
Citation: Nyathi, M.A.; Bai, J.; Wilson,

I.D. Deep Learning for Concrete Crack

Detection and Measurement.

Metrology 2024, 4, 66–81. https://

doi.org/10.3390/metrology4010005

Academic Editors: Lukasz Scislo,

Nina Szczepanik-Scislo and

Serge Demidenko

Received: 24 November 2023

Revised: 12 January 2024

Accepted: 24 January 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Deep Learning for Concrete Crack Detection and Measurement
Mthabisi Adriano Nyathi * , Jiping Bai and Ian David Wilson

Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
* Correspondence: mthabisi.nyathi1@southwales.ac.uk

Abstract: Concrete structures inevitably experience cracking, which is a common form of damage. If
cracks are left undetected and allowed to worsen, catastrophic failures, with costly implications for
human life and the economy, can occur. Traditional image processing techniques for crack detection
and measurement have several limitations, which include complex parameter selection and restriction
to measuring cracks in pixels, rather than more practical units of millimetres. This paper presents
a three-stage approach that utilises deep learning and image processing for crack classification,
segmentation and measurement. In the first two stages, custom CNN and U-Net models were
employed for crack classification and segmentation. The final stage involved measuring crack width
in millimetres by using a novel laser calibration method. The classification and segmentation models
achieved 99.22% and 96.54% accuracy, respectively, while the mean absolute error observed for crack
width measurement was 0.16 mm. The results demonstrate the adequacy of the developed crack
detection and measurement method, and shows the developed deep learning and laser calibration
method promotes safer, quicker inspections that are less prone to human error. The method’s ability
to measure cracks in millimetres provides a more insightful assessment of structural damage, which
is, in comparison to traditional pixel-based measurement methods, a significant improvement for
practical field applications.

Keywords: concrete crack detection; crack measurement; deep learning; image processing; segmentation;
laser calibration

1. Introduction

A significant portion of existing civil infrastructure, such as bridges, buildings and
dams, are constructed with concrete. These structures inevitably experience varying levels
of deterioration and damage throughout their service life, which can arise due to a range of
factors, such as ageing, increased traffic loads, accidental collisions and extreme weather
conditions [1,2]. Damage is defined as material or geometric changes that occur to the
material of structure [3,4]. Cracks are often the earliest indication of damage in concrete
structures [5,6], and undetected cracks can worsen over time, leading to reduced structural
integrity and potentially catastrophic failures, resulting in injury, loss of life and huge
economic costs [7,8]. The width of a crack typically indicates the severity of damage. One of
the oldest methods for detecting the presence of concrete cracks and measuring crack width,
is visual inspection, where crack width is typically measured manually by using tools and
instruments such as crack gauges and vernier calipers. Visual inspection and manual crack
measurement are effective, but they have drawbacks, including being subjective, time
consuming and susceptible to human error.

These shortcomings have been overcome by employing modern technology to perform
crack inspection and measurement. Digital imaging devices coupled with image processing
algorithms are widely used for crack detection and measurement because they are non-
destructive. Typical image processing algorithms for image-based concrete crack detection
include thresholding [9–11], edge detection [12,13] and binarization [14–16]. Morphological
features, such as thinning, closing, opening, erosion and dilation, have also been commonly
used to improve the results of image processing algorithms [5,16,17]. Crack detection
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using image processing has produced satisfactory results; however, its accuracy is, due
to the need for manual parameter selection, limited by the user’s expertise. In addition
to being a tedious process, image processing has low generalisation capabilities, which is
because factors such as lighting conditions and image quality can affect the performance of
manually selected parameters that might have previously worked perfectly under different
image conditions.

Deep learning (DL) has emerged as the preferred method for concrete crack detec-
tion because of its autonomous crack detection capabilities. Early DL works focused on
performing automatic classification of images, whether through binary classification or
multi-class classification. Binary classification has been successfully applied to classify
images as cracked or uncracked [18,19], including by Liu and Yeoh [20], who performed
binary classification by using the VGG16 CNN model to classify the type of cracks, as either
structural cracks or non-structural cracks. Multi-class classification has also been used to
classify cracks based on their characteristics. Uwanuakwa et al. [21] used DL to classify the
type/cause of cracks as vertical, diagonal, shrinkage, efflorescence, alkali-silica reaction or
corrosion cracks; And Gao and Mosalam [22] used multi-class classification to classify the
level and type of damage in concrete structures.

Classification using DL is an effective way of determining the presence of cracks in
images. However, the method falls short in providing sufficient details that allow for
detailed crack characterisation, such as crack width measurement. In order to achieve
image-based crack width measurement, it is essential to obtain a segmented binary crack
mask through segmentation: a binary crack mask typically represents a crack with white
pixels, and sets it against a background with black pixels. The white pixels are then
measured to determine the crack width.

DL is, when compared to conventional image processing techniques, seen to offer
a quicker and more scalable and generalisable approach to crack segmentation. A well-
trained DL segmentation model is capable of automatically segmenting cracks, regardless
of factors such as lighting conditions and image quality. Most segmentation models
typically consist of an encoder and decoder block. The encoder block is typically a CNN
classification model. The U-Net [23] architecture, which was first introduced to assist the
segmentation of medical images, has been widely adopted for crack segmentation [24–26].
Mirzazade et al. [26] first classified cracks using the Inception V3 CNN and then proceeded
to segment the classified cracks by using the U-Net and SegNet model. Zhao et al. [27]
performed crack segmentation by using a distinctive feature pyramid network (Crack-FPN),
and compared the performance of Crack-FPN against U-Net, U-Net++ and automatic
thresholding techniques. Fully Convolutional Networks (FCNs) have also been employed
to address the crack segmentation problem [17,28–31]. Other DL networks architectures
have also been used for automatic crack segmentation. For example, Kang et al. [32] used a
hybrid Faster R-CNN and modified TuFF algorithm, and Yu et al. [33] proposed a custom
segmentation model, Cracklab, which was a modification of DeepLabv3+ [34].

In order to fully exploit automatic crack segmentation by using DL, it is necessary
to use the segmented crack masks to measure the crack width of cracks in images. The
majority of studies used crack masks obtained by segmentation, and used image processing
to measure concrete crack width in pixels. Kim et al. [16] measured concrete crack width
in pixels by using binarisation.; Ioli et al. [14] used the medial axis transform to measure
crack width on crack masks that were obtained by using the Canny edge detection image
processing algorithm [12]; Yang et al. [17] used medial axis transform to measure crack
width in pixels after performing skeletonization; and Mishra et al. [35] measured crack
width in pixels by first measuring the length of the crack and the area of the segmented
crack, before calculating average crack width by dividing the area of the crack by the length
of the crack.

Although many studies have successfully measured concrete crack width by using
pixels, this unit of measurement remains a significant limitation: this is because determining
the width of concrete cracks in pixels does not provide practical information for field
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applications, as the severity of concrete crack width is better understood in millimetres.
Some studies [36–41] have found ways to measure concrete crack width in millimetres by
devising methods to carry out pixel to millimetre conversion. However, Nyathi et al. [5]
found that these methods require knowledge of key parameters that may not always
be readily available, such as focal length, camera resolution, number of pixels along the
long side of image sensor, etc. Other methods used physical markers attached to the
measuring surface to convert pixels to millimetres. Although the conversion of pixels
to millimetres was successfully achieved, a new challenge of imposed safety risks was
introduced, especially in hard-to-reach areas. To overcome these challenges, we previously
developed a novel laser calibration method [5] for converting pixels to millimetres by
using a laser beam. While the method performed well, achieving a mean absolute error
of 0.26 mm, it was limited, both by the use of image processing techniques for crack
segmentation and the angle at which images were captured. Therefore, the aim of this
paper is to enhance the performance of our previous work [5] by proposing a three-stage
approach that incorporates DL for crack classification, segmentation and measurement.
This has been accomplished by the:

- development of an automatic image-based crack classification method that uses a
CNN model to determine if cracks are present in an image, and does this by classifying
them as cracked or not cracked;

- development of a crack segmentation model, which is designed to segment the cracks
identified in the images and classified as cracked;

- crack width measurement of the segmented cracks masks in millimetres, which is
achieved by using improved laser calibration;

- evaluation and validation of the developed method, which is achieved by comparing
the measured crack widths which are obtained through deep learning and image
processing against manual measurements.

The rest of the article is structured as follows: Section 2 presents the methodology
used to develop DL algorithms for crack classification and segmentation. This section also
covers the approach used in data collection, and the dataset generation used to train the
deep learning models. Section 3 presents the classification, segmentation and crack width
measurement results and discusses their implications. The paper concludes with Section 4,
which makes concluding remarks about the work conducted and highlights the paper’s
contribution to knowledge.

2. Materials and Methods
2.1. Overview of Developed Method

The developed method employs DL to detect the presence of concrete cracks in images.
Once detected, both crack width and maximum crack width are measured in millimetres.
This method was formulated by performing five tasks: data collection, data preprocessing,
algorithm development, deep learning training and system deployment. The development
process is illustrated in Figure 1—each one of these steps will be further elaborated in
subsequent subsections.
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Figure 1. Overview of the methodology used to develop the crack detection and measurement 
system. 

2.2. Data Acquisition 
Visual inspections were carried out to acquire visual data, such as videos and images, 

which was then used to create training, validation and test datasets for the DL models that 
would be used in the image classification and segmentation tasks. Several image acquisi-
tion devices were deployed to various locations to capture a diverse array of visual data. 
Table 1 describes these devices, detailing the locations where they were used, and the spe-
cific types of data collected. Data was collected from the following locations and speci-
mens: 
- two concrete bridges in South Wales; 
- buildings around the University of South Wales (USW) Treforest Campus; 
- concrete beams, cubes and cylinders from laboratory experiments; and indoor and 

outdoor concrete slabs. 
It was vital to capture a wide range of photos with varying features, as this would 

ensure that the trained models could perform with significant generalisation capabilities 
when applied to new, previously unseen data. This was achieved by capturing images of 
varying quality, in both low and high resolution, and in varied lighting situations. In ad-
dition, photos from the dataset with both background noise and foreground occlusions 
were included. Figure 2 shows the diversity of the images captured. 
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Figure 2. Different types of images included in the concrete crack dataset (a) high resolution (b) low 
resolution/blurry (c) foreground occlusions (d) graffiti markings. 

Table 1. Description of the image acquisition devices used in this study. 

Device Specifications Data Type Location Used 

DJI Mini 3 pro 
- Resolution: 12.1 mega-pixels, f/1.7 
- Video frame-rate: 4 K/60 p, 2.7 K/60 p,

1080/120 p 

- Images 
- Videos 

- Bridges 
- Outdoor buildings 

iPhone 11 Pro Max - Resolution: 12 mega-pixels, f/1.8 aperture
wide lens (4032 × 3024 pixels) 

- Images 
- Videos 

- Bridges 
- Laboratory 
- Indoor buildings 
- Outdoor buildings 
- Slabs 

Figure 1. Overview of the methodology used to develop the crack detection and measurement system.
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2.2. Data Acquisition

Visual inspections were carried out to acquire visual data, such as videos and images,
which was then used to create training, validation and test datasets for the DL models
that would be used in the image classification and segmentation tasks. Several image
acquisition devices were deployed to various locations to capture a diverse array of visual
data. Table 1 describes these devices, detailing the locations where they were used, and
the specific types of data collected. Data was collected from the following locations and
specimens:

- two concrete bridges in South Wales;
- buildings around the University of South Wales (USW) Treforest Campus;
- concrete beams, cubes and cylinders from laboratory experiments; and indoor and

outdoor concrete slabs.

Table 1. Description of the image acquisition devices used in this study.

Device Specifications Data Type Location Used

DJI Mini 3 pro
- Resolution: 12.1 mega-pixels, f/1.7
- Video frame-rate: 4 K/60 p, 2.7 K/60 p, 1080/120 p

- Images
- Videos

- Bridges
- Outdoor buildings

iPhone 11 Pro Max
- Resolution: 12 mega-pixels, f/1.8 aperture wide lens

(4032 × 3024 pixels)
- Images
- Videos

- Bridges
- Laboratory
- Indoor buildings
- Outdoor buildings
- Slabs

Nikon D3400 DSLR
- Resolution: 24 mega-pixels (6000 × 4000)
- Lens: 18–55 mm Nikon AF-P DX Nikkor

- Images
- Videos

- Bridges
- Laboratory
- Indoor
- Outdoor buildings
- Slabs

It was vital to capture a wide range of photos with varying features, as this would
ensure that the trained models could perform with significant generalisation capabilities
when applied to new, previously unseen data. This was achieved by capturing images
of varying quality, in both low and high resolution, and in varied lighting situations. In
addition, photos from the dataset with both background noise and foreground occlusions
were included. Figure 2 shows the diversity of the images captured.
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Figure 2. Different types of images included in the concrete crack dataset (a) high resolution (b) low
resolution/blurry (c) foreground occlusions (d) graffiti markings.

2.3. Data Pre-Processing

It is important to highlight that, in addition to variability, the quantity of images plays
a vital role in the successful training of highly accurate and generalisable crack classifica-
tion and segmentation models. In the acquisition stage, 297 images (with resolutions of
8000 × 4000, 6000 × 4000 and 4032 × 3024 pixels) were captured. After pre-processing was
performed, these full-size images were divided into a total of 5026 images, each measuring
257 × 257 pixels. These images were then used to create a dataset named NYA-Crack-Data.
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To increase the size of the dataset, the 5026 images were combined with images from
two existing datasets (SDNET2018 [42] and Concrete Crack Images for Classification [43]).
The combination of datasets created a new dataset, NYA-Crack-CLS, of 47,026 images that
was used to train the classification models. Table 2 shows the class distribution of the
combined crack classification dataset.

Table 2. Class distribution of the crack classification dataset.

Dataset Crack Images No Crack Images

Our data (NYA-Crack-Data) 2167 2859
SDNET2018 1000 1000
Concrete Crack Images for Classification 20,000 20,000

Total (47,026) 23,167 23,859

A similar approach was adopted to create the crack segmentation dataset, NYA-Crack-
SEG, with a total of 800 images taken from the following datasets:

• 500 images captured, as described in Section 2.2.
• 150 images from SDNET2018
• 150 images from Concrete Crack Images for Classification

The images in the crack segmentation dataset were labelled by using Roboflow to
draw masks around the cracks [44]. The datasets for classification and segmentation were
then split into training, validation and testing datasets, at a 70:20:10 ratio, respectively. The
next sub-section describes the development of the DL and image processing algorithms for
crack classification, segmentation and measurement.

2.4. Algorithm Development
2.4.1. Crack Classification Model

A custom CNN model was developed, using the python programming language [45],
for the purpose of classifying collected images from inspections into two categories: cracked
or not cracked. Figure 3 depicts the architecture of the model, illustrating the structure,
which is comprised of four main blocks of 2D convolutional layers (Conv2D). The first layer
in the model is the input layer, which accepts an RGB image of dimensions 227 × 227 × 3;
it is followed by the first Conv2D layer, which consists of 32 filters of size 9 × 9 and a ReLu
activation function. Padding was used to ensure that the spatial dimensions of the output
remained identical to the input, thus preserving the edge information.
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Figure 3. Architecture of custom CNN model.

The second, third and fourth blocks of layers in the model architecture maintain a
similar structure to the first block, with the exception of an increased number of filters that
get smaller in each subsequent block: the second, third and fourth Conv2D layers therefore
comprise 64 filters of size 7 × 7, 128 filters of size 5 × 5, 256 filters of 3 × 3, respectively.
The spatial dimensions of Conv2D’s output are halved every time by the presence of a
MaxPooling2D layer of size 2 × 2. The model was trained with the Adaptive Moment
Optimisation (ADAM) optimizer, using a learning rate of 0.0001. The optimizer and
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learning rate were chosen experimentally to find the best results. The output of the model
is a binary classification that classifies the input image as either cracked or not cracked. Any
image that is classified as cracked is subsequently passed onto the segmentation network
for further analysis, with the goal of measuring the crack width along the crack.

2.4.2. Crack Segmentation Model

Two segmentation models were built, a custom U-Net and custom FCN-model. The
details of the model architectures are described in this section.

Custom U-Net Model

The custom U-Net model consists of two blocks, an encoder and a decoder block. The
first layer of the network before the encoder block is an input layer, which accepts an RGB
image of size 160 × 160 × 3. The encoder block has four layers, which each have two
convolution layers that can be summarised as follows:

Encoder block:
In layer 1, the first convolution performs convolutions on the input image; it has

64 filters of size 5 × 5, and uses a ReLu activation function. It is followed by a batch
normalisation layer. The second convolution layer has the same number of filters as the
previous convolution layer, which are also the same size. The convolution layer is followed
by a max pooling layer of size 2 × 2, and then by a skip connection layer. The same structure
was used for layers 1, 2 and 3, and the only difference between them is the number and
size of the filters used in the convolution layers (Layer 2 uses 128 filters of size 3 × 3 while
Layer 3 and Layer 4 use 256 and 512 filters of size 3 × 3, respectively).

Middle block:
The middle block connects the encoder and decoder blocks with a convolution layer

with 1024 filters of size 3 × 3.
Decoder block:
The decoder block has four layers. The first layer is an upsampling layer that uses a

transposed convolution function, and is concatenated with the fourth layer of the encoder
block by skip connection. Then two convolution functions with 512 filters of sizes 5 × 5
and 3 × 3 are then applied. The next three layers follow the same format, with a change in
the number of filters, with the second, third and fourth layers using 256, 128 and 64 filters
respectively. The second, third and fourth layers are concatenated with third, second and
first layers of the encoder block, respectively, and us the skip connections. The model was
trained using the ADAM optimizer, with a learning rate of 0.0001.

Custom FCN Model

The second custom segmentation model built for crack segmentation was a fully
convolutional network (FCN), which used the custom CNN model described in Section 2.4.1
as the backbone for the network. The purpose of the FCN model was to transform an input
of an RGB image (size 160 × 160 × 3) to a binary segmentation mask. The custom FCN
model was designed to consist of two blocks: The first block (encoder) used the architecture
of the custom CNN model and was used for capturing the context of the input image; and
the second block, essentially a decoder block, carried out up sampling in four layers. Each
layer has a Conv2DTranspose layer for up sampling, and a convolutional layer (Conv2D)
that gradually increases the spatial dimension while refining crack features in the image.
Layers 1, 2, 3 and 4 make use of 128, 64, 32 and 16 filters, which are all of size 2 × 2. All the
layers use a stride of 2 × 2, a ReLu activation function and a padding option (‘same’). The
final layer after the decoder block is a convolution layer that concludes with an output of
a binary crack mask that has the same spatial dimensions (160 × 160) as the input of the
custom CNN model used in the encoding block.
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2.4.3. Crack Width Determination

The width of the cracks detected in the images was measured by using image process-
ing techniques proposed in our previous work [5]. However, we made modifications to
enhance the method. Instead of using image processing and morphology operations, we
used DL-based segmentation to obtain the binary crack masks. These binary crack masks
were used as the starting point for the crack measurement process. The crack topology was
clearly outlined as a single-pixel-wide skeleton representation by using the medial axis
transform method. The distance transform was used to calculate the distance from each
pixel in the crack to the medial axis.

The method was used to identify the crack width, which was measured in pixels as
the distance from the medial axis to the two outer edges of the crack [5]. The maximum
crack width along the length of the segmented crack was identified and highlighted on the
image by using a colour bar plot in the image. The pixels along the crack are represented
with different colours that represent the size of the crack.

The measured crack width was converted from pixels to millimetres by using the laser
calibration method we developed in our previous work [5]. Laser calibration established
a relationship between the diameter of the projected laser beam and the distance to the
measuring surface. This method was refined, addressing limitations identified in its
previous implementation. Enhancements that involved rigorous testing were used to
examine the effects of capturing images in scenarios where the laser was not directly
perpendicular to the measuring surface, as illustrated in Figure 4.
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Figure 4. The effect of varying the distance from the measuring surface and the angle of laser beam
projection.

The experiments resulted in the establishment of a new relationship between the
laser diameter and distance to the measuring surface. The new relationship, shown in
Equation (1), accounts for the angle of deviation of the laser/camera, relative to the plane
perpendicular to the measuring surface.

∅real =
0.059D
cos θ

+ 3.0904 (mm) (1)

where ∅real is the actual diameter of the laser in millimetres; θ is the angle of deviation of
the laser/camera, relative to the plane perpendicular to the measuring surface; and D is the
distance to the measuring surface.
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In most practical cases, images are captured with the camera and laser perpendicular
to the measuring surface. Therefore, the angle θ is assumed to be zero, thus simplifying
Equation (1) to Equation (2).

∅real = 0.059D + 3.0904 (mm) (2)

Knowing this relationship, a conversion factor, αc, was calculated, as shown in
Equation (3)

αc =
∅real
∅px

(mm/pixels) (3)

where αc is the conversion factor; ∅real is the actual diameter of the laser in millimetres;
and ∅px is the diameter of the laser in the image measured in pixels, established by using
an algorithm by Nyathi et al. [5]).

The conversion factor enables the accurate conversion of pixels to millimetres by
Equation (4), thus allowing crack width to be measured in millimetres.

Cw(mm) = Cwp × αc = Cwp × ∅real
∅px

(4)

where Cw is the crack width in millimetres; Cwp is the crack width in pixels; and αc is the
conversion factor in (mm/pixels).

2.5. Performance Evaluation

The performance of the developed model was evaluated by a set of evaluation metrics.
For the classification models, accuracy, loss, precision, recall and F1-score were used to
assess performance. The segmentation model was evaluated by using the same metrics,
but with the addition of the intersection over union (IOU) metric. These metrics are defined
below, as follows:

• Accuracy, defined by Equation (5), is the ratio of the correctly classified images to total
number of images in the dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP represents True Positives; TN represents True Negatives; FP represents False
Positives; and FN represents False Negatives; TP are correctly classified images with
cracks; TN are correctly classified images with no cracks; FP are images with no cracks
incorrectly classified as having cracks; and FN are images with cracks incorrectly
classified as having no cracks.

• Precision, defined by Equation (6), is the ratio of positively classified crack images,
true positives, over the total number of classified positives, both true and false.

Precision =
TP

TP + FP
(6)

• Recall, also referred to as sensitivity, is defined by Equation (7); it is the ratio of
correctly classified cracks over the total number of crack observations.

Recall =
TP

TP + FN
(7)

• F1 score is used to calculate the weighted average of Precision and Recall and is defined
by Equation (8). F1 scores range from 0 to 1, with values closer to one indicating a
good balance between precision and recall.

F1 score =
2TP

2TP + FP + FN
(8)
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• IOU, defined in Equation (9), is the measure of how much the predicted crack segmen-
tation area overlaps (intersects) with the actual crack area, relative to the total area of
predicted crack segmentation and actual crack.

IOU =
Area of Intersection

Area of Union
(9)

2.6. Implementation

To carry out crack classification, segmentation and measurement by using the methods
described above, the following steps must be taken:

1. Capture images or videos using the image acquisition device of choice.
2. If videos were captured, pre-process them by converting the videos into image frames.
3. Feed the collected images into the classification model, which will classify the images

as ‘cracked’ or ‘uncracked’, and save in the relevant folder.
4. Segment the images in the ‘cracked’ folder by passing them as an input to the segmen-

tation model; this segments the images, producing a binary mask of the crack.
5. Apply the measurement algorithm to binary masks to obtain a visual output, showing

the crack width and location of maximum crack width.
6. To convert the crack width from pixels to millimetres, detect the laser in the image

and measure its pixel diameter. Use Equations (3) and (4) to convert the pixels
to millimetres.

The next section presents and discusses the results obtained from the implementation
of the developed method.

3. Results and Discussion

This section evaluates the developed methods of crack detection and crack measure-
ment. The performance of the crack classification model is evaluated on the test dataset
generated from the combination of our dataset with the two open-source datasets (SD-
NET2018 [42] and Concrete Crack Images for Classification [43]). The performance of the
developed crack width measurement method was evaluated by comparing the measure-
ments to manual measurements.

3.1. Classification

The performance of the custom model was compared against widely used pre-trained
CNN models for a variety of classification tasks, including concrete crack classification. The
models used for comparison were Inception V4, VGG16 and DenseNet121. Figure 4 shows
the confusion matrices of the custom CNN model and the four pre-trained CNN models
used to judge the performance of the custom CNN. As shown in Figure 4a, class 0 and
class 1 represent Crack and No Crack, respectively. The diagonal blocks in the confusion
matrices represent the number of correctly classified classes in the test dataset, and the
off-diagonal blocks represent misclassified classes. It can be seen from Figure 5 that the
best performing models (in terms of classification of the No Crack class) are Custom CNN
and VGG16, which performed at par, classifying 3564 images correctly. The custom CNN
model misclassified 39 images of cracks as having no cracks, and was outperformed by
VGG16 and Inception V4, which misclassified 20 and 17 images, respectively.

Furthermore, the performance of the models was validated by using the testing
accuracy, loss, precision, recall and F1-score metrics. The results presented in Table 3 show
that while the custom CNN did not obtain the highest testing accuracy, it did achieve
a notably high accuracy of 99.22%. The precision metric was also used to assess the
performance of the models. The custom CNN model was once again tied to the VGG16
model, with both achieving the highest precision of 0.9954. The recall, accuracy and F1-
score for all models were all high (above 0.98). The performance of the custom CNN
architecture may be improved by further training on a larger and more varied dataset.
Further hyperparameter tuning, combined with an increase in training epochs, could also
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lead to improved results. Custom CNN was chosen over other models because of its model
simplicity, which subsequently results in lower computational cost, when compared to the
other pre-trained models. This is evidenced in Table 4, which shows that the custom CNN
model has a smaller number of parameters than the other models. Due to its simplicity,
the custom CNN had the shortest training time of only 35.9 min and this, combined with
its high accuracy and precision, make it an attractive choice for general inspections that
seek to determine the presence of cracks, and sort images accordingly for further analysis,
if needed.
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Table 3. Performance evaluation of concrete crack classification on unseen image data.

Model
Testing

Precision Recall F1-Score
Training

Time (min)Accuracy Loss

Custom CNN 99.22 0.0340 0.9954 0.9888 0.9921 35.9
Inception V4 99.87 0.0049 0.9931 0.9951 0.9941 66.5

VGG16 99.89 0.0041 0.9954 0.9943 0.9949 46.2
DenseNet121 98.21 0.0543 0.9803 0.9870 0.9836 60.5

Table 4. Comparison of number parameters for each of the classification models.

Model Total Parameters Trainable Parameters Non-Trainable Parameters

Custom CNN 409,442 409,314 128
Inception V4 55,912,674 55,852,130 60,544
VGG16 15,242,050 15,242,050 0
DenseNet121 8,089,154 8,005,506 83,648
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Passing the collected images through the classification model before carrying out crack
segmentation offers several benefits:

• improved efficiency by filtering out irrelevant images without cracks, ensuring the DL
segmentation model only processes images with cracks;

• reduction in computational cost, due to only images with cracks being segmented;
• improved accuracy of the segmentation model, because only images known to have

cracks are segmented, minimising the likelihood of false positive segmentations;
• lastly, the classification model is designed to save output in cracked or uncracked

folders, thereby continuously expanding the dataset size.

3.2. Segmentation

A test dataset of images not previously seen by the two segmentation models was
used to evaluate the custom U-Net and FCN models, and a visual representation of the
performance of the models is presented in Figure 6. The binary crack masks and overlain
masks obtained using the custom U-Net and FCN models were compared to ground truth
segmentations. It can be seen from Figure 6 that the custom U-Net model, when compared
to the custom FCN model, created segmentation masks closer to ground truth. The custom
U-Net crack masks were, apart from crack D, observed to be more continuous, in com-
parison to the custom FCN masks. The performance of the models was further validated
by the evaluation metrics shown in Table 5, which confirms the custom U-Net model
achieved a higher testing accuracy of 96.54% when compared to the custom FCN model,
which achieved 95.88%; the custom U-net model also achieved better performance in IoU,
precision, recall and F1-scores, with values of 0.6295, 0.7174, 0.8371 and 0.7726, respectively.
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Table 5. Performance evaluation results of the segmentation models.

Model Accuracy IoU Precision Recall F1-Score

Custom U-Net 96.54 0.6295 0.7174 0.8371 0.7726
Custom FCN 95.88 0.5900 0.6897 0.8031 0.7421

The custom U-Net model was chosen as the segmentation model. The next subsection
details how the binary crack masks, which were obtained using the custom U-Net model,
were utilised for concrete crack width measurement.

3.3. Crack Width Calculations

The performance of the developed method of crack width measurement was validated
by testing it on a set of six images, which were captured under different conditions,
such as indoors, outdoors and with a high- and low-resolution camera. The actual crack
widths of the cracks were measured by using a vernier caliper. The images of cracks were
segmented by using the custom U-Net model to create binary crack masks. The binary
crack mask applied the medial axis transform algorithm to measure the crack width in
pixels. The enhanced laser calibration technique was used to convert the pixel crack widths
to millimetres by multiplying the pixel crack width by the conversion factor. Figure 7
illustrates the process by showing two cracks, and presenting the original image alongside
a binary mask, which visually represents the measured crack widths in pixels by using a
colour bar scale. Figure 7 also shows that the proposed crack width successfully identifies
the section in the crack with the maximum crack width, and also demonstrates the model’s
ability to perform well with variable data: here it can be observed that the crack images
differ in texture when compared to the Figure 6 images.
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The maximum cracks widths of all the measured cracks are presented in Table 6, which
shows that the method measured maximum crack width with a high accuracy. Crack 4 was
the most accurately measured crack, with an actual maximum crack width of 2.5 mm, and a
proposed method measurement of 2.49 mm: this absolute error of 0.01 mm was the smallest
absolute error observed in this experiment. The largest absolute error (of 0.47 mm) was
observed in Crack 2, where the actual maximum crack width was 5.00 mm, but measured
to be 4.53 mm. The mean absolute error (MAE) of the method was calculated to be 0.16 mm.

Table 6. Crack width measurement results, using DL segmented crack masks.

Crack
ID

Conversion
Factor

Measured
Max Width (Pixels)

Converted Max
Width (mm)

Actual Max
Width (mm)

Absolute
Error (mm)

1 0.357 6.00 2.14 2.00 0.14
2 0.507 8.94 4.53 5.00 0.47
3 0.351 20.0 7.02 7.10 0.08
4 0.275 9.06 2.49 2.50 0.01
5 0.205 20.3 4.16 4.03 0.13

The accuracy of the proposed method depends on the quality of the crack masks
generated by the U-Net segmentation model. Figure 6 showed that, when it comes to
completely masking the entire crack region, the performance of the custom U-Net model
still has room for improvement. Better masks can be achieved by training the model with
more images, adjusting training parameters and enhancing the model architecture. We
anticipate that these enhancements will lead to the improved accuracy of the crack width
measurement method.

The overall performance of the method using DL segmentation is visualised in Figure 8.
Figure 8a shows a comparison between the maximum crack widths measured with the DL
method versus the actual maximum crack widths. The dashed line represents points where
the measured values are equal to the actual values. It can be seen that the maximum crack
width values were close to the actual values, and this is supported by a high R-squared
value of 0.98.
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The performance of the developed measurement method was further evaluated by a
comparison of three cases:

(1) DL Max width: Maximum crack width measured from crack images segmented by
using DL;
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(2) IP Max width: Maximum crack width measured from crack images segmented by
using image processing (IP) algorithms;

(3) Actual Max width: Maximum crack widths measured manually on site.

In Figure 8b, the maximum crack widths measured with DL and IP methods are
compared to the actual crack widths. As expected, the DL method outperformed the IP
method, with maximum crack width measurement values closer to the actual maximum
crack width. In all cases, the maximum crack widths measured with the IP method
had, when compared to the DL method, larger errors, relative to the actual maximum
crack widths.

4. Conclusions

This paper presented an enhanced, novel method for detecting and measuring concrete
crack width in millimetres by using deep learning and a laser calibration technique. The
classification, segmentation and measurement tasks were performed with high accuracy.
However, one major limitation of the method is the training dataset size, especially for
the segmentation model. A larger dataset and hyperparameter tuning of the model will
significantly improve accuracy.

In closing, the following conclusions can be drawn from this study:

• A computationally effective approach that reduces false positives, which carries out crack
segmentation by first passing images through a classification model has been proposed.

• DL segmentation yielded better results when compared to conventional image process-
ing algorithms. In addition, DL offers better generalisation and quicker segmentation,
and does not need an expert to carry out manual parameter selection.

• An enhanced laser calibration technique has been developed and applied successfully,
meaning concrete crack width can be measured in millimetres.

• The use of the laser eliminates the need for physical markers to be attached to the
surface being measured. This promotes safer inspections, which can be achieved by
simply deploying a drone with the laser system, especially in hard-to-reach areas.
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21. Uwanuakwa, I.D.; Idoko, J.B.; Mbadike, E.; Reşatoǧlu, R.; Alaneme, G. Application of Deep Learning in Structural Health
Management of Concrete Structures. Proc. Inst. Civ. Eng.—Bridge Eng. 2022, 1–8. [CrossRef]

22. Gao, Y.; Mosalam, K.M. Deep Transfer Learning for Image-Based Structural Damage Recognition. Comput.-Aided Civ. Infrastruct.
Eng. 2018, 33, 748–768. [CrossRef]

23. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings
of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany,
5–9 October 2015; Volume 9351, pp. 234–241. [CrossRef]

24. Liu, Z.; Cao, Y.; Wang, Y.; Wang, W. Computer Vision-Based Concrete Crack Detection Using U-Net Fully Convolutional Networks.
Autom. Constr. 2019, 104, 129–139. [CrossRef]

25. Zhao, S.; Kang, F.; Li, J. Non-Contact Crack Visual Measurement System Combining Improved U-Net Algorithm and Canny Edge
Detection Method with Laser Rangefinder and Camera. Appl. Sci. 2022, 12, 10651. [CrossRef]

26. Mirzazade, A.; Popescu, C.; Gonzalez-Libreros, J.; Blanksvärd, T.; Täljsten, B.; Sas, G. Semi-Autonomous Inspection for Concrete
Structures Using Digital Models and a Hybrid Approach Based on Deep Learning and Photogrammetry. J. Civ. Struct. Health
Monit. 2023, 13, 1633–1652. [CrossRef]

27. Zhao, W.; Liu, Y.; Zhang, J.; Shao, Y.; Shu, J. Automatic Pixel-Level Crack Detection and Evaluation of Concrete Structures Using
Deep Learning. Struct. Control Health Monit. 2022, 29, e2981. [CrossRef]

28. Chaiyasarn, K.; Buatik, A.; Mohamad, H.; Zhou, M.; Kongsilp, S.; Poovarodom, N. Integrated Pixel-Level CNN-FCN Crack
Detection via Photogrammetric 3D Texture Mapping of Concrete Structures. Autom. Constr. 2022, 140, 104388. [CrossRef]

29. Dung, C.V.; Anh, L.D. Autonomous Concrete Crack Detection Using Deep Fully Convolutional Neural Network. Autom. Constr.
2019, 99, 52–58. [CrossRef]

30. Ye, X.W.; Jin, T.; Chen, P.Y. Structural Crack Detection Using Deep Learning–Based Fully Convolutional Networks. Adv. Struct.
Eng. 2019, 22, 3412–3419. [CrossRef]

31. Ren, Y.; Huang, J.; Hong, Z.; Lu, W.; Yin, J.; Zou, L.; Shen, X. Image-Based Concrete Crack Detection in Tunnels Using Deep Fully
Convolutional Networks. Constr. Build. Mater. 2020, 234, 117367. [CrossRef]

32. Kang, D.; Benipal, S.S.; Gopal, D.L.; Cha, Y.J. Hybrid Pixel-Level Concrete Crack Segmentation and Quantification across Complex
Backgrounds Using Deep Learning. Autom. Constr. 2020, 118, 103291. [CrossRef]

33. Yu, Z.; Shen, Y.; Sun, Z.; Chen, J.; Gang, W. Cracklab: A High-Precision and Efficient Concrete Crack Segmentation and
Quantification Network. Dev. Built Environ. 2022, 12, 100088. [CrossRef]

34. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the European Conference on Computer Vision 2018, Munich, Germany, 8–14 September
2018; Volume 11211, pp. 833–851. [CrossRef]

https://doi.org/10.3390/infrastructures6080115
https://doi.org/10.3390/su14138117
https://doi.org/10.1016/j.engappai.2022.105478
https://doi.org/10.1007/s00138-009-0244-5
https://doi.org/10.1155/2018/3924120
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/CISP.2010.5646923
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1025-2022
https://doi.org/10.1016/j.cemconres.2017.04.018
https://doi.org/10.3390/s17092052
https://www.ncbi.nlm.nih.gov/pubmed/28880254
https://doi.org/10.1111/mice.12412
https://doi.org/10.3390/ICEM18-05387
https://doi.org/10.1177/1475921718768747
https://doi.org/10.1016/j.autcon.2021.103765
https://doi.org/10.1680/jbren.21.00063
https://doi.org/10.1111/mice.12363
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.autcon.2019.04.005
https://doi.org/10.3390/app122010651
https://doi.org/10.1007/s13349-023-00680-x
https://doi.org/10.1002/stc.2981
https://doi.org/10.1016/j.autcon.2022.104388
https://doi.org/10.1016/j.autcon.2018.11.028
https://doi.org/10.1177/1369433219836292
https://doi.org/10.1016/j.conbuildmat.2019.117367
https://doi.org/10.1016/j.autcon.2020.103291
https://doi.org/10.1016/j.dibe.2022.100088
https://doi.org/10.1007/978-3-030-01234-2_49


Metrology 2024, 4 81

35. Mishra, M.; Jain, V.; Saurabh, S.K.; Singh, K.; Damodar, M. Two-Stage Method Based on the You Only Look Once Framework and
Image Segmentation for Crack Detection in Concrete Structures. Archit. Struct. Constr. 2022, 1, 429–446. [CrossRef]

36. Tomczak, K.; Jakubowski, J.; Fiołek, P. Method for Assessment of Changes in the Width of Cracks in Cement Composites with
Use of Computer Image Processing and Analysis. Stud. Geotech. Mech. 2017, 39, 73–80. [CrossRef]

37. Ito, A.; Aoki, Y.; Hashimoto, S. Accurate Extraction and Measurement of Fine Cracks from Concrete Block Surface Image.
In Proceedings of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 02, Seville, Spain,
5–8 November 2002; Volume 3, pp. 2202–2207. [CrossRef]

38. Peng, X.; Zhong, X.; Zhao, C.; Chen, A.; Zhang, T. A UAV-Based Machine Vision Method for Bridge Crack Recognition and Width
Quantification through Hybrid Feature Learning. Constr. Build. Mater. 2021, 299, 123896. [CrossRef]

39. Li, S.; Zhao, X. Automatic Crack Detection and Measurement of Concrete Structure Using Convolutional Encoder-Decoder
Network. IEEE Access 2020, 8, 134602–134618. [CrossRef]

40. Kim, B.; Cho, S. Image-Based Concrete Crack Assessment Using Mask and Region-Based Convolutional Neural Network. Struct.
Control Health Monit. 2019, 26, e2381. [CrossRef]

41. Jeong, H.; Jeong, B.; Han, M.; Cho, D. Analysis of Fine Crack Images Using Image Processing Technique and High-Resolution
Camera. Appl. Sci. 2021, 11, 9714. [CrossRef]

42. Dorafshan, S.; Thomas, R.J.; Maguire, M. SDNET2018: An Annotated Image Dataset for Non-Contact Concrete Crack Detection
Using Deep Convolutional Neural Networks. Data Brief 2018, 21, 1664–1668. [CrossRef] [PubMed]

43. Özgenel, Ç.F.; Gönenç Sorguç, A. Performance Comparison of Pretrained Convolutional Neural Networks on Crack Detection in
Buildings. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction, Berlin, Germany,
20–25 July 2018; Volume 35, pp. 1–8.

44. Roboflow Inc. Roboflow Annotate: Label Faster Than Ever. Available online: https://roboflow.com/annotate (accessed on
3 September 2023).

45. Python Software Foundation the Python Language Reference. Available online: https://docs.python.org/3/reference/index.html
(accessed on 1 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s44150-022-00060-x
https://doi.org/10.1515/sgem-2017-0017
https://doi.org/10.1109/IECON.2002.1185314
https://doi.org/10.1016/j.conbuildmat.2021.123896
https://doi.org/10.1109/ACCESS.2020.3011106
https://doi.org/10.1002/stc.2381
https://doi.org/10.3390/app11209714
https://doi.org/10.1016/j.dib.2018.11.015
https://www.ncbi.nlm.nih.gov/pubmed/30505897
https://roboflow.com/annotate
https://docs.python.org/3/reference/index.html

	Introduction 
	Materials and Methods 
	Overview of Developed Method 
	Data Acquisition 
	Data Pre-Processing 
	Algorithm Development 
	Crack Classification Model 
	Crack Segmentation Model 
	Crack Width Determination 

	Performance Evaluation 
	Implementation 

	Results and Discussion 
	Classification 
	Segmentation 
	Crack Width Calculations 

	Conclusions 
	References

