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Abstract: The symmetries of a Riemann surface Σ \ {ai} with n punctures ai are encoded in its funda-
mental group π1(Σ). Further structure may be described through representations (homomorphisms)
of π1 over a Lie group G as globalized by the character variety C = Hom(π1, G)/G. Guided by our
previous work in the context of topological quantum computing (TQC) and genetics, we specialize on
the four-punctured Riemann sphere Σ = S(4)

2 and the ‘space-time-spin’ group G = SL2(C). In such a
situation, C possesses remarkable properties: (i) a representation is described by a three-dimensional
cubic surface Va,b,c,d(x, y, z) with three variables and four parameters; (ii) the automorphisms of the
surface satisfy the dynamical (non-linear and transcendental) Painlevé VI equation (or PVI); and
(iii) there exists a finite set of 1 (Cayley–Picard)+3 (continuous platonic)+45 (icosahedral) solutions
of PVI . In this paper, we feature the parametric representation of some solutions of PVI : (a) solutions
corresponding to algebraic surfaces such as the Klein quartic and (b) icosahedral solutions. Appli-
cations to the character variety of finitely generated groups fp encountered in TQC or DNA/RNA
sequences are proposed.

Keywords: isomonodromic deformation; Painlevé VI; SL(2,C) character variety; algebraic surfaces;
DNA/RNA

1. Introduction

Free groups Fr of rank r = 2 and 3 have been found to be important in our earlier
work about topological quantum computing (TQC) [1] and biology at the DNA/RNA
genomic scale [2]. In the first context, one motivation is that an elementary link, the
Hopf link L = L2a1 made of two unknotted curves, may serve as a naive approach of
TQC, corresponding to one qubit on either curve, as in [3]. Representation theory of the
fundamental group π1(L) over the group SL2(C) puts the punctured torus T1

1 whose group
is π1(T1

1 )
∼= F2 into focus. In the second context, at least in a first approximation, a finitely

generated group fp defined from an appropriate DNA/RNA sequence turns out to be close
to F2 (for a sequence built from two distinct amino acids) or to F3 (for a sequence built from
three distinct amino acids). The SL2(C) character variety of such an fp group favors the

topology of the triply punctured sphere S(3)
2 (respectively, the quadruply punctured sphere

S(4)
2 ) whose fundamental groups are F2 (respectively, F3).

The interrelation between the free groups F2 and F3 becomes apparent in the explo-
ration of fibrations associated with the Painlevé VI (or PVI) equation, a central focus of
our inquiry. The discovery of the PVI equation by R. Fuchs in 1905, during Einstein’s
annus mirabilis, marked a pivotal moment in mathematical history. B. Gambier further
highlighted its significance a year later, listing it as one of the six Painlevé transcendents [4].
These transcendents, ordinary second-order differential equations in the complex plane,
defy expression in terms of familiar elementary or special functions, such as elliptic or
hypergeometric functions.

The hallmark of Painlevé transcendents is the Painlevé property, denoting that the
only movable singularities are poles. Recently, the attention has shifted towards unraveling
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the explicit algebraic solutions of PVI , making it a hot topic with profound connections
to algebraic geometry [5] and representation theory over the group SL2(C) [6]. It is
worth recalling that SL2(C), the special linear group of 2 × 2 complex matrices with
a determinant equal to 1, plays a crucial role in physics, particularly in the realm of
symmetries and representations.

The realm of conformal field theory unveils another layer of connection, as the confor-
mal group in two-dimensional space-time mirrors the isomorphism with SL2(C) [7]. This
alignment assumes paramount importance in specific facets of string theory. The AdS/CFT
correspondence further solidifies these connections, establishing a duality between a the-
ory dwelling in anti-de-Sitter space (AdS) and a conformal field theory residing on its
boundary [8]. Black-hole physics delves into the symmetrical nuances of SL2(C), partic-
ularly in describing the isometries characterizing certain black hole solutions in general
relativity, especially those with AdS asymptotic structures.

Turning our attention to the physical applications of PVI , its profound interconnection
with SL2(C) emerges prominently in the study of isomonodromic deformations and math-
ematical structures entwined with integrable systems [9,10]. Isomonodromic deformations,
involving parameter variations in a second-order differential equation while preserving
fixed monodromy properties, constitute a pivotal aspect of PVI research. The associated
monodromy matrices find their home within the confines of the group SL2(C). The Garnier
system, which encapsulates PVI , manifests as a family of partial differential equations
resonating across diverse physical contexts, including statistical mechanics [11].

In the intricate tapestry of string theory, solutions to PVI unfurl within the study of
moduli spaces of Riemann surfaces. Notably, the Painlevé equations emerge as reductions
of partial differential equations, self-dual Yang–Mills equations [12], and within the intricate
framework of random matrix theory [13]. PVI takes center stage as it obediently materializes
in combinations of conformal blocks within two-dimensional conformal field theory [14].

In Section 2, we embark on an exploration of the intricate mathematical landscape
that establishes a profound connection between the topological intricacies of free groups F2
and F3, isomonodromy deformations (deformations preserving monodromy), SL2(C) rep-
resentations of fundamental groups, the enigmatic Painlevé VI equation, and the intriguing
realm of Fricke–Painlevé surfaces. The initial manifestation of the link between PVI and a
complex surface is discerned in Jimbo’s seminal paper, specifically in ([15], Equation (1.6)).

The journey unfolds further as we trace the PVI monodromy to its roots in the cor-
responding SL2(C) character variety, ultimately leading to the Jimbo–Fricke cubic, a con-
cept expounded upon in works such as [16,17]. However, we introduce a more explicit
conceptualization—the notion of a ‘Fricke–Painlevé VI surface’ (or simply Fricke–Painlevé
surface) to precisely characterize the intriguing correspondence between a complex cubic
surface and the dynamic equation PVI . It is noteworthy that all algebraic solutions of PVI
have been meticulously documented [18].

Sections 3 and 4 delve into the heart of the matter. In Section 3, our focus centers on
parametric representations of algebraic solutions of PVI and the drawing of log-log plots
of some of them for the first time. Section 4 then extends our exploration to non-algebraic
surfaces, providing a comprehensive view of the diverse landscape that PVI traverses.

As the journey unfolds, Section 5 provides a reflective space where we deliberate on
the diverse applications of Painlevé VI, particularly in the character varieties of finitely
generated groups encountered in the realms of topological quantum computing (TQC)
and genetics.

2. Materials and Methods

The concept of a flat connection on a fiber bundle M → B takes shape, where the base
B assumes the form of a three-punctured sphere, denoted as B = S(3)

2 = P1 \ {0, 1, ∞}.

For each point t ∈ B, a corresponding four-punctured sphere Pt = S(4)
2 = P1 \ {0, 1, t, ∞}

emerges. Let Mt denote the fiber of M over the base point t ∈ B, and the monodromy
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action unfolds through the action of the fundamental group of the base on the fiber. This
intricate dance is orchestrated by a homomorphism π1(B) → Aut(Mt) [5].

Now, let us offer a succinct overview of how the Painlevé VI equation is derived. Initi-
ating the journey, a Fuchsian system of differential equations, boasting four singularities,
takes the form:

dΦ
dz

= A(z)Φ, A(z) =
3

∑
i=1

Ai
z − ai

,

where A(z) contains 2 × 2 traceless matrices Ai and poles at ai, i = 1, · · · , 3. In this context,
an isomonodromic deformation involves the movement of poles in the complex space C3

and a variation in the entries of Ai, all while conserving the conjugacy class of the corre-
sponding monodromy representation. These deformations adhere to Schlesinger’s system:

∂Ai
∂aj

=
[Ai, Aj]

ai − aj
, i ̸= j and

∂Ai
∂ai

= −∑
i ̸=j

[Ai, Aj]

ai − aj
.

Schlesinger’s equations not only preserve the adjoint orbit Oi containing each Ai but
are also invariant under the conjugation of Ai, i = 1, · · · , 4, with A4 = −A1 − A2 − A3
representing the residue of A(z) at infinity.

For each point (a1, a2, a3) on the base B, we consider the set

Hom(π1(C \ {ai}), G)/G,

which comprises conjugacy classes for representations of the fundamental group π1 of
the 4-punctured sphere S(4)

2 with loops around the i-th puncture at the conjugacy classes
ci = exp(2π

√
−1Oi) ⊂ G = SL2(C), (i = 1, · · · , 4 and a4 = ∞). These representation

spaces are two-dimensional and seamlessly fit into the fiber bundle M → B.
For each t ∈ B, the space of conjugacy classes of SL2(C) representations for the

fundamental group π1(Pt) is the character variety

Ct = Hom(π1(Pt), G)/G, with G = SL2(C).

The connection is flat and described by PVI equation as follows [4,5]:

ytt =
1
2 (

1
y + 1

y−1 + 1
y−t )y

2
t − ( 1

t +
1

t−1 + 1
y−t )yt

+ y(y−1)(y−t)
2t2(t−1)2 {α2

4 − α2
1

t
y2 + α2

2
t−1

(y−1)2 + (1 − α2
3)

t(t−1)
(y−t)2 } (1)

with yt =
dy
dt and parameters α1, α2, α3, α4 ∈ C.

2.1. The Fricke–Painlevé VI Surface

Let the boundary components of Pt be A, B, C, D, then π1(Pt) = ⟨A, B, C, D|ABCD⟩ ∼= F3.
A SL2(C) representation of π1 is the quadruple α = ρ(A), β = ρ(B), γ = ρ(C), δ = ρ(D)
with αβγδ = I. Taking the four boundary traces a = tr(ρ(α)), b = tr(ρ(β)), c = tr(ρ(γ)),
d = tr(ρ(δ)) and the three traces x, y, z of elements AB, BC, CA representing simple
loops on Pt, we obtain the character variety for Pt ([6], Section 5.2), ([19], Section 2.1),
([20], Section 3B), ([21], Equation 1.9), ([22], Equation (39)), [18]

Va,b,c,d(x, y, z) = x2 + y2 + z2 + xyz − θ1x − θ2y − θ3z − θ4 = 0, (2)

with θ1 = ab + cd, θ2 = ad + bc, θ3 = ac + bd and θ4 = 4 − a2 − b2 − c2 − d2 − abcd.
From now, the 3-dimensional cubic surface Va,b,c,d(x, y, z) with 3 variables and

4 parameters is called the Fricke–Painlevé surface due to the established correspondence
between the automorphisms of such a surface and Painlevé VI equation.
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Looking at the nonlinear monodromy of Painlevé VI, we obtain the relation between
parameters a, b, c , d of Va,b,c,d(x, y, z) and parameters αi, i = 1, · · · , 4, of the Painlevé VI
equation as ([21], Theorem 3), ([22], Section 4.2), ([18], Equation 13)

(a, b, c, d) = [2 cos(πα1), 2 cos(πα2), 2 cos(πα3), 2 cos(πα4)]. (3)

The Cayley’s Nodal Cubic Surface

The most famous Fricke–Painlevé surface follows from the fundamental group of
the knot complement π1(S3 \ L2a1) = ⟨A, B|[A, B]⟩ = Z2, where S3 is the three sphere,
[A, B] = A−1B−1 AB is the group theoretical commutator and L2a1 is the Hopf link. The
character variety is given by the polynomial

κ4(x, y, z) = x2 + y2 + z2 − xyz − 4, (4)

where the notation κ4(x, y, z) = V0,0,0,0(x, y, z) is for the unique surface of the Fricke–
Painlevé family, known as the Cayley nodal cubic surface, exhibiting four isolated singular-
ities. A plot can be found in ([1], Figure 1).

Solutions of the corresponding Painlevé VI equation, attributed to Picard (in 1889),
can be explicitly expressed in terms of the Weierstrass elliptic function ([18], Proposition 51,
p. 155) [23].

3. Algebraic Solutions of Painlevé VI Equation Mapping to Algebraic Surfaces

Following the description of [24], an algebraic solution y(t) of PVI equation should
be specified by a polynomial equation F(y, t) = 0 with rational coefficients and a set of
four parameters αi, i = 1, · · · , 4.

More precisely, an algebraic solution of Painlevé VI is a compact (possibly singular)
algebraic curve Π together with two rational functions y and t: Π → P1 providing a rational
parametric representation (y(s), t(s)) such that (a) t is a Belyi map, with its branch locus
being a subset of {0, 1, ∞} and (b) y solves PVI for some parameters αi.

All algebraic solutions of PVI have been classified in [18,25] building upon significant
earlier contributions, including [26–28]. In [25], all algebraic solutions of PVI , if not of the
dihedral, tetrahedral or octahedral type, are refered to as isosahedral solutions as they can
be derived from the finite monodromy subgroup Γ of G = SL2(C), where Γ is the binary
icosahedral group. Such solutions, governing the isomonodromic deformations of PVI ,
have finite branching, with a number of branches ranging from 5 to 72.

Before the release of [25], the list of 45 exceptional solutions of PVI was documented in
the 2006 Cambridge slides by Philip Boalch [29]. Subsequently, for practical purposes, we
adopt the solution numbering for PVI as provided in [18].

Mapping an algebraic Fricke–Painlevé surface with integer parameters θi to an alge-
braic solution of Painlevé VI equation is one to one except for parameters θi = (1, 0, 0, 2)
(yielding three distinct solutions) and θi = (0, 0, 0, 3) (yielding two distinct solutions)
([18], Table 4). In the first exceptional case the surface is a degree 3 del Pezzo surface of
type A1 (with one isolated singularity), while in the later case it is a degree 3 del Pezzo
surface without a simple singularity. Detailed information about the 12 solutions (3+ 2+ 7)
is provided in this section.

3.1. The Klein Solution

The Klein solution, corresponding to the Klein surface, is obtained with parameters
(θ1, θ2, θ3, θ4) = (1, 1, 1, 0) [30], ([5], p. 26), ([18], solution 8). The parametric form of the
solution is

y(s) =
(5s2 − 8s + 5)(7s2 − 7s + 4)

s(s − 2)(s + 1)(2s − 1)(4s2 − 7s + 7)
, t(s) =

(7s2 − 7s + 4)2

s3(4s2 − 7s + 7)2 (5)

It corresponds to the complex reflection group 24 in the Shephard–Todd list. The solu-
tion has seven branches and parameters αi = (2/7, 2/7, 2/7, 4/7). It is shown in Figure 1.
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Figure 1. (Left): Parametric plot for the modulus of Klein solution of PVI (solution 8 of ([18], p. 157));
the discontinuities of the plot correspond to the four poles. (Right): the corresponding cubic surface
xyz + x2 + y2 + z2 − x − y − z = 0.

3.2. Solutions with Parameters (θ1, θ2, θ3, θ4) = (1, 0, 0, 2)

There are three solutions of PVI corresponding to the algebraic surface xyz + x2 + y2 +
z2 − x − 2 = 0. They are referred to as solution 3 (a tetrahedral solution with 6 branches),
solution 21 with 12 branches and solution 42 with 36 branches in [18]. The surface is a
degree 3 del Pezzo surface with an isolated singularity of type A1. It is depicted at the
bottom of Figure 2.

The parametric form of the tetrahedral solution 3 is

y(s) =
−s(s + 1)(s − 3)2

3(s + 3)(s − 1)2 , t(s) =
−(s + 1)3(s − 3)3

(s − 1)3(s + 3)3 (6)

The parametric forms for solutions 21 and 42 are found in [18]. The log-log plots of
the solutions are given in Figure 2.

The parametric form of solution 3 has poles at s = 1 and 3 which are evident as
discontinuities in the log-log plot. For solution 21, there are poles at s = 0, 2, −

√
2 ± 2.21/4

(i.e. s ∼ 0.964 and −3.793). For solution 42, there are poles at s = 101/3 + 1 ∼ 3.154 and
(7 ±

√
5)/2 (i.e., s ∼ 6.854 and 0.146)

3.3. Solutions with Parameters (θ1, θ2, θ3, θ4) = (0, 0, 0, 3)

There are two solutions of PVI corresponding to the algebraic surface xyz + x2 + y2 +
z2 − 3 = 0. They are referred to as solution 20 (an octahedral solution with 12 branches)
and solution 45 with 72 branches in [18]. The surface is of a degree 3 del Pezzo type devoid
of an isolated singularity. It is depicted at the bottom of Figure 3.
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Figure 2. Solutions related to the algebraic surface xyz + x2 + y2 + z2 − x − 2 are indexed in [18].
(Upper left): the tetrahedral solution 3. (Upper right): solution 21. (Middle): modulus of solution 42.
(Lower): the corresponding algebraic surface. It is a degree 3 del Pezzo surface of the A1 type.

The parametric form of the octahedral solution 20 is

y(s) = 1
2 + 45s6+20s5+95s4+92s3+39s2−3

4(5s2+1)(s+1)2u(s)

t(s) = 1
2 + s(2s+1)2(27s4+28s3+26s2+12s+3)

(s+1)3u(s)3 (7)

u(s)2 = (2s + 1)(9s2 + 2s + 1)

The parametric forms for solution 45 is given in [18]. The log-log plots of the solutions
are presented in Figure 3. The parametric form of solution 20 reveals two poles at s = −1
and −1/2 and another discontinuity at s = 0. For solution 45, there are poles at s = ±1,
2/7, 7/2 and 101/3 + 1.
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Figure 3. Solutions related to the algebraic surface xyz + x2 + y2 + z2 − 3 = 0 are indexed in [18].
(Upper left): the modulus of the octahedral solution 20. (Upper right): the modulus of solution 45.
(Lower): the corresponding algebraic surface.

3.4. The Great Dodecahedron Solution

The great dodecahedron solution, obtained with parameters (θ1, θ2, θ3, θ4) = (2, 2, 2,−1)
([18], solution 31), has the parametric form

1
2 − 8s7−28s6+75s5+31s4−269s2+318s2−166s+56

18u(s)(s−1)(3s3−4s2+4s+2)

1
2 + (s+1)(32(s8+1−320(s7+s)+1112(s6+s2)−2420(s5+s3)+3167s4

54u(s)3s(s−1)

u(s)2 = s(8s2 − 11s + 8) (8)

The solution has 18 branches and parameters αi = (1/3, 1/3, 1/3, 1/3). A log-log
plot for the modulus of solution 31 is shown in Figure 4 (Left) where the three poles at
s = (4 − 2.102/3 + 101/3)/9 ∼ −0.348, s = 0 and 1 are shown. The corresponding algebraic
surface is a degree 3 del Pezzo of type 3A1.

Figure 4. (Left): Parametric plot for the modulus of the great dodecahedron solution of PVI (solution
31 of ([18], p. 157)); the three poles are identified. (Right): the corresponding cubic surface is a degree
3 del Pezzo surface of type 3A1 that is with three isolated singularities).
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3.5. Three Extra Solutions Leading to an Algebraic FRICKE-Painlevé Surface

There are three extra solutions corresponding to an algebraic Fricke–Painlevé surface.
They correspond to the unique solutions with parameters (θ1, θ2, θ3, θ4) = (0, 1, 1, 0) (solu-
tion 1 with 5 branches), (0, 0, 0, 3) (solution 30 with 16 branches) and (1, 1, 1, 1) (solution 39
with 24 branches). The parametric expressions are in [18]. The log-log plots are found in
Figure 5. The corresponding Fricke–Painlevé surfaces are degree 3 del Pezzo and devoid of
isolated singularities.

Figure 5. Parametric plots for the modulus of solutions 1 (with 5 branches: Fricke–Painlevé form
xyz + x2 + y2 + z2 − y − z = 0), 30 (an octahedral solution with 16 branches: Fricke–Painlevé form
xyz + x2 + y2 + z2 − 2 = 0) and 39 (a Valentiner solution with 24 branches: Fricke–Painlevé form
xyz + x2 + y2 + z2 − x − y − z − 1 = 0.)

4. Further Algebraic Solutions of Painlevé VI Equation

From now, we list further algebraic solutions of PVI not related to an algebraic Frick—
Painlevé surface.

4.1. The Icosahedral Solution 7

The surface, obtained with parameters (αi = (1/5, 2/5, 1/5, 1/3)), that is
(θ1, θ2, θ3, θ4) = ((1 +

√
5, (3 +

√
5)/2, (3 +

√
5)/2,−2 −

√
5) ([18], solution 7), has

six branches and parametric form (Figure 6).

y(s) =
−54s(s − 7)

(s − 4)(s + 1)(s4 − 20s2 − 35)
, t(s) =

432s
(s + 5)(s + 1)3(s − 4)2 (9)

Figure 6. (Left): Parametric plot of an icosahedral solution of PVI (solution 7 of ([18], p. 157)); the
discontinuities of the plot correspond to the poles. (Right): the corresponding cubic surface.
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4.2. Dubrovin–Mazzocco Platonic Solutions

In [26], some platonic solutions of Painlevé VI equation are explored. These include
the tetrahedral solution (solution III in [18] with 3 branches), the dihedral solution (solution
IV in [18] with 4 branches), icosahedral solutions (solution 16 and 17 with 10 branches
in [18]) and the great dodecahedron solution (solution 31 in [18]). These solutions are
obtained for parameters αi = (0, 0, 0, 2/3), (0, 0, 0, 1/2), (0, 0, 0,−4/5), (0, 0, 0,−2/5) and
(1/3, 1/3, 1/3, 1/3), respectively. The great dodecahedron solution was previously men-
tioned in Section 3.4 and the parametric forms of other solutions are depicted in Figure 7.
The explicit parametric forms can be found in the aforementioned papers.

Figure 7. Parametric plots for the modulus of solutions III (the tetrahedral solution), IV (the dihedral
solution), solutions 16 and 17 (icosahedral solutions) as first described in [26]. For the later two
solutions, we find poles located at irrational values s = −1, 1/3, 2 ±

√
5 and ±1/

√
3.

4.3. Solutions Related to the Valentiner Group

The Valentiner group is the three-dimensional complex reflection group 27 with an
order of 2160 in the Shephard–Todd list. Three solutions of PVI are built upon this symmetry
([5], Theorem D). One of them is solution 39 described in Section 3.5. The other two are
solutions 26 and 27 (with parameters αi = (1/3, 1/3, 1/3, 3/5) and (1/3, 1/3, 1/3, 1/5)),
representing θi = ((3 ∓

√
5)/2, (3 ∓

√
5)/2, (3 ∓

√
5)/2,±

√
5 + 1) and 15 branches.

The solutions are plotted in Figure 8.
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Figure 8. Parametric plots for the modulus of solutions 26 and 27 that are related to the
Valentiner group.

4.4. Two Extra Icosahedral Solutions

Solutions 33 (with parameters αi = (1/3, 1/7, 1/7, 6/7)) first found in [28] and 34
(with parameters αi = (2/7, 2/7, 2/7, 1/3)) are closed to each other. Their parametric forms
are plotted in Figure 9.

Figure 9. Parametric plots for the modulus of solutions 33 and 34.

5. Discussion
5.1. Application to SL2(C) Character Varieties of Finitely Generated Groups

Our interest in Painlevé VI arises from our exploration of SL2(C) representations
of finitely generated groups fp encountered in models of topological quantum com-
puting (TQC) [1,17] and the investigation of DNA/RNA short sequences crucial in
transcriptomics [2,31]. A model of TQC can commence with a link such as the Hopf link
L2a1, whose character variety is the Cayley cubic surface κ4(x, y, z) given in (4). This
surface is associated with the Picard solution of PVI , as mentioned at the end of the
introduction. Other links, such as L7a4 or L6a1 = 62

3 ([1], Figure 2), whose character
varieties contain the Fricke–Painlevé surfaces κd(x, y, z) for d = 2 and 3 can be utilized. To
these surfaces one can attach solution 30 of Painlevé VI (see Section 3.5 for the former case)
and solutions 20 or 45 (see Section 3.3 for the latter case).

It has been observed that the truncated Groebner basis of four-letter fp groups en-
countered in the context of DNA/RNA sequences contains algebraic surfaces κd(x, y, z)
for d = 3 and 4 as mentioned above, as well as the surface V1,1,1,1(x, y, z) [2]. This surface
corresponds to Fricke—Painlevé solution 31, with parameters θi = (2, 2, 2,−1), associ-
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ated with the symmetry of the great dodecahedron (see Section 3.4). The surface with
parameters θi = (1, 0, 0, 2) is also part of the Groebner basis for four-letter fp groups.
This reveals that many algebraic solutions of PVI , the Picard solution for the Cayley cubic
κ4(x, y, z), solutions 20 and 45 associated with κ3(x, y, z), solutions 3, 21 and 42 for parame-
ters θi = (1, 0, 0, 2) and the great dodecahedron solution 31 should play a role in genetics at
the genome scale.

A Specific Example: m6 A (N6-Methyladenosine) Modifications

In the context of so-called epitranscriptomics, there are chemical modifications that
control the metabolism of transcription of the genetic information. More than 170 types
of RNA methylation processes have been discovered. The most common for eukaryotic
organisms is the methylation of N6-methyladenosine (m6 A) on some sites A with a specific
short sequence RRACH (R = A or G, H = A, U or C); see e.g., [32–34]. In paper ([35],
Table 2), we provide a group theoretical analysis of such sequences. For instance, the
Groebner basis of three-nucleotide sequences AAACA and GGACA contain algebraic
surfaces of type S(A2), S(A1 A2) or S(A2 A2) with S(A2) = xy2 − z3 − yz − x + 3z, S(A1 A2) =
xz2 − xy − yz − x + z for the former sequence and S(A2) = −x3 − y3 − yz + 4x + 2y − z − 1,
S(A2 A2) = y3 + z2 − xz + 2yz + 2x − 4y − 2z for the latter sequence. The exponent (*)
in the surface S(∗) refers to the type of A-D-E (simple) singularity of the surface ([35],
Section 2.4). In our view, the occurrence of such a simple singularity in the character variety
of a relevant sequence is associated with a potential disease. In addition, we observe that
the aforementioned singularities do not belong to the list of singularities found in the
context of Painlevé VI.

Let us now pass to the four-nucleotide sequence GGACU. This case is not investigated
in much detail in ([35], Table 2). Below, we look at the the degree-2 Groebner basis associated
with the character variety of group π1 = ⟨A, C, G, U|GGACU⟩. The degree d-Groebner
basis is the truncated Groebner basis obtained by ignoring polynomials of total degree
larger than d. In our case, we obtain algebraic surfaces of the Fricke–Painlevé type.

For a four-nucleotide sequence, the degree-2 Groebner basis G2 contains 14-
dimensional surfaces of the form Sa,b,c,d,e, f ,g,h(x, y, z, u, v, w) in C14 (instead of 7-dimensional
surfaces of the form Sa,b,c,d(x, y, z) in the case of a three-nucleotide sequence).

For the sequence GGACU, we find that, for parameters (a, b, c, d, e, f , g, h) =
(0, 0, 0, 0, 0, 0, 0, 0), G2 contains decoupled surfaces κ4(x, y, z), κ4(x, u, v), κ4(y, u, w)
and κ4(z, v, w) corresponding to the Picard solution of Painlevé VI. For parameters
(a, b, c, d, e, f , g, h) = (0, 0, 1, 1, 0, 0, 1, 1), G2 contains decoupled surfaces κ3(x, y, z),
κ3(x, u, v) as well as the Fricke–Painlevé surfaces with parameters θi = (2, 2, 2,−1) and
variables (y, u, w) and (z, v, w). For parameters (a, b, c, d, e, f , g, h) = (1, 1, 1, 1, 1, 1, 1, 1), G2
contains the decoupled Fricke—Painlevé surfaces with parameters θi = (2, 2, 2,−1) and
variables (x, y, z), (x, u, v), (y, u, w) and (z, v, w). Then, for parameters (a, b, c, d, e, f , g, h) =
(1, 1, 0, 0, 0, 1, 1, 0), G2 contains the decoupled Fricke-Painlevé surfaces with parameters
θi = (1, 1, 1, 1) and variables (x, y, z), the Fricke–Painlevé surface κ3(x, y, z), as well as the
Fricke–Painlevé surfaces with parameters θi = (1, 0, 0, 2) and variables (x, u, v), (z, v, w)
and (x, u, v).

These explicit calculations confirm our hypothesis that some algebraic solutions of
Painlevé VI may govern the dynamical transcription in genomics.

5.2. Perspectives

Isomonodromic deformation is a concept dating back to the nineteenth century, pio-
neered by P. Painlevé and subsequently studied by Fuchs, Schlesinger, Jimbo and numerous
other scholars. This concept is underpinned by crucial mathematical properties of isomon-
odromy equations, including the Painlevé property, indicating that essential singularities
remain fixed while poles may shift; transcendence, implying that solutions are non-classical;
the existence of a symplectic structure, a twistor structure, and a Gauss–Manin connection.
Isomonodromic deformation finds applications across various fields, such as random matrix
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theory, statistical physics, topological quantum field theory, nonlinear partial differential
equations, Einstein field equations, and mirror symmetry.

While this paper primarily delves into the exploration of algebraic solutions of the
Painlevé VI equation, it is noteworthy that the chaotic dynamics of PVI has also received
attention [36]. Further generalizations can be explored, as presented in [37]. In this latter
paper, the role of PVI is assumed by a differential equation governing the divergences in a
formulation of renormalization in quantum field theory. The concept of a flat connection
on a fiber bundle over the three-punctured sphere is significantly extended to a ‘flat
equisingular bundle’ within a tensor category. The underlying symmetries are no longer
discrete but are described by a motivic Galois group, also referred to as the ‘cosmic Galois
group’, in line with ‘Cartier’s dream’ [38].
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