

Understand is a commercial tool. It supports many languages (including Java) and
can run on Microsoft Windows, MacOS X, and Linux. It is designed to help developers
understand and maintain large amounts of code. It covers a wide range of metrics, but also
provides the ability for metrics designed by the users, while the results can be rendered in
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various ways such as html format, graphs, UML diagrams, etc. Understand uses special
names rather than the usual ones for the metrics, but provides a detailed explanation for
each one in order to facilitate the selection of metrics to be calculated.

CodeMR is one well-known Eclipse IDE plugin (but also for IntelliJ IDEA), which
provides calculations for the most common metrics, including C&K metrics, as well as
charts in html format. It supports Java and C++ languages and is available through the
Eclipse IDE marketplace. However, the free version has limited features.

CKJM (Chidamber and Kemerer Java Metrics) does not parse the source code (e.g.,
.java files) but analyzes the binary code of the .class files. The latest version of the tool is
ckjm_ext, which calculates C&K and QMOOD model metrics, McCabe’s circuit complexity,
and several more. The application runs on the command line.

CCCC (C and C++ Code Counter) runs on the Windows command line and analyzes
C, C++ files, and—despite its name—also analyzes Java code and generates a report on the
various metrics. The metrics supported are Lines of Code (LOC), Comment Lines, McCabe
cyclomatic complexity, four C&K metrics (WMC, DIT, NOC, CBO), Fan–in and Fan–out
metrics [67], and the NOM (Number of Modules) metric that measures the number of
classes. The latter metric coincides with the DSC metric of the QMOOD model. CCCC
parses source code files (i.e., .java) and not class files.

YASCA (Yet Another Source Code Analyzer) is a free and open-source tool that an-
alyzes code in many languages. It runs at the Windows command line. It uses external
plugins to detect errors in the code, bad programming, security gaps, etc. The measure-
ments are plugin-dependent. The results are exported to a .html file by default, but they can
also be exported to .csv or .db files. A quite useful YASCA plugin is PDM, which, among
other things, calculates the cyclomatic complexity of methods and classes.

AppPerfect offers a suite of software quality analysis tools that aid in evaluating
the codebase’s quality and maintainability. Their tools encompass static code analysis,
security vulnerability scanning, and adherence to coding standards. With features like
cyclomatic complexity calculation, code duplication detection, and the identification of
potential coding issues, AppPerfect helps ensure robust and maintainable software. These
tools assist in measuring and improving various software quality metrics, contributing to
the overall reliability and efficiency of the code. Such an AppPerfect tool for Java code
analysis is Java Code Test.

SpotBugs is another Eclipse IDE plugin, which checks for bugs in the code. It does not
calculate some specific metrics.

CodeClimate is an online code analyzing service for code in a repository on GitHub.
The user must link their GitHub account to check their code. CodeClimate is free for
open-source projects.

SonarQube is an open-source tool that provides continuous code inspection for bugs,
code smells, and vulnerabilities. It uses various static code analysis tools to detect code
issues and provides detailed reports with actionable feedback. The results are displayed in
the browser in a stylish interface. SonarQube supports multiple programming languages,
including Java, Python, and C++, among others. It also offers integration with various
development environments, including Jenkins and GitLab. However, SonarQube is limited
in its ability to detect all possible code issues, and it requires some configuration to work
effectively. It also does not provide automated fixes for detected issues.

Tables 18 and 19 show the comparative evaluation of the applications.
As it has been previously mentioned, the SQMetrics tool is not intended to compete

with existing commercial applications. It covers mainly academic needs and is aimed
at students (but also teachers) studying the various metrics, and drawing conclusions
regarding code quality. Its simple interface, its compatibility with many operating systems,
but also its autonomy (since it does not require the creation of an account, not even
installation, and does not even depend on an internet connection), make it an ideal free aid
for academic use.
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Table 18. Overall comparative rating (1/2).

No. CATEGORY FEATURE SQMetrics Understand CodeMR ckjm_ext cccc

1 Functionality
Supported Size

of Code for
Analysis

√√ √√√√ √√ √√√√ √√√√

2 Functionality User Login
Requirement

√√√√ √√√√ √√√√ √√√√

3 Functionality
Account
Creation

Requirement

√√√√ √√ √√√ √√√√ √√√√

4 Functionality Cost
√√√√ √√√√ √√√√

5 Functionality/
Reliability Fault Tolerance

√ √√√√ √√ √ √

6 Functionality/
Compatibility

Support of
Different

Operating
Systems (OS)

√√√ √√√√ √√√ √√√ √√√√

7 Usability/
Compatibility

Third-Party
Applications
Requirements

for Proper
Execution

√√√ √√√√ √√√ √√√ √√√√

8 Usability Ease of
Learning

√√√√ √√ √√ √

9 Usability
Completeness
of Documenta-

tion

√√√√ √√√√ √√√ √

10 Usability Ease of Use
√√√√ √√√ √√√√

11 Usability Aesthetics
√√√√ √√√ √√√ √

12 Usability Learning Time
√√√√ √√ √√√ √√√ √√√

13 Usability
Making Use of

Previous
Experience

√√√√ √ √√√√ √ √

14 Usability/
Security

Protection
Against User

Errors

√√√ √√√ √√√√ √ √

15 Functionality/
Compatibility Interoperability

√√√ √√√ √√√ √√√ √√

16 Usability/
Portability Ease of Setup

√√√√ √√√ √√√ √ √√√

17 Functionality/
Maintainability

Configuration
Options

√√ √√√

Table 19. Overall comparative rating (2/2).

No. CATEGORY FEATURE YASCA AppPerfect SpotBugs CodeClimate SonarQube

1 Functionality Supported Size of Code
for analysis

√√√√ √√√√ √√√√ √√√√ √√√√

2 Functionality User Login
Requirement

√√√√ √√√√ √√√√ √√√√

3 Functionality Account Creation
Requirement

√√√√ √√ √√√√ √√√√

4 Functionality Cost
√√√√ √√√√ √√√√ √√√√
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Table 19. Cont.

No. CATEGORY FEATURE YASCA AppPerfect SpotBugs CodeClimate SonarQube

5 Functionality/
Reliability Fault Tolerance

√ √√√√ √√√ √√√√ √√

6 Functionality/
Compatibility

Support of Different
Operating Systems

(OS)

√√√ √√√ √√√√ √√√

7 Usability/
Compatibility

Third-Party
Applications

Requirements for
Proper Execution

√√√√ √√√√ √√√ √√√√

8 Usability Ease of Learning
√ √√√ √√ √√√

9 Usability Completeness of
Documentation

√√ √ √ √√ √√

10 Usability Ease of Use
√√√√ √√√√ √√√√

11 Usability Aesthetics
√ √√√√ √√√ √√ √

12 Usability Learning Time
√√ √√√ √√√ √√√√

13 Usability Making Use of
Previous Experience

√ √√ √√√√ √√√√ √

14 Usability/
Security

Protection Against User
Errors

√ √√√ √√√√ √√√√ √

15 Functionality/
Compatibility Interoperability

√√ √√√ √√√ √√√√ √√√

16 Usability/
Portability Ease of Setup

√ √√√ √√√ √√√√

17 Functionality/
Maintainability Configuration Options

√√√ √√√ √

Compared to the rest of the tools presented, SQMetrics seems to fall short in speed and
completeness mainly compared to the commercial ones, while it excels in ease of use and
simplicity compared to the free ones, thus making it efficient and ideal for study. Regarding
the validity of the results, it is found that there are no large deviations compared to the
expected values (as they are manually calculated). The discrepancies observed compared
to the results of other tools are mainly due to the different ways of calculating the various
metrics adopted by each of them.

In general, SQMetrics can be a valuable tool in the teaching and learning of software
quality metrics by teachers and students, respectively.

6.2. Users’ Evaluation

The study was performed with the volunteering participation of the postgraduate stu-
dents studying the course “Software Design and Management”, which is part of the Postgrad-
uate Program on Information Systems at Hellenic Open University. All participants are over
25 years of age, already hold a university degree, and at the time of the study, are in the last
year of their postgraduate studies. Moreover, all participants have at least basic Java program-
ming skills and have been introduced to human–computer interaction concepts, as part of
their curriculum. From the 82 total students who attended the course during the academic
year 2022–23, 78 accepted to participate in the study (31 female, 47 male) and completed the
online questionnaire. The study was carried out from 20 April 2023 to 17 May 2023. Most of
the participants (72 of them) used the tool on Windows, while five of them ran the tool on
Mac OS and only one participant used Linux for the evaluation.

Students had to use the SQMetrics tool to assess the quality of a given Java project
and interpret the calculated metrics in terms of quality. After using the tool, students
were encouraged to optionally participate in the study and evaluate the experience of
using SQMetrics by filling in an online questionnaire consisting of two parts: (i) the
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System Usability Scale (SUS) which measures the perceived usability, and (ii) a custom-
made questionnaire focusing on specific features of SQMetrics (e.g., validity of results,
functionality, and ease of learning). Students who took part in the study were encouraged
to also use the tool for additional tasks that were suggested to obtain a more accurate
picture of the SQMetrics tool before answering the questionnaire.

6.2.1. PART A (SUS Questionnaire)

The first part of the questionnaire contains the ten questions of the System Usability
Scale (SUS) questionnaire. SUS is considered one of the most effective questionnaires in
terms of the validity and of reliability the results produced [68,69].

The overall SUS score for the SQMetrics tool was 70.67 (SD = 15.05), indicating
good usability. The SUS scores and their graphical representation are shown in Table 20
and Figure 7, respectively. The histogram of the overall SUS scores showed a roughly
normal distribution.

The mean scores for each individual item ranged from 3.4 to 4.3 on the 5-point Likert
scale. Since the SUS questionnaire uses reversed scores for its even-numbered questions,
high scores for items 2, 4, 6, 8, and 10 suggest a user’s positive attitude toward the usability
aspect. The scores of this questionnaire reflect participants’ perceptions of various aspects
of the software’s usability:

• Participants expressed a moderate level of agreement (mean score 3.41) with the
statement that they would like to use the system frequently. This suggests a generally
positive attitude toward the software’s usability.

• The complexity of the system received a high mean score (4.18), indicating that partici-
pants did not find the system complex.

• Participants had a mixed response to the system’s ease of use (mean score 3.95),
indicating that while many found it user-friendly, improvements were still needed to
enhance usability.

• The need for technical support received a high mean score (4.04), suggesting that
participants would not require any assistance from technical personnel to use the
system effectively.

• The integration of various functions within the system received a moderate mean
score (3.59), indicating that participants saw room for improvement in this aspect
of usability.

• Inconsistencies within the system were noted with a mean score of 3.73, signify-
ing that only a few inconsistencies were perceived that could potentially hinder
user experience.

• Participants generally agreed (mean score 3.94) that most people would learn to use
the system quickly, reflecting a positive outlook on the software’s learnability.

• The mean score of 4.3 for item 8 (the highest score of all questions) means that the
users did not find the system cumbersome to use at all.

• The lowest score was obtained for item 9 (“I felt very confident using the system.”), al-
though it still received a score above the midpoint of the scale. The score of confidence
in using the system indicates that participants had varying levels of confidence while
interacting with the software.

• Learning requirements scored with a mean score of 3.78, highlighting that participants
felt that they did not need to acquire knowledge before fully utilizing the system.

Overall, the results suggest positive perceptions about the software’s usability, while
the highest rated areas of SQMetrics include a lack of complexity, the absence of the need
for technical support, a non-cumbersome usage, ease of use, and perceived learnability.
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Table 20. SUS scores.

Question Mean Score Standard Deviation

1. I think that I would like to use this system frequently. 3.41 0.91

2. I found the system unnecessarily complex. 4.18 0.80

3. I thought the system was easy to use. 3.95 0.91

4. I think that I would need the support of a technical
person to be able to use this system 4.04 1.01

5. I found the various functions in this system were
well integrated. 3.59 0.78

6. I thought there was too much inconsistency in
this system. 3.73 1.02

7. I would imagine that most people would learn to use
this system very quickly. 3.94 0.97

8. I found the system very cumbersome to use. 4.26 0.81

9. I felt very confident using the system. 3.40 0.98

10. I needed to learn a lot of things before I could get
going with this system. 3.78 1.05

Average 3.83 0.92
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While there is no universally agreed-upon benchmark, some studies have suggested
general guidelines for interpreting SUS scores. According to [70], a SUS score of
70.67 describes a “good” user experience. It suggests that the software has a decent
level of usability but could benefit from improvements to enhance user experience.

6.2.2. Part B

The second part of the questionnaire consists of 15 questions (#11–25), which are
scored on a scale of 1 to 5, with 1 being the least favorable and 5 being the most favorable
answer. Questions #11–20 were obligatory, while questions #21–25 were optional. In case a
question cannot be answered (e.g., because the relevant action was not taken), zero (0) is
selected; 0 is only applicable to questions 21–25.
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The mean scores for each question are presented in Tables 21 and 22. Since reversed
scores were intentionally used in some questions, the scores were normalized on the 5-point
Likert scale.

Table 21. Mean scores for Likert scale questions 11–20.

Question Mean Score Standard Deviation

11. How easy was it for you to
successfully calculate code quality
metrics for the first time? (1: very
difficult, 5: very easy)

3.82 1.05

12. How difficult were the requirements
and limitations of the SQMetrics tool (e.g.,
JDK version, encoding java files in UTF-8,
folder structure of evaluated code, etc.)?
(1: not difficult for me at all, 5: very
difficult for me)

3.51 1.16

13. How informative is the help provided
by the SQMetrics tool, i.e., help text and
popup notes? (1: not informative at all, 5:
very informative)

3.82 0.94

14. How comprehensible is the results
display screen? (1: very comprehensible, 5:
not comprehensible at all)

3.26 1.28

15. How valid were the results of the
measurements you performed, compared
to what was expected? (1: not valid at all,
5: absolutely valid)

3.51 0.85

16. How useful do you find that
SQMetrics allows for configuration in
how specific metrics will be calculated?
(1: not useful at all, 5: very useful)

3.76 0.93

17. How easy do you find it to configure
the way specific metrics are calculated in
SQMetrics? (1: not easy at all, 5: very easy)

3.14 0.91

18. How much has the SQMetrics tool
helped you in your study and
understanding of software quality metrics?
(1: It didn’t help me at all, 5: It helped me
a lot)

3.46 0.94

19. How faithfully do you feel the metrics
you were taught have been implemented
in the SQMetrics tool? (1: not at all, 5:
very faithfully)

3.58 0.86

20. How useful do you think SQMetrics
is for developers to improve the quality
of the code they write? (1: not useful at
all, 5: very useful)

3.72 1.08
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Table 22. Mean scores for optional Likert scale questions 21–25.

Question #Answers Mean Score Standard Deviation

21. Given that SQMetrics is
geared toward measuring
relatively a small amount of
code and not competing with
commercial tools, how likely
are you to use it in the future
to evaluate your own code? (1:
not likely at all, 5: very likely)

62 3.21 1.15

22. Assuming you have tried
comparing the quality of
different versions of code in
the SQMetrics tool, how easy
did you find the process the
first time? (5: very difficult, 5:
very easy)

30 3.40 1.00

23. Assuming you have used
other similar tools, how
would you rate SQMetrics
compared to the average of
the other apps in terms of
usability? (1: much more
difficult to use than average, 5:
much easier to use than
average)

23 3.39 0.89

24. Assuming you have used
other similar tools, how
would you rank SQMetrics
compared to the average of
other applications in terms of
validity of results? (1: much
less valid than average, 5:
much more valid
than average)

21 3.43 0.98

25. Assuming you have used
other similar tools, how
would you rank SQMetrics
results, compared to the
average of other applications,
in terms of ease of
interpretation? (1: much
harder than average, 5: much
easier than average)

21 3.38 0.59

Concerning questions #11–20, the questionnaire results provide insights into partic-
ipants’ perceptions of the software’s usability and effectiveness. The mean scores range
from 3.14 to 3.82, with standard deviations between 0.85 and 1.28, indicating moderate
agreement among participants.

The highest mean score was obtained for questions 11 and 13 (“How easy was it for
you to successfully calculate code quality metrics for the first time?“ and “How informative
is the help provided by the SQMetrics tool, i.e., help text and popup notes?”), with a mean
score of 3.82. This suggests that the process of calculating code quality for the first time
was overall manageable and that the tool’s resources were helpful for the participants. The
lowest mean score was obtained for Question 17 (“How easy do you find it to configure the
way specific metrics are calculated in SQMetrics?“), with a mean score of 3.14, suggesting
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that participants encountered some challenges in this process. The participants’ responses
for the remaining questions are summarized next:

• The difficulty of understanding requirements and limitations of the SQMetrics tool
received a moderate-to-good mean score (3.51), indicating that participants faced some
level of challenge in grasping these aspects.

• The comprehensibility of the results display that the screen received a moderate mean
score (3.26), indicating a mixed perception of its clarity and effectiveness.

• Participants perceived the validity of measurement results as moderately valid (mean
score 3.51), implying a balanced assessment of how well their measurements aligned
with expectations.

• SQMetrics’ configurability for specific metrics was perceived as quite useful (mean
score 3.76), highlighting its potential value in tailoring analyses to specific needs.

• SQMetrics’ contribution to participants’ study and understanding of software quality
metrics received a moderate score (mean score 3.46), suggesting that the tool played a
beneficial yet not entirely definitive role.

• The faithfulness of the tool to the taught metrics scored moderate to good (mean score
3.58), indicating a generally balanced perception of how well the tool implemented
these metrics.

• Participants viewed SQMetrics as quite useful for developers to enhance code qual-
ity (mean score 3.72), underscoring its potential value in aiding developers’ quality
improvement efforts.

Participants’ responses indicate moderate to good satisfaction with the software’s
usability, help resources, configurability, and overall usefulness in understanding and
improving software quality. The results suggest areas for refinement, particularly in terms
of clarity in the display of results and ease of configuration.

Concerning the optional questions #21–25, the percentage of the 78 participants who
answered ranged from 27% to 79%, with standard deviations spanning 0.59 to 1.15, indicat-
ing varying degrees of consensus. The lowest mean score was obtained for Question 21
(“Given that SQMetrics is geared toward measuring relatively a small amount of code and
not competing with commercial tools, how likely are you to use it in the future to evaluate
your own code?”), with a mean score of 3.21. For the ease of comparing different code
versions using SQMetrics, the process received a moderately positive rating (mean score
3.40) upon initial trial. In assessing SQMetrics in comparison to similar tools, participants
rated its usability, validity of results, and ease of interpretation moderately favorably, with
mean scores of 3.39, 3.43, and 3.38, respectively. The highest mean score was obtained for
item 24 (“Assuming you have used other similar tools, how would you rank SQMetrics
compared to the average of other applications in terms of validity of results?”).

The questionnaire offers insights into participants’ intentions to use SQMetrics, as well
as their comparative perceptions of its usability, result validity, and the ease of interpretation
within the context of similar tools. These findings, derived from a diverse participant pool,
provide valuable insights into the software’s potential for future adoption and its standing
relative to similar tools in usability and result interpretation.

In this study, Cronbach’s alpha was used to assess the internal consistency of the
Likert scale questionnaire. A Cronbach’s alpha result of 0.782 for the items in Part 2 of our
questionnaire suggests a relatively good level of internal consistency reliability. While there
is no universal threshold for an acceptable Cronbach’s alpha, a value above 0.7 is often
considered acceptable for research purposes. Overall, the results of this study suggest that
the questionnaire was reliable and valid for measuring the participants’ attitudes toward
the questions asked. However, further research with larger sample sizes and different
populations is needed to confirm these findings.
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6.2.3. Results

System Usability Scale (SUS) (questions 1–10 in our survey) is a well-known and
established questionnaire to measure usability. As stated above, our SUS score of 70.67
describes a “good” user experience.

The remaining questions (11–25) pertain specifically to the SQMetrics tool and assess
various aspects related to difficulty, the help provided, comprehensibility, the validity of
results, usefulness, implementation of taught metrics, and the impact on software quality
improvement. These questions are domain-specific and are tailored to evaluate users’
experiences with the SQMetrics tool in the context of calculating code quality metrics and
software quality improvement. As the mean scores in this set of questions ranged from 3.21
to 3.82, we can conclude that users rated all aspects moderate to good.

Moreover, we conducted a correlation analysis to examine the relationship between
the SUS scores (as indicated by the SUS guidelines in the range 0–100) and the total scores
in the obligatory questions 11–20 of our questionnaire (normalized in the same manner
as SUS in the range 0–100). The purpose of this analysis is to determine the strength and
significance of the association between variables SUS and Q11_20.

The correlation analysis was performed using Pearson’s correlation coefficient, which
measures the linear relationship between two variables. The analysis was conducted in
SPSS. The results can be seen in Table 23.

Table 23. Correlation analysis between SUS scores and Q11_20 scores.

Correlations
SUS_Scores Q11_20_Scores

Pearson Correlation 1 0.600 **
Sig. (2-tailed) 0.000SUS_Scores
N 78 78
Pearson Correlation 0.600 ** 1
Sig. (2-tailed) 0.000Q11_20_Scores
N 78 78

** Correlation is significant at the 0.01 level (2-tailed).

The correlation coefficient (r) between SUS and Q11_20 was found to be 0.600. This
indicates a moderate positive relationship between the two variables. The significance
value (p-value) associated with the correlation coefficient was found to be 0 (p < 0.001). This
suggests that the observed correlation is statistically significant, meaning that it is unlikely
to have occurred by chance. This implies that there is a tendency for participants who rated
higher on SUS to also rate higher on our set of questions, and vice versa. This is a strong
indicator that SQMetrics not only provides a good user experience in terms of usability
(as shown by the SUS questionnaire) but also in terms of all the other aspects examined
(comprehensibility, validity of results, usefulness, educational aspects, etc.).

7. Discussion

The proposed SQMetrics has been tested for its usability and functionality by compar-
ing it with widely known similar tools. Our novel software quality metrics tool designed
for educational purposes, demonstrates both commendable strengths and some areas for
potential improvement in comparison to the other software quality assessment tools. As
an open-source project, it does not share the characteristic of necessitating an account
creation or a User Login requirement like other tools, resulting in unrestricted free access
to all features. It also outperforms numerous tools in various Usability aspects such as
“Completeness of documentation”, “Ease of Learning”, “Ease of Setup”, etc. This suggests a
deliberate emphasis on enhancing the tool’s usability during its design, a perspective that is
also evident from user evaluations in this study. Although the tool is not quite fault-tolerant
at the moment and falls short in terms of “Supported Size of Code for analysis”, indicating
its limited capacity to handle varying code sizes effectively, SQMetrics manages to be a
good choice for educators seeking a versatile and accessible software quality metrics tool.
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The SQMetrics tool proved to be useful to both students and teachers involved in a
software engineering course. As shown by the feedback given by the participants in our
study, the tool allows students to measure and compare metrics in their projects, leading to
gradual improvements in their code quality.

Additionally, it provides instructors with the capability to evaluate their students’
Java projects and assign grades that align with the level of quality demonstrated in their
work. In the results of the statistical analysis in [31], a positive correlation between the
instructor rating and the overall quality index extracted from the SQMetrics software is
shown. Furthermore, no statistically significant difference is presented between these two
measurements. These two observations present a first indication that the overall quality
indices derived from the QMOOD model (and calculated using the SQMetrics tool) can be
a useful aid for the evaluation of Java codes submitted as an academic project in a related
course, which can save time and resources while maintaining grading consistency. Of
course, further research is necessary to determine the extent of the software’s applicability
and whether it can replace instructor grading in all contexts [71]. It should also be pointed
out that there is ongoing research in the field of the automatic grading of student projects,
such as using machine learning algorithms to grade Java projects and creating intelligent
tutoring systems for Java programming [72]. This research can provide educators with new
opportunities to assess students’ Java codes in a more efficient and objective manner.

As the comparison between software quality metrics tools revealed, there are devi-
ations between SQMetrics and other tools’ computation in certain metrics. In a recent
study [73], participants indicated that they often find inaccurate metric values due to wrong
implementation. This may be due to a different computing approach by each tool, but this
hints at a real problem that needs a solution. It simply means that a generally accepted
and clear definition for some measures’ computation methods is missing. Insufficiencies
in prescriptions of how metrics should be computed have also been recognized by other
authors [74]. A proper interpretation of metric values as well as the establishment of
metric thresholds are essential to characterize, evaluate, and improve the design of software
systems [75].

The results of the SUS questionnaire suggest that SQMetrics has good usability, with
most participants finding it easy to use, considering it to be well-integrated. However,
some areas for improvement were identified based on the lower scores obtained on certain
items, e.g., Q1 (“I think that I would like to use this system frequently.”) or Q9 (“I felt very
confident using the system.”), although these scores (3.40–3.41) are considered moderate
to good.

Concerning Q1, the score suggests that while participants generally expressed some
level of positive inclination toward using SQMetrics frequently, there may be factors or
aspects of the system that could be enhanced to further increase their willingness to use
it regularly. This could involve identifying the specific features or functionalities that
participants would like to see improved to enhance their interest in using SQMetrics more
frequently. Some users stated in our survey that they would find really useful “additional
personalized tips and suggestions to the developer, depending on the result of the metrics,
for better quality and cleaner code”.

Concerning Q9, the score indicates that participants reported a moderate level of
confidence while using SQMetrics. However, there might be areas where the system can be
improved to increase participants’ confidence levels further. This could involve addressing
any usability issues, providing clearer instructions or feedback, or enhancing the tool with
a more intuitive design or clearer instructions for new users. For example, a user states in
our survey that “the detailed report of the metrics could be more user friendly”.

The results of our custom-made questionnaire (questions 11–25) suggest that the
participants generally had positive attitudes toward the questions asked. However, it is
important to note that questions 17 and 21 both had a lower mean score than the other
questions. Additionally, the standard deviations of some questions were relatively high
(e.g., Q14), indicating that the responses were more varied for those questions.



Knowledge 2023, 3 593

Concerning Q17, participants perceived a moderate level of complexity when it comes
to configuring the way specific metrics are calculated in SQMetrics. They might have
encountered some challenges or required some effort to understand and navigate through
the configuration process. Some users stated that they “encountered difficulties while they
tried to change the default options to new assumptions”. While a moderate score indicates
that participants did not find the configuration process overly difficult, it also suggests that
there is room for improvement in terms of enhancing the ease and user-friendliness of the
configuration features in SQMetrics.

Concerning Q21, while participants are somewhat inclined to use SQMetrics for code
evaluation, there may be factors or considerations that could influence their decision. A
moderate-to-good score indicates that participants are likely to use SQMetrics for evaluating
their own code in the future, but they are not sure as of yet. There may be certain factors
that could affect their decision, such as the specific requirements of their projects, the
availability of alternative tools, or their perceived effectiveness of SQMetrics compared to
other options. Some of them stated that “the tool should not only be limited to Java but
also to other languages”. They also pointed out “the fact that it cannot measure large code
limits it to academic use only and not at a professional level”.

Finally, one limitation of this study is the small sample size of 78 participants, which
may limit the generalizability of the findings. In particular, questions 21–25 were only
answered by a small percentage of the participants (less than 40% of the sample) since
most of the participants have not used other relevant tools in order to compare their
functionalities and results. Additionally, the questionnaire was administered online, which
may have introduced response bias or other sources of error.

It should be noted here that the responses from participants who have familiarity
with similar tools (Q23, Q24, and Q25) reveal a positive outlook on SQMetrics’ usability,
validity, and interpretability, positioning it as a favorable option for assessing code quality
in comparison to other tools within the same domain.

Concerning future work and SQMetrics’ improvements, the tool’s structure can be
further extended to support other models and metrics, e.g., the Halstead model, as the logic
of calculating the cyclomatic complexity of the methods can be used. Another area where
the tool can be improved is the ability to inspect code that uses libraries that are not native
to Java. The independence of SQMetrics from system libraries will theoretically provide
the ability to measure any kind of Java code.

It is also important to speed up the algorithms for calculating certain metrics, espe-
cially in case the tool computation capabilities are extended to other models. Such an
improvement of approximately 35% was already made in the transition of the tool from
version 0.6b to 0.7. However, further improvement in this area is desirable.

According to the responses of students who used SQMetrics in our study, a more
detailed report, identifying bad smells and indicating corrections to the code, would be
desirable. Moreover, improvements on the presentation of the results can also be made
using more simple and sophisticated screens.

Finally, as an educational tool, in addition to the quantitative assessments with their
explanation and guidance, other possibilities can be added, e.g., visualizations (presentation
of graphs), qualitative feedback on design patterns, integration with teaching material,
case studies, and examples. SQMetrics could be improved to emphasize the importance of
interpreting and applying these metrics effectively, as well as encouraging students’ critical
thinking and qualitative assessment of software design.

8. Conclusions

Currently, the scientific community has not yet established a universally accepted and
comprehensive methodology for assessing software quality. Instead, numerous widely
adopted quality models, including C&K and B&D, have been suggested. Among these mod-
els, the C&K approach stands out as the preferred choice among scholars and researchers,
particularly for object-oriented programming. Of course, the calculations for several metrics
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are eligible to several adaptations, according to the users’ needs. Measurements show that,
for the same software system and metrics, the metrics values are tool-dependent.

The proposed SQMetrics tool is open-source, portable, accessible to inexperienced
users, and provides a simple and fully functional GUI. It provides the user with options
that support different approaches for calculating certain metrics. It focuses on C&K and
B&D (QMOOD) models and is the only one that fully supports them. Especially for the
QMOOD model, in addition to the computation of the third-level metrics, all six quality
characteristics of the first level are also calculated. SQMetrics’ full support of the high-level
quality features of the QMOOD model allows for the comparison between different versions
of the same project or even the comparison between different software applications. These
features are not present in the other tools in this study.

In our study, the comparison of the measurements for a specific Java project between
SQMetrics and four similar tools has revealed deviations, ranging from small to very large, as a
result of the differences in the computation logic adopted by each tool for the respective metrics.

Moreover, the tool proved to be useful for comparing different versions of the same
project in terms of high-level features and overall quality metrics. In this case, the developer
can check if there is the desired increase in overall quality in the latest versions, as well as
the intended increase in individual features, and take the appropriate actions in order to
improve the indices and, by extension, software quality. Finally, SQMetrics provides the
means to compare different projects in terms of design properties or even overall quality.
This could be useful in cases of projects with similar functionality, or projects of the same
development team, in order to compare the quality features and lead to better software
design and implementation practices.

The results of the SUS questionnaire suggest that the SQMetric tool has good usability,
although some areas for improvement were identified. The findings of this study can
inform the design and development of the tool to improve its usability and enhance
user satisfaction. Further research could explore the factors influencing the usability of
the tool and investigate the effectiveness of different design approaches, especially for
educational purposes.

The results of our custom-made questionnaire suggest that the participants generally
had positive attitudes toward the questions asked. However, some questions had lower
mean scores than others, indicating areas for potential improvement. The findings of this
study can inform future research and help improve specific areas of the project (e.g., metrics
configuration, users’ loyalty, and tool limitations).

In conclusion, the tool proves to be useful and functional for the academic community,
as it can be used by students and professors in software technology courses. Unlike other
sophisticated commercial tools, it proves to be simple to use, free, and able to provide a
quantitative measure of the overall code quality. The utilization of software quality metrics
can aid students in recognizing their weak points, monitoring their progress, and receiving
constructive feedback from their instructors. It can also develop students’ critical thinking
and comprehension of object-oriented concepts by enhancing their Java code quality.
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Appendix A

Table A1. List of abbreviations.

Abbreviation Definition Source

AAT Automated Assessment Tools
AHF Attribute Hiding Factor Abreu [47]
ANA Average Number of Ancestors Bansiya and Davis [29]
B&D Bansiya and Davis
C&K Chidamber and Kemerer
CAM Cohesion Among Methods Bansiya and Davis [29]
CBO Coupling Between Objects Chidamber and Kemerer [28]
CC Cyclomatic Complexity McCabe [27]
CIS Class Interface Size Bansiya and Davis [29]

DAC Data Abstraction Coupling Li and Henry [49]
DAM Data Access Metric Bansiya and Davis [29]
DCC Direct Class Coupling Bansiya and Davis [29]
DIT Depth of Inheritance Tree Chidamber and Kemerer [28]
DSC Design Size in Classes Bansiya and Davis [29]
GUI Graphical User Interface
ISO International Organization for Standardization
LC Lines of Comments

LCOM Lack of Cohesion of Methods Chidamber and Kemerer [28]
LLOC Logical Lines Of Code
LOC Lines Of Code
MFA Measure of Functional Abstraction Bansiya and Davis [29]
MHF Method Hiding Factor Abreu [47]
MOA Measure Of Aggregation Bansiya and Davis [29]
MPC Message Passing Coupling Li and Henry [49]
NOC Number of Children Chidamber and Kemerer [28]
NOH Number Of Hierarchies Bansiya and Davis [29]
NOM Number Of Methods Bansiya and Davis [29]
NOP Number Of Polymorphic methods Bansiya and Davis [29]

PF Polymorphism Factor Abreu [47]
PLOC Physical Lines Of Code

QMOOD Quality Model for Object-Oriented Design Bansiya and Davis [29]
RFC Response For a Class Chidamber and Kemerer [28]
SE Software Engineering

SEC Software Engineering Competencies
SUS System Usability Scale Brooke [69]
TQI Total Quality Index Bansiya and Davis [29]

UML Unifying Modeling Language
WMC Weighted Methods per Class Chidamber and Kemerer [28]
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