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Abstract: Nephrotic syndrome (NS) is a complex clinical entity characterized by proteinuria, hypoal-
buminemia, and edema. In this review, we propose the view of NS as a podocytopathy, highlighting
the importance of understanding the role of podocytes in the development of this condition. We
discuss the various etiologies of NS, ranging from congenital to primary renal diseases, as well as
secondary forms due to systemic diseases. We also delve into the mechanisms underlying podocyte
injury, which plays a crucial role in the development of NS. By viewing NS as a podocytopathy,
we suggest potential implications for the diagnosis and treatment of this condition, including the
use of podocyte-specific biomarkers and targeted therapies. Our review provides a comprehensive
overview of NS and its underlying mechanisms, emphasizing the importance of a multidisciplinary
approach to the diagnosis and management of this condition. Further research is essential to better
understand the complex interplay between podocyte injury and the development of NS, with the
ultimate goal of improving patient outcomes.
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1. Introduction

Nephrotic syndrome (NS) is a clinical entity characterized by the triad of protein-
uria, hypoalbuminemia, and edema [1]. It is a group of diseases composed of numerous
etiologies, ranging from congenital, such as Finnish Type Nephropathy and Diffuse Mesan-
gial Sclerosis, to primary renal diseases, including Minimal Change Nephrotic Syndrome
(MCNS) and Focal Segmental Glomerulosclerosis (FSGS), or secondary forms due to sys-
temic diseases such as, for instance, diabetes mellitus and lupus erythematosus [2]. The
reported incidence of childhood NS is 2–7 per 100,000 children, with a prevalence of about
16 cases per 100,000 and variability among ethnic groups. The peak age of onset of child-
hood NS occurs at 2–3 years in most cases [3]. MCNS is the most common histological
variant, accounting for approximately 80% of NS cases in children, followed by FSGS,
which, although less common, is more related to poor long-term outcomes [4,5].

The main pathophysiological alteration in NS is the impairment of the glomerular
filtration barrier. Therefore, its permeability becomes non-selective, and urinary protein
loss occurs. All components of the glomerular barrier may interfere with the permeability
of molecules. These components include the fenestrated endothelium, the glomerular
basement membrane (GBM), and the podocytes. In NS patients, the effacement of the foot
processes of the podocytes is a common finding in the electronic microscopy of the kidney
tissue [6]. Podocytes are highly differentiated epithelial cells with a large cell body and
elongated cellular extensions, the foot processes, that interdigitate along the outer wall
of the glomerular capillary and, among other functions, provide structural support and
control the filtration process [7].

Being the final barrier to protein loss in the glomerulus, alterations in podocyte
structure can explain why injuries in these cells, such as the effacement of their foot
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processes, are typically related to proteinuria and hypoalbuminemia and, therefore, to the
conditions under the NS umbrella [6]. In this context, this review aims to summarize the
current understanding of NS as a podocytopathy and to discuss the main molecular, genetic,
and histological markers and their influence on the onset and outcome of the disease.

2. Pathophysiological Mechanisms of the Podocytopathies
2.1. Pathophysiology of Nephrotic Syndrome and the Glomerular Filtration

Despite often occurring rapidly, NS can have an insidious presentation, with protein-
uria before the onset of symptoms. The proteinuria indicates an altered permeability of the
glomerular filtration barrier [8] and contributes to edema and hypoalbuminemia. Hypoal-
buminemia induces lipoprotein synthesis, which causes hyperlipidemia [2,3]. The three
components of the glomerular filtration barrier—the fenestrated endothelium, the GBM,
and the podocytes—control the size of filtered molecules [9]. The podocytes are visceral
glomerular epithelial cells, and their injury plays an important role in the development of
the NS. Therefore, the main pathophysiological alterations in NS justify the view of this
syndrome as a podocytopathy [2].

Podocytes are highly specialized and polarized epithelial cells related to the synthesis
of extracellular matrix components of the GBM. Furthermore, these cells have a structural
role in supporting the glomerular capillaries with their interdigitating foot processes (FP),
which are linked to each other through a special cell–cell junction, the slit diaphragm
(SD). The podocyte also synthesizes many proteins from the SD. The unique zipper-like
architecture of the SD is essential to the glomerulus permeability; therefore, podocyte
depletion due to detachment, apoptosis, or necrosis is a critical step in the development of
NS [7].

Electron microscopy shows the effacement of the foot processes as a major factor
related to the glomerular lesion [7]. The podocytes and the SD zipper-like array are
composed of an extensive group of molecules, including an actin cytoskeleton and proteins
such as ZO-1, nephrin, podocin, and CD2AP, in both the podocyte itself and the GBM.
Some etiologies of congenital and steroid-resistant NS can be linked to mutations in genes
encoding some of these components, altering the glomerular filtration barrier and leading
to intense urinary protein loss [1].

The mechanisms that underlie FP effacement and podocytes’ response to injury are
important to determine the clinical manifestations of NS and prognosis [6]. Furthermore,
the understanding of podocyte-specific protein alterations and the dynamic changes of
glomerular permeability and selectivity are also relevant for the management and treatment
of NS [2,3].

2.2. Podocyte Foot Processes: Update on Molecular Anatomy and Effacement

Each podocyte FP contains a contractile system composed of actin, myosin-II, actinin-4,
talin, and vinculin [10]. The cytoskeleton molecular composition in podocyte FP is critical
to podocyte function and effacement processes. The foot processes (FPs) are anchored to
the GBM because of 31 integrin complexes, which, consisting of heterodimeric transmem-
brane receptors, mediate cell attachment to the extracellular matrix and are crucial for cell
signaling. The adjacent FPs of the same podocyte are bundled using actin filaments, which
form arches between these adjacent FPs. The connection between neighboring FPs is the
SD [6].

The SD is the main size-selective filter barrier in the kidney. The protein composition
of SD justifies the importance of this cellular junction for glomerulus permeability. The
main proteins of the SD are nephrin, P-cadherin, CD2AP, ZO-1, FAT, podocin, and Neph1
(Figure 1). These contractile proteins allow the maintenance of glomerular filtration and
also indicate that the fusion of podocyte FPs and the obliteration of SD are highly related to
their alterations, leading to NS [6,11].
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Figure 1. Schematic representation of the glomerular slit diaphragm, a pivotal structure within the 
glomerulus that is essential for the filtration barrier’s integrity. Positioned between podocyte foot 
processes and the glomerular basement membrane (GBM), this intricate assembly involves a 
network of molecules crucial for maintaining structural and functional integrity. Key components 
include transmembrane proteins like nephrin (a structural protein forming the backbone of the slit 
diaphragm), podocin (interacting with nephrin, crucial for slit diaphragm function), NEPH1/2/3 
(members of the neph family proteins contributing to slit diaphragm molecular architecture), 
Cadherin 3 (involved in cell adhesion within podocytes), and podoplanin (a transmembrane protein 
expressed in podocytes). Additionally, molecules such as laminin (a component of the GBM 
providing structural support) and dystroglycan complex proteins (α-DG, β-DG) (linking the 
cytoskeleton to the extracellular matrix) are integral to the GBM. The schema also highlights other 
essential players, including utrophin (participating in cytoskeletal organization), synaptopodin 
(involved in actin cytoskeleton regulation), ezrin (linking actin filaments to the plasma membrane), 
NHERF-2 (a scaffold protein interacting with nephrin and podocin), podocalyxin (a sialoprotein 
contributing to the glycocalyx), FAT1 (a cell adhesion and signaling protein), ZO-1 (a tight junction-
associated protein), TRCP6 (an ion channel implicated in slit diaphragm function), actin (a 
cytoskeletal component crucial for podocyte structure), and megalin (a receptor involved in protein 
reabsorption in the proximal tubule). 

There is another important protein associated with actin microfilaments in FPs, 
synaptopodin [12], and its expression can indicate alterations in podocytes and also in the 
response to therapy in many forms of NS [13]. Therefore, synaptopodin likely plays an 
important role in the podocyte FP molecular composition, interacting with membrane-
associated guanylate kinase, WW, and PDZ domain-containing protein 1 (MAGI-1) such 
as actinin-4 [14]. This may indicate an association between its expression and alterations 
in the podocyte. 

As mentioned, the molecular composition of the cytoskeleton in podocyte FPs is 
dynamic and determines the maintenance of glomerular filtration. This has been 
demonstrated by using the acute protamine sulfate (PS)/heparin perfusion model, which 
dramatically reduces FPs in rodents [15,16]. Interference with one of the three membrane 
domains of the basolateral portion of FPs, including the apical membrane domain, the SD 
complex, and the basal membrane domain, can lead to alterations in the actin 
cytoskeleton. The consequences of these alterations are the fusion and effacement of 
podocyte FPs and the obliteration of the SD. 

2.3. Histopathology of Common Types of Nephrotic Syndrome in Childhood 
The types and causes of NS in childhood vary according to age. The most frequent 

type of NS in pediatric patients is primary or idiopathic disease, in which the etiology is 
not defined. When the NS starts before 1 year of age, the possibility of congenital NS 
should be considered, mostly in cases that occur before 6 months of age. Congenital NS is 
related to mutations in proteins related to SD. When nephrotic syndrome first appears 
during the school-age or adolescent years, it is important to consider the possibility of 

Figure 1. Schematic representation of the glomerular slit diaphragm, a pivotal structure within the
glomerulus that is essential for the filtration barrier’s integrity. Positioned between podocyte foot pro-
cesses and the glomerular basement membrane (GBM), this intricate assembly involves a network of
molecules crucial for maintaining structural and functional integrity. Key components include trans-
membrane proteins like nephrin (a structural protein forming the backbone of the slit diaphragm),
podocin (interacting with nephrin, crucial for slit diaphragm function), NEPH1/2/3 (members of the
neph family proteins contributing to slit diaphragm molecular architecture), Cadherin 3 (involved in
cell adhesion within podocytes), and podoplanin (a transmembrane protein expressed in podocytes).
Additionally, molecules such as laminin (a component of the GBM providing structural support) and
dystroglycan complex proteins (α-DG, β-DG) (linking the cytoskeleton to the extracellular matrix)
are integral to the GBM. The schema also highlights other essential players, including utrophin
(participating in cytoskeletal organization), synaptopodin (involved in actin cytoskeleton regulation),
ezrin (linking actin filaments to the plasma membrane), NHERF-2 (a scaffold protein interacting
with nephrin and podocin), podocalyxin (a sialoprotein contributing to the glycocalyx), FAT1 (a cell
adhesion and signaling protein), ZO-1 (a tight junction-associated protein), TRCP6 (an ion channel
implicated in slit diaphragm function), actin (a cytoskeletal component crucial for podocyte structure),
and megalin (a receptor involved in protein reabsorption in the proximal tubule).

There is another important protein associated with actin microfilaments in FPs, synap-
topodin [12], and its expression can indicate alterations in podocytes and also in the
response to therapy in many forms of NS [13]. Therefore, synaptopodin likely plays an
important role in the podocyte FP molecular composition, interacting with membrane-
associated guanylate kinase, WW, and PDZ domain-containing protein 1 (MAGI-1) such as
actinin-4 [14]. This may indicate an association between its expression and alterations in
the podocyte.

As mentioned, the molecular composition of the cytoskeleton in podocyte FPs is dy-
namic and determines the maintenance of glomerular filtration. This has been demonstrated
by using the acute protamine sulfate (PS)/heparin perfusion model, which dramatically
reduces FPs in rodents [15,16]. Interference with one of the three membrane domains of
the basolateral portion of FPs, including the apical membrane domain, the SD complex,
and the basal membrane domain, can lead to alterations in the actin cytoskeleton. The
consequences of these alterations are the fusion and effacement of podocyte FPs and the
obliteration of the SD.

2.3. Histopathology of Common Types of Nephrotic Syndrome in Childhood

The types and causes of NS in childhood vary according to age. The most frequent
type of NS in pediatric patients is primary or idiopathic disease, in which the etiology is not
defined. When the NS starts before 1 year of age, the possibility of congenital NS should be
considered, mostly in cases that occur before 6 months of age. Congenital NS is related to
mutations in proteins related to SD. When nephrotic syndrome first appears during the
school-age or adolescent years, it is important to consider the possibility of secondary NS
due to systemic diseases [17]. The two most common histological forms of primary NS are
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MCNS and FSGS (Figure 2). Understanding histopathology is important to guide correct
molecular and morphologic diagnoses and posterior management of NS [18].
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patient diagnosed with Minimal Change Nephrotic Syndrome (MCNS). The glomerulus exhibits 
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basement membrane, mesangium, and podocytes (Jones silver stain). Electronic microscopy can 
reveal diffuse effacement of podocyte foot processes, a hallmark feature of MCNS. (B) In contrast, 
kidney tissue from a patient diagnosed with Focal Segmental Glomerulosclerosis (FSGS) is depicted 
in this section (h&E staining). The histological examination reveals focal and segmental areas of 
sclerosis within the glomerulus, indicating regions of glomerular injury and scarring. The presence 
of hyalinosis, adhesions, and segmental obliteration of capillary lumina is evident, reflecting the 
characteristic histopathological changes associated with FSGS. Both micrographs were captured at 
a magnification of 400× (personal archive of the authors). 
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from other causes of congenital NS [2]. 
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The presentation of diffuse mesangial sclerosis (DMS) is similar to that of FN. 
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disorders, such as Galloway–Mowat syndrome, Pierson syndrome, Frasier syndrome, and 
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Figure 2. Histological comparison of Minimal Change Nephrotic Syndrome (MCNS) and Focal
Segmental Glomerulosclerosis (FSGS). (A) Representative histological slide of kidney tissue from
a patient diagnosed with Minimal Change Nephrotic Syndrome (MCNS). The glomerulus exhibits
minimal structural alterations, characterized by a lack of significant changes in the glomerular
basement membrane, mesangium, and podocytes (Jones silver stain). Electronic microscopy can
reveal diffuse effacement of podocyte foot processes, a hallmark feature of MCNS. (B) In contrast,
kidney tissue from a patient diagnosed with Focal Segmental Glomerulosclerosis (FSGS) is depicted
in this section (h&E staining). The histological examination reveals focal and segmental areas of
sclerosis within the glomerulus, indicating regions of glomerular injury and scarring. The presence
of hyalinosis, adhesions, and segmental obliteration of capillary lumina is evident, reflecting the
characteristic histopathological changes associated with FSGS. Both micrographs were captured at a
magnification of 400× (personal archive of the authors).

2.3.1. Congenital Nephrotic Syndrome (Finnish Type)

This form of NS is highly related to prematurity in neonatal and prenatal presentations
as well. In Finland, the incidence reaches 1:8200 births and is an autosomal-recessive
disorder with heavy proteinuria in the neonatal period. The Finnish nephropathy gene
is located on the long arm of chromosome 19 (19q13.1), which codes for nephrin [2]. The
Finnish nephropathy gene is located on the long arm of chromosome 19 (19q13.1), which
codes for nephrin. Around 70 changes to nephrin have been found in different parts of
the body. These changes can be single nucleotide missense mutations, splices, insertions,
deletions, or nonsense. Some mutations, such as Fin-major (deletion in exon 2) and Fin-
minor (nonsense mutation in exon 26), are the most common. The kidney histopathology
may help with congenital NS diagnosis, especially by using electron microscopy and
immunohistochemistry [18]. A renal biopsy shows many glomeruli with mesangial hyper-
cellularity and hyperlobulated capillary tufts. Furthermore, proximal and distal tubules
may present microcystic dilatation, and the podocytes present FP effacement and/or villous
transformations under electron microscopy. Immunohistochemical staining for nephrin is
an important method to differentiate FN from other causes of congenital NS [2].

2.3.2. Diffuse Mesangial Sclerosis

The presentation of diffuse mesangial sclerosis (DMS) is similar to that of FN. However,
its presentation can be later, up to 4 years of age, but usually persistent NS is described
within the first 9 months of life. DMS is the second-most common cause of congenital
NS. [1] The glomerular phenotype of the disease is associated with other disorders, such
as Galloway–Mowat syndrome, Pierson syndrome, Frasier syndrome, and others. The
pathology of the kidneys displays prominent, closely spaced podocytes in the early stages,
and the glomeruli might be enlarged and exhibit hyaline casts. In immunofluorescence,
nonspecific mesangial IgM, C3, and C1q deposits are found, while electron microscopy
also shows podocyte hypertrophy and irregular FP effacement. In the late stages of DMS,
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the glomeruli are damaged and have thickened capillary loops, smaller capillary lumens,
and a sclerotic mass in the mesangium [18].

2.3.3. Focal Segmental Glomerular Sclerosis

Focal segmental glomerular sclerosis (FSGS) is responsible for 10 to 20% of NS cases in
children [2]. The podocyte is the main site of injury in FSGS. The damage occurs through a
variety of mechanisms, including immune, toxic, and viral, mechanical injuries, and genetic
dysfunction [19]. Injured podocytes are missed in the urinary space, resulting in podocyte
effacement. The remaining podocytes hypertrophy and cover the glomerular capillary
surface in response to this lack of podocytes. Intracapillary hypertension can cause damage
to podocytes and endothelial cells. It can also cause changes in the mesangial cells that lead
to sclerosis [20].

In primary FSGS, a circulating factor may be involved in the pathophysiology of NS.
It is probably associated with some cytokines that disturb podocyte function [21]; there-
fore, it can reoccur after kidney transplantation [22]. In fact, the recurrence of idiopathic
FSGS occurs in around one-third of patients after transplant [23]. Some molecules have
been associated with the recurrence of FSGS, including cardiotrophin-like cytokine factor
1 [24], apoA1b (an isoform of ApoA1) [25], anti-CD40 antibody [26], and serum urine-type
plasminogen activator receptor (suPAR) [27]. The association with suPAR is still contro-
versial [28]. However, up to now, no molecule has been definitively established as the
circulating factor in all cases of primary FSGS.

More than 50 genes have been presented as potential factors for monogenic forms
of FSGS. The group of genes includes those involved in slit diaphragm structure, actin
cytoskeleton, and cell-signaling apparatus [29,30]. FSGS can also be drug-induced, as IFN-α,
-β, or -γ therapy has been linked to the occurrence of collapsing glomerulopathy in a case
series of 11 subjects [31]. Anabolic steroid abuse has also been related to the development
of FSGS. The association may be due to a combination of a direct nephrotoxic effect and
adaptive glomerular changes to the increased lean body mass [32].

2.4. Histological Classifications for Focal Segmental Glomerular Sclerosis
2.4.1. Cellular Focal Segmental Glomerular Sclerosis

The description of this variant resembles focal proliferative glomerulonephritis
(Table 1). On light microscopy, segmental hypercellularity and endocapillary prolifer-
ation are reported, with a luminal obliteration of capillaries [2]. Severe FP effacement is
also common but with intact basement membranes [2,7]. Furthermore, there is an increase
in mesangial and inflammatory cells such as neutrophils, foam cells, and monocytes. Al-
though this variant shows marked podocyte hyperplasia [2], it is the least common one
and is thought to be an early stage in the evolution of sclerotic lesions [7].

2.4.2. Primary Focal Segmental Glomerular Sclerosis with Mesangial Hypercellularity

This variant of FSGS reveals mainly mesangial hypercellularity in the non-sclerotic
glomeruli, including the presence of IgM and C3 in these glomeruli on immunofluorescence
patterns. Electron microscopy shows the classic segmental sclerosing lesions, severe FP
effacement without any electron-dense deposits, and podocyte hyperplasia [2].

2.4.3. Familial Focal Segmental Glomerular Sclerosis

Familial FSGS is highly associated with genetic mutations, especially in genes that
encode podocyte proteins [7]. Several defects in the proteins podocin (NPHS2 gene, chro-
mosome 1q25-31) and actinin 4 (ACTN4, chromosome 19q13) cause autosomal dominant
FSGS [2,18]. TRPC6 gene mutations lead to dysregulation of the cell cycle machinery with
consequent apoptosis [18], while CD2AP mutations alter the bond between SD and the actin
cytoskeleton [33]. Recent studies have shown an association between phospholipase C ep-
silon gene mutations (PLCE1, chromosome 10q23-33) and early onset NS [34]. The familial
FSGS can manifest at any age and accounts for approximately 20% of FSGS cases [35].
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2.4.4. Secondary Focal Segmental Glomerular Sclerosis

Other diseases may also trigger FSGS in pediatric patients, including IgA nephropa-
thy [36], hereditary nephritis (Alport’s syndrome) [37], and lupus nephritis [38]. These
diseases reveal different histological features, which can be traced using immunofluo-
rescence: mesangial hypercellularity and mesangial IgA in IgA nephropathy, basement
membrane abnormalities in Alport syndrome, and concurrent positive staining for IgA,
IgM, IgG, C3, and C1q (full-house pattern) in lupus nephritis. Adults and children can
develop secondary FSGS [2].

2.4.5. Collapsing Glomerulopathy

Severe and quick loss of renal function is highly associated with collapsing glomeru-
lopathy [18]. This variant of FSGS is characterized by an implosive collapse of the capillary
loops with alterations of the basement membrane, especially its wrinkling and contraction,
and hypertrophy and hyperplasia of podocytes (Figure 3) [2]. There is no mesangial sclero-
sis, but the proliferating visceral podocytes and parietal epithelial cells fill Bowman’s space,
resembling crescents (pseudocrescents) [18]. FP effacement is notorious even in glomeruli
without collapsing lesions. In children, mitochondrial abnormalities have been reported to
affect glomerular epithelial cells. COQ2 mutations inherited trigger an autosomal-recessive
condition, which is the most common genetic variant of these mitochondrial disorders [39].
Ubiquinone replacement therapy is typical to treat this variant, and early recognition may
prevent neurologic complications [18].
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accompanied by prominent hyperplasia and hypertrophy of podocytes. The collapsing variant is 
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glomerular architecture. (B) Higher magnification (400×) of a representative section illustrating the 
detailed histopathological changes in cFSGS. At this level of magnification, the severe podocyte 
hyperplasia, segmental capillary collapse, and visceral epithelial cell hyperplasia become more 
evident. The presence of prominent protein resorption droplets within dilated tubules is also 
notable, highlighting the severity of glomerular injury in cFSGS. Both micrographs were obtained 
using Jones silver staining (personal archive of the authors). 

Collapsing glomerulopathy is linked to other causes like infections, drugs, and 
autoimmune diseases. The original description of this variant occurred in the 1980s during 
the HIV epidemic, but later it was described in other infections such as malaria and 
visceral leishmaniasis as well [40]. There is some evidence that other viral infections 

Figure 3. Histological examination of Collapsing Focal Segmental Glomerulosclerosis (cFSGS).
(A) Low magnification view (100×) of kidney tissue depicting the characteristic features of collapsing
FSGS (cFSGS). The image reveals widespread collapse and obliteration of glomerular capillaries,
accompanied by prominent hyperplasia and hypertrophy of podocytes. The collapsing variant
is characterized by the involvement of the entire glomerulus, leading to marked changes in the
glomerular architecture. (B) Higher magnification (400×) of a representative section illustrating
the detailed histopathological changes in cFSGS. At this level of magnification, the severe podocyte
hyperplasia, segmental capillary collapse, and visceral epithelial cell hyperplasia become more
evident. The presence of prominent protein resorption droplets within dilated tubules is also notable,
highlighting the severity of glomerular injury in cFSGS. Both micrographs were obtained using Jones
silver staining (personal archive of the authors).

Collapsing glomerulopathy is linked to other causes like infections, drugs, and autoim-
mune diseases. The original description of this variant occurred in the 1980s during the HIV
epidemic, but later it was described in other infections such as malaria and visceral leish-
maniasis as well [40]. There is some evidence that other viral infections (cytomegalovirus,
parvovirus B19, hepatitis C virus, dengue virus, and Zika virus) and systemic immune
responses (tuberculosis-induced collapsing glomerulopathy) target podocytes and their
proliferative machinery [41–44]. Patients with this variant are usually steroid-resistant and
progress to renal failure quickly [2].
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2.4.6. C1q Nephropathy

The description of this form of NS was first written by Jennette and Hipp and is still
inconclusive [45]. Histological patterns in C1q nephropathy may vary from MCNS to mild
mesangial proliferation and to FSGS. Electron microscopy usually shows mesangial electron-
dense deposits, especially immunofluorescence staining for C1q. IgG and/or IgM are
commonly present as well [46]. These deposits are predominantly located in paramesangial
segments, and FP fusion is also reported. Some light microscopic findings of this entity are
similar to the findings seen in lupus nephritis, which is an important differential diagnosis
of C1q nephropathy. Furthermore, IgA nephropathy and the membranoproliferative
pattern of histology may also distinguish the diagnosis via immunofluorescence. However,
additional studies are necessary to understand the pathophysiology of C1q nephropathy
and improve diagnosis and treatment [46].

2.5. Hypotheses Linking Glomerulosclerosis to Podocyte-Derived Alterations

The glomerular development is highly regulated with the podocyte, while its altered
biology is a determinant of progression to glomerulosclerosis. Different glomerular diseases
have been directly associated with alterations in podocyte functions and biology. Therefore,
the central role of these specialized and polarized epithelial cells supports the concept
of glomerular diseases as podocytopathies [47]. Although podocyte dysfunction, injury,
or loss determine a common factor in the development of NS, many hypotheses propose
that the pathogenesis of idiopathic NS is either immune-mediated or due to a genetic
variant. The presence of a systemic circulating factor, likely podocyte-derived, has also
been suggested [1,6].

2.5.1. Immune-Mediated

The immune system may be involved in the pathogenesis of NS, particularly a dys-
function or dysregulation of T lymphocytes [48]. Some evidence, such as the development
of NS after allergic reactions to poisons and stings, reinforces the hypothesis. Furthermore,
immunosuppressive agents play a role in NS response and even resolution [1]. In this
sense, Lin et al. demonstrated spontaneous NS remission after infection with measles,
which triggers prolonged depression of the immune system cells [49]. Chemotherapy for
Hodgkin’s and other T-cell lymphomas in NS patients also affects the disease outcome. The
literature supports an association between NS, especially MCNS, and classical Hodgkin’s
lymphoma (cHL). MCNS associated with cHL is often dependent on or resistant to steroids,
but the remission of NS is linked to the cure of the lymphoma [50]. MCNS can also occur in
non-Hodgkin lymphoid disorders [51].

The antigen-presenting cells are responsible for the primary co-stimulatory signal
for T-cell activation. CD80 (B7-1) is a protein expressed on those antigen-presenting cells
and is the main molecular candidate for the immune-mediated feature in podocytopathies.
CD80 binds to CTLA-4, a protein receptor expressed on the T-cell surface, and an increase
in podocyte B7-1 expression may cause consequent dysfunction or dysregulation of T
lymphocytes [52]. Clinical trials tested CTLA-4 as a therapeutic agent, like abatacept [53]
and belatacept [54], in FSGS, but results on efficacy are still conflicting.

2.5.2. Systemic Circulating Factors

A hypothetical cause of NS is the existence of a circulating permeability factor that
disturbs the glomerular permeability. It has been suggested that this supposed factor
acts on the endothelial cell or podocyte, especially in steroid-resistant NS (SRNS) and
FSGS [1]. A study developed in 1996 evaluated in vitro the glomerular permeability to
albumin of recurrent FSGS patients. The investigation included the response to treatment
and recurrence of FSGS after kidney transplantation in 30 to 40 percent of patients. This
study sustains the hypothesis that a circulating factor is related to the recurrence of the
disease and to the beginning of renal injury [55]. The existence of a circulating factor was
further corroborated by the possibility of maternal transmission of FSGS. However, in utero
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exposure did not cause chronic glomerular disease, suggesting that the supposed factor
would be smaller than IgG with a molecular weight between 30 and 50 kd and would not
remain present in the fetus’s circulation [56].

Some molecules have been investigated as potential permeability factors, including
hemopexin, heparanase, angiopoietin-like 4 (ANGPTL4), cardiotrophin-like cytokine-1,
and suPAR [57–59]. The suPAR is found in the plasma of patients with recurrent FSGS
and may lead to FP effacement and posterior proteinuria due to an interaction with α5β3-
integrin receptors on the surface of podocytes [59]. ANGPTL4 is a glycoprotein expressed
in the heart, adipose tissue, and skeletal muscle. Its concentration is elevated in NS.
ANGPTL4 has two molecular forms, hyposialylated and sialylated, that trigger different
mechanisms to regulate proteinuria [58]. The hyposialylated form is secreted via podocytes
and affects GBM and endothelial cells, leading to damage to the filtration barrier and
proteinuria [58]. On the other hand, the sialylated form binds to α5β3-integrins on the
glomerular endothelium and reduces proteinuria. This mechanism has been explored as a
potential treatment for NS. However, α5β3-integrin activation is lipid-dependent, and it
causes hypertriglyceridemia in NS via inhibition of lipoprotein lipase [58].

2.5.3. Genetic Variants

Mutations on genes encoding some components of the glomerular barrier, such as
the GBM, podocyte, its mitochondria or lysosomes, slit diaphragm, actin cytoskeleton,
or its molecular composition, can lead to proteinuria and NS. An understanding of the
genes related to NS is important for the management of patients, especially considering the
genetic variants and mutations associated with SRNS.

The early identification of genetic causes for SRNS allows for more appropriate man-
agement of the disease. Specific mutations in the genes NPHS1, NPHS2, LAMB2, and WT1
explain 69 to 85% of NS cases starting in the first three months of life. The presence of
mutations in these genes decreases to 50 to 66% when NS starts between 4 and 12 months
of life. If NS begins after 1 year of age, only 25% of cases are associated with genetic
mutations [60]. The early identification of genetic causes supports the discontinuation of
immunosuppressive agents and provides more information for prenatal counseling. In
addition, the risk of recurrence after kidney transplant is lower in genetic forms of NS than
in non-genetic-related syndromes. A multicentric study followed 1340 children with SRNS
over 1 year of age and found that 14% of cases were associated with a genetic mutation [61],
including polymorphisms of the major histocompatibility complex (HLA). HLA loci muta-
tions represent a genetic risk for SSNS of 4 to 6 percent. However, the association between
SSNS and these mutations is found only in specific ethnicities [62,63].

3. Molecular and Genetic Markers
3.1. Genetic Mutations

In recent years, studies have identified more than 50 genes as causes of NS in different
populations. Mutations in the NPHS1 gene that codes for nephrin, described in 1998, led to
an increase in studies searching for mutations in numerous components of the glomerular
filtration barrier, including slit diaphragm structure and function, organization of podocyte
actin cytoskeleton, biosynthesis of co-enzyme Q, lysosomal pathways, and adhesion to the
GBM [33]. To date, the described mutations that caused NS can be divided into different
categories, as summarized in Table 2.
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Table 1. Brief summary of the common histological types of childhood nephrotic syndrome.

Nephrotic Syndrome Characteristics Causes References

Congenital nephrotic syndrome
(Finnish type)

Congenital NS is an autosomal-recessive disorder with heavy proteinuria in the neonatal period.
A renal biopsy shows many glomeruli with mesangial hypercellularity and hyperlobulated
capillary tufts. Proximal and distal tubules may present microcystic dilatation, and the podocytes
present FP effacement.

The mutated gene related to Finnish nephropathy (FN) is NPHS1, mapped to the
long arm of chromosome 19 (19q13.1), which codes for nephrin.

[2]

Diffuse mesangial sclerosis

It presents nonspecific mesangial IgM, C3, and C1q deposits, detected via immunofluorescence.
Electron microscopy shows podocyte hypertrophy and irregular FP effacement. Late stages of
DMS exhibit thickened capillary loops, a decrease in capillary lumens, and the formation of a
sclerotic mass in the mesangium.

WT1 gene mutations in exons 8 or 9 are possible causes. [2,18]

Focal segmental glomerular sclerosis FSGS is related to the presence of segmental sclerotic lesions within the glomeruli. Some molecules: cardiotrophin-like cytokine factor 1, apoA1b (an isoform of
ApoA1), anti-CD40 antibody, and serum urine-type plasminogen activator receptor
(suPAR). More than 50 genes are potential factors for monogenic forms of FSGS.
Drugs and anabolic steroid abuse are other factors.

[2,6,24–
27,29–32]

Cellular FSGS It presents hypercellularity and endocapillary proliferation with luminal obliteration of capillaries.
Primary FSGS with mesangial
hypercellularity

This type is associated with mesangial hypercellularity in the non-sclerotic glomeruli.

Familial FSGS It exhibits loss of podocin staining, detected using immunohistochemistry methods. Mutations in the NPHS2 gene, which codes for podocin. [2,18]

Secondary FSGS
This type presents mesangial hypercellularity, mesangial IgA, and basement membrane
abnormalities.

IgA nephropathy, hereditary nephritis (Alport’s syndrome), and lupus nephritis. [2,51–53]

Collapsing glomerulopathy
It is related to the implosive collapse of the capillary loops with alterations of the basement
membrane and hypertrophy and hyperplasia of podocytes.

COQ2 mutations that cause mitochondrial disorders. HIV, malaria, visceral
leishmaniasis, cytomegalovirus, parvovirus B19, hepatitis C virus, dengue virus,
and Zika virus are possible factors.

[2,55–59]

NS: Nephrotic Syndrome; DMS: Diffuse Mesangial Sclerosis; FSGS: Focal Segmental Glomerulosclerosis; FP: Foot Process; GBM: Glomerular Basement Membrane; WT1: Wilms Tumor 1
Gene; NPHS1: Nephrin Gene; NPHS2: Podocin Gene; COQ2: Coenzyme Q2 Gene; suPAR: Soluble Urokinase-type Plasminogen Activator Receptor; HIV: Human Immunodeficiency
Virus; Alport’s syndrome: Hereditary Nephritis; and IgA: Immunoglobulin A.

Table 2. Summary of genes related to the development of childhood nephrotic syndrome.

Gene Function/Description Mutations and Associated Conditions
Chromosome

Location
Mode of Inheritance References

Slit-diaphragm-associated mutations

CD2AP
Acts as a bridge between the SD and the actin cytoskeleton. Lack of expression

causes mesangial cell proliferation, glomerulosclerosis, and NS.
Mutations alter the SD structure. CD2AP-/- mice develop

severe NS.
6p12.3 Autosomal Recessive and Dominant [64–66]

NPHS1
Encodes nephrin. Mutations account for 40–60% of infants with congenital NS.

Malfunction leads to massive protein loss.
Mutations associated with Finnish-type nephrotic syndrome. 19q13.12 Autosomal Recessive [67–69]

NPHS2
Encodes podocin. Plays a role in recruiting nephrin to the SD. Mutations lead to

congenital/infantile NS and SRNS.
Mutations lead to childhood- or adult-onset SRNS. 1q25.2 Autosomal Recessive [70,71]

CRB2 Encodes the Crumbs cell polarity complex protein Mutations lead to SRNS with FSGS. 9q33.3 Autosomal Recessive [72–74]

FAT1 Encodes the tumor suppressor of the cadherin superfamily.
Mutations lead to a combination of SRNS, tubular ectasia,

hematuria, and neurological involvement.
4q35.2 Autosomal Recessive [75–78]
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Table 2. Cont.

Gene Function/Description Mutations and Associated Conditions
Chromosome

Location
Mode of Inheritance References

PLCE1 Encodes the Phospholipase C epsilon 1 (PLCε1) protein.
Mutations in PLCE1 are responsible for a major part of cases

of Mesangial Sclerosis.
10q23.33 Autosomal Recessive [79,80]

TRPC6
Encodes the Transient Receptor Potential Cation Channel Subfamily C member

6 receptor.
Mutations lead to late-onset FSGS. 11q22.1 Autosomal Dominant [81–84]

Actin-cytoskeleton-associated mutations

ACTN4 Encodes alpha-actin 4, an actin-binding protein in the FPs of podocytes. Mutations associated with adult-onset SRNS with FSGS. 19q13.2 Autosomal Recessive [85–87]

ANLN
Encodes anilin, an actin-binding protein. Mutations cause a reduction in

CD2AP binding, dysregulating signaling in podocytes.
Mutations lead to disarrangement in the SD. 7p14.2 Autosomal Dominant [88,89]

ARHGAP24 Encodes the Rho GTPase-activating protein 24.
Mutations associated with familial SRNS in the second and

third decades of life.
4q21.3 Autosomal Dominant [90,91]

ARHGDIA Encodes the RhoGDP dissociation inhibitor α.
Mutations associated with congenital NS or SRNS within the

first 2 years.
17q25.3 Autosomal Recessive [92,93]

INF2
Encodes inverted formin 2 and regulates actin polymerization. Mutations

related to Charcot–Marie–Tooth disease and FSGS.
Mutations related to Charcot–Marie–Tooth disease and FSGS. 14q32.33 Autosomal Dominant [94,95]

MYO1E
Encodes non-muscular myosin 1E, an actin-binding molecular motor in the FPs

of podocytes.
Mutations lead to SRNS with focal thickening,
disorganization, and multilamination of GBM.

15q22.2 Autosomal Recessive [96–98]

KANK1 Encodes kidney ankyrin repeat-containing protein 1. Mutations cause congenital and early childhood onset NS. 9p24.3 Autosomal Recessive [99,100]
KANK2 Encodes kidney ankyrin repeat-containing protein 2. Mutations cause congenital and early childhood onset NS. 19p13.2 Autosomal Recessive [99,101]
KANK4 Encodes kidney ankyrin repeat-containing protein 4. Mutations cause congenital and early childhood onset NS. 1p31.3 Autosomal Recessive [99,102]

Mitochondrial protein mutations

ADCK4
Has a role in the synthesis of Coenzyme Q10 (CoQ10), a lipid-soluble

ubiquinone.
Mutations cause SRNS. 19q13.1 Autosomal Recessive [103–105]

COQ2
Encodes parahydroxybenzoate-polyprenyltransferase, involved in the

biosynthesis of ubiquinone CoQ10.
Mutations lead to CoQ10 deficiency, resulting in SRNS. 4q21.23 Autosomal Recessive [106,107]

COQ6
The product is a mono-oxygenase required for CoQ10 biosynthesis. Mutations

lead to primary CoQ10 deficiency.
Mutations result in primary CoQ10 deficiency, leading to

SRNS.
14q24.3 Autosomal Recessive [108–111]

PDSS2
Encodes decaprenyl diphosphate synthase, subunit 2, a component of a

heterotetrameric decaprenyl synthase.
Mutations lead to primary CoQ10 deficiency, resulting in

SRNS.
6q21 Autosomal Recessive [112–114]

Glomerular-basement-membrane-related mutations

COL4A3 Encodes Collagen Type IV alpha-3 chain.
Mutations related to Alport syndrome type 2 and autosomal

dominant or recessive modes of inheritance for benign
familial hematuria.

2q36.3
Autosomal Dominant (Alport
syndrome type 3), Autosomal

Recessive (Alport syndrome type 2)
[115–119]

COL4A4 Encodes Collagen Type IV alpha-4 chain.
Mutations related to Alport syndrome type 2 and autosomal

dominant or recessive modes of inheritance for benign
familial hematuria.

2q36.3
Autosomal Dominant (Alport
syndrome type 3), Autosomal

Recessive (Alport syndrome type 2)
[115–119]
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Table 2. Cont.

Gene Function/Description Mutations and Associated Conditions
Chromosome

Location
Mode of Inheritance References

COL4A5 Encodes Collagen Type IV alpha-5 chain.
Mutations related to Alport syndrome type 1, exhibiting

X-linked dominant mode of inheritance.
Xq22 X-Linked Dominant

[115,116,118–
120]

ITGA3 Encodes integrin alpha-3 chain and forms an integrin-family molecule, VLA-3.
Mutations associated with interstitial lung disease, NS, and

congenital epidermolysis bullosa.
17q21.33 Autosomal Recessive [121–123]

ITGB4 Encodes integrin beta-4 chain and forms the alpha-6-beta-4 integrin molecule.
Mutations associated with congenital FSGS and

epidermolysis bullosa with pyloric atresia.
17q25.1 Autosomal Recessive [124–126]

LAMB2 Encodes laminin beta-2 chain. Mutations associated with Pierson syndrome.
Mutations cause Pierson syndrome, presenting as congenital

NS with mesangial sclerosis and eye abnormalities.
3p21 Autosomal Recessive [127,128]

Nuclear transcription factors and protein mutations

LMX1B Encodes LIM homeobox transcription factor. Mutations cause FSGS and nail–patella syndrome. 9q32-34.1 Autosomal Dominant [129–131]

NXF5
Belongs to a multigene family of nuclear RNA export factors. Role in FSGS is

not well understood.
Mutations might contribute to FSGS, but their significance is

unknown.
X chromosome X-Linked Recessive [132,133]

SMARCAL1
Encodes SWI/SNF-related matrix-associated, actin-dependent regulator of

chromatin.
Mutations result in Schimke immunosseous dysplasia and

NS.
2q34.36 Autosomal Recessive [134–136]

WT1
Encodes a zinc finger DNA-binding protein. Mutations associated with Wilms

Tumor, Denys–Drash Syndrome with NS, somatic mesothelioma, and other
diseases.

Mutations associated with Wilms Tumor, Denys–Drash
Syndrome with NS, somatic mesothelioma, and other

diseases.
11p13

Autosomal Dominant (Wilms Tumor,
Denys–Drash Syndrome), Somatic

Mutation
[137–142]

OSGEP
Encodes O-sialoglycoprotein endopeptidase. Mutations lead to

Galloway–Mowat syndrome and GBM disorder.
Mutations cause Galloway–Mowat syndrome and GBM

disorder.
14q11.2-12 Autosomal Recessive [143–145]

LAGE3 Encodes L-antigen family member 3.
Mutations cause X-linked Galloway–Mowat syndrome with

NS and primary microcephaly.
Xq28 X-Linked Recessive [146,147]

WDR73 Encodes WD repeat-containing protein 73.
Mutations cause Galloway–Mowat syndrome with

microcephaly and SRNS.
15q25.2 Autosomal Recessive [148–150]

TP53RK Encodes p-53-related protein kinase. Mutations cause Galloway–Mowat syndrome. 20q13.2 Autosomal Recessive [146,151]

NUP93
Encodes nucleoporin 93 kd, a subunit of the 12 million Da nuclear pore

complex.
Mutations cause SRNS. 16q13 Autosomal Recessive [152,153]

NUP107
Encodes nucleoporin 107 kd, a subunit of the 120 million Da nuclear pore

complex.
Mutations cause SRNS and ovarian dysgenesis. 12q15 Autosomal Recessive [154–156]

NUP205
Encodes nucleoporin 205 kd, a subunit of the 120 million Da nuclear pore

complex.
Mutations cause SRNS. 7q33 Autosomal Recessive [153,157]

XPO5 Encodes exportin 5. Mutations associated with early onset NS. 6p21.1 Autosomal Recessive [153,158]
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Table 2. Cont.

Gene Function/Description Mutations and Associated Conditions
Chromosome

Location
Mode of Inheritance References

Proximal tubule protein reabsorption mutations

CUBN
Encodes cubilin, the intestinal receptor for endocytosis of intrinsic factor,

vitamin B12, and a receptor in epithelial apoA-I/HDL metabolism.
Mutations cause Imerslund–Grasbeck syndrome, low

molecular weight proteinuria, and megaloblastic anemia.
10p13 Autosomal Recessive [159,160]

AMN
Encodes amnion-associated transmembrane protein. Along with cubilin, it

forms a receptor complex called “cubam.”
Mutations cause Imerslund–Grasbeck syndrome with B12

deficiency and proteinuria.
14q32 Autosomal Recessive [161–163]

LRP2 Encodes low-density lipoprotein receptor-related protein 2 or megalin.
Mutations cause Donnai–Barrow syndrome with facial

anomalies, ocular alterations, sensorineural hearing loss, and
NS.

2q31.1 Autosomal Recessive [164–166]

Other mutations

CFH
Encodes complement factor H, a serum glycoprotein that regulates the function

of the alternative complement pathway.
Mutations associated with atypical hemolytic uremic

syndrome and C3 glomerulopathy.
1q31.3 Autosomal Dominant [167–170]

DGKE
Encodes diacylglycerol kinase epsilon, an intracellular molecule that

phosphorylates diacylglycerol (DAG) to phosphatidic acid.
Mutations associated with susceptibility to atypical

hemolytic uremic syndrome and NS.
17q22 Autosomal Recessive [171,172]

PMM2
Encodes phosphomannomutase, an enzyme necessary for the synthesis of

GDP-mannose.
Mutations cause congenital disorders of glycosylation type I

and SRNS.
16p13.2 Autosomal Recessive [173–175]

PTPRO
Encodes protein-tyrosine phosphatase receptor-type O or glomerular epithelial

protein 1.
Mutations cause childhood-onset NS with varying severities. 12p12.3 Autosomal Recessive [176,177]

SCARB2
Encodes scavenger receptor class B, member 2, a lysosomal integral membrane

glycoprotein.
Mutations cause progressive myoclonic epilepsy, with or

without renal failure and SRNS.
4q21.1 Autosomal Recessive [178–181]

ZMPSTE24
Encodes zinc metalloproteinase STE24, a protein involved in the metabolism of

farnesylated proteins.
Mutations cause mandibuloacral dysplasia type B, increasing

the risk for FSGS.
1p34.2 Autosomal Recessive [182,183]

ALG1
Encodes chitobiosyldiphosphodolichol beta-mannosyltransferase, a protein that

acts in the glycosylation process.
Mutations cause congenital disorder of glycosylation type Ik,

producing congenital NS.
16p13.3 Autosomal Recessive [184–186]

EMP2
Encodes epithelial membrane protein 2, which regulates cell membrane

composition and plays a role in glomerular filtration.
Mutations cause childhood-onset NS. 16p13.2 Autosomal Recessive [187–189]

TTC21B
Encodes tetratricopeptide repeat domain-containing protein 21B, involved in

ciliary function.
Mutations cause nephronophthisis, FSGS, and short-rib

thoracic dysplasia.
2q24.3 Autosomal Recessive [190–193]

SGPL1 Encodes sphingosine-1-phosphate lyase 1, involved in sphingolipid catabolism. Mutations cause primary adrenal insufficiency and SRNS. 10q22.1 Autosomal Recessive [194,195]
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3.2. Molecular Markers

The clinical characteristics of NS are commonly not predictive of patient outcomes [196].
The response to steroids has been associated with better outcomes in NS [197]. For patients
with SRNS, renal biopsy is recommended to evaluate the prognosis and histopathological
subtype, but it is an invasive procedure not free of complications, especially in children [198].
Furthermore, the incorrect interpretation and inadequate preparation of kidney tissue may
lead to the wrong evaluation. Nevertheless, it is considered a generally safe procedure,
especially when performed by trained nephrologists [199]. Therefore, new and less invasive
biomarkers are necessary to predict disease outcomes, mainly for the pediatric age group.
Indeed, urine is considered the ideal sample to search for biomarkers in renal diseases [200],
but biomarkers in serum or plasma samples have also been evaluated in patients with NS.

3.2.1. MicroRNAs

Current studies have shown that microRNAs are a potential non-invasive biomarker
that can help in the diagnosis of NS [200,201]. Some microRNAs, including hsa-miR-181a,
hsa-miR-210, hsa-miR-30a, hsa-miR-942, hsa-miR-192, and hsa-miR-586, are up-regulated
and detected in the serum of patients with NS. These markers might be associated with
clinical findings in NS [201]. Another study showed that exosomal microRNAs, including
miR-194-5p, miR-146b-5p, miR-378a-3p, miR-23b-3p, and miR-30a-5p, were found in the
urine of patients with NS and might serve as novel biomarkers for diagnosing, monitoring,
and stratifying pediatric patients with NS [200].

More recently, Bayomy et al. [202] showed in a cohort of children with NS that the
measurement of miR-142a-5p in blood samples was capable of predicting SRNS with high
accuracy (AUC = 0.965), suggesting the possible role of autoimmunity in the pathogenesis
of NS and the resistance to steroids. Similarly, Zhang et al. [203] reported that miR-17-5p
was significantly more expressed in the peripheral blood of pediatric patients with NS
when compared to healthy controls. Nevertheless, most studies explored microRNAs in
only one ethnicity, making multicenter studies necessary.

3.2.2. Proteomics

The study of urinary proteomics holds promise for identifying and predicting markers
of renal disease in children [204]. Additionally, urinary proteomics is more stable than the
blood proteome and closely matches pathological changes in the kidney and urogenital
tract [205]. Some proteins that can be reliable biomarkers are only found in the urine. The
pathogenesis of NS is strongly associated with alterations in the glomerular barrier and an
increase in permeability to albumin. Additionally, a number of renal membrane proteins
and receptors are subject to regulation via glycosylation [206].

Alfa 1-B glycoprotein (A1BG) is part of the immunoglobulin superfamily, but its
function is still unclear. Piyaphanee et al. [207] used a proteomics approach to evaluate
the urine of patients with idiopathic NS and healthy controls. A fragment of A1BG was
exclusively identified in patients diagnosed with NS. A 13.8 kd fragment was only seen in
patients with SRNS but not in patients with SSNS [207]. Nonetheless, no further studies
were performed to validate these results, though A1BG seems to be a promising biomarker.
In a similar approach, Bennett et al. [208] used a proteomics panel of 10 biomarkers
(including A1BG) in the urine of 50 children with idiopathic NS. This panel showed a high
capacity for predicting steroid responsiveness (AUC of 0.92). Nonetheless, multicenter
studies are needed to validate the results found with this proteomics panel.

3.2.3. Inflammatory Markers, Cytokines, and Chemokines

One of the most commonly evaluated markers is inflammatory molecules. To date, uri-
nary and blood levels of cytokines and chemokines often differ in NS patients if compared
to healthy controls. Some studies have provided evidence that upregulation of interleukin
(IL)-2 and its soluble receptor (sIL2R) may be involved not only in the pathophysiology
of NS but also in steroid resistance to treatment by increasing the MDR1 gene expression
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of its product, P-glycoprotein [209]. Another biomarker that can help in the detection
of steroid-resistant patients is suPAR. Even though this marker cannot distinguish the
histopathological type of NS, it can be helpful in predicting steroid resistance in children
with primary NS [210].

Chemokines, an extensive category of low-molecular-weight cytokines, predominantly
function in the recruitment of leukocyte subsets during both homeostatic conditions and
inflammation. These molecules hold promise as molecular markers owing to their pivotal
roles in the pathophysiology of pediatric renal diseases [211]. The assessment of these
inflammatory mediators presents potential utility in managing diverse renal conditions in
children and identifying individuals at heightened risk for chronic kidney disease (CKD).
The prevailing evidence underscores that the infiltration of leukocytes, orchestrated via
inflammatory chemokines emanating from various cellular sources, has the potential to
augment inflammatory responses within the kidney [212].

Multiple methodologies are available for quantifying chemokine levels, encompassing
both protein and mRNA, in tissues and body fluids. Direct measurement of chemokines
in renal tissue can be accomplished through immunohistochemical or immunofluorescent
techniques, or their concentrations can be gauged in the supernatants of homogenized
tissues. Conversely, less invasive approaches, such as enzyme-linked immunosorbent
assays (ELISA) or flow cytometry-based techniques employing plasma and serum, prove
to be more clinically useful for assessing chemokine levels in urine or blood samples [211].

The measurement of specific cytokines and chemokines emerges as a valuable tool in
discerning between histopathological types of NS. Notably, patients with MCNS exhibit
compromised T regulatory cells, accompanied by diminished levels of IL-10 [213]. Fur-
thermore, distinctions between FSGS and MCNS may be drawn through urinary levels of
the fibrogenic cytokine transforming growth factor beta (TGF-β), although its applicability
as a biomarker for steroid responsiveness remains inconclusive [214]. Significantly ele-
vated urinary levels of the chemokine monocyte chemoattractant protein 1 (MCP-1/CCL2)
were observed in FSGS patients relative to counterparts with uropathies at equivalent
CKD stages [71]. Additionally, urinary MCP-1/CCL2 levels exhibited positive correlations
with serum total cholesterol and triglyceride concentrations [215]. These concentrations
demonstrated noteworthy positive associations with occult blood in urine and inverse rela-
tionships with the estimated glomerular filtration rate. Moreover, urinary MCP-1/CCL2
concentrations displayed substantial correlations with histological chronicity indices in
patients diagnosed with lupus nephritis and IgA nephropathy [216]. This supports the
contention that the assessment of this chemokine holds promise as a noninvasive method
for predicting the activity of glomerular diseases in the pediatric population.

Cardiotrophin-like cytokine factor 1 (CLCF-1) is a cytokine present in the IL-6 family.
Savin et al. showed that a single intraperitoneal injection of CLCF-1 in C57Bl6 mice
increased the urine albumin/creatinine ratio, and the chronic infusion of the cytokine
induced segmental sclerosis in rare glomeruli [24]. These findings suggest that CLFC-1
might be involved with the development of FSGS in humans. Nonetheless, in patients with
FSGS and MCNS, serum levels of CLCF-1 were not associated with renal function nor with
histological markers of kidney injury [217]. Therefore, its role as a biomarker for NS is
still unclear.

3.2.4. Other Potential Markers

Proteins found in the urine of NS patients named R6703, R7210, R11820, and R14356 are
differentially expressed in SRNS and can be used to suggest treatment for NS patients [218].
Similarly, lower levels of APOL1 in urine are suggestive of SRNS. Other urinary biomarkers
of NS, which were specifically associated with FSGS, included alpha 2 macroglobulin,
retinol binding protein 4, and orosomucoid 2. Alpha 2 macroglobulin had the highest
predictive power for the diagnosis of FSGS [219].

The vitamin D-binding protein (VDB) and APOL1 were regarded as candidate pre-
dictive biomarkers for steroid-resistant nephrotic syndrome (SRNS). Similarly, hemopexin
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(HPX), adiponectin (ADIPOQ), and sex hormone-binding globulin (SHBG) have been pro-
posed as candidate biomarkers for mechanistically differentiating SRNS from SSNS [220].
VDB deserves special attention since vitamin D may play an essential role in the patho-
physiology of NS. Patients with NS have high levels of vitamin D in their urine but low
serum levels [221,222]. Urinary VDB levels were significantly higher in patients with SRNS
in comparison to those with SSNS [223].

Neutrophil gelatinase-associated lipocalin (NGAL) is expressed at low levels in the
kidney [224] and is considered an initial marker of renal injury [225]. In addition, NGAL
has been considered a notable predictor of disease evolution in patients with chronic kidney
disease [226,227]. In that sense, Bennet et al. [228] compared urinary NGAL levels between
patients with SSNS, SRNS, and healthy controls. Not only did the authors find that urine
NGAL levels were clearly higher in patients with SRNS when compared to the other two
groups, but urinary NGAL was a good biomarker for predicting steroid-responsiveness
(AUC of 0.91) [228]. As a result, NGAL levels may be a good predictor for steroid resistance
in patients with NS. Nevertheless, it is relevant to consider that these results need to be
validated in a larger cohort of patients.

3.3. Metabolomics

Metabolomics comprises a robust set of tools for phenotype analysis, hypothesis
generation, and subsequent testing. The execution of metabolomics involves employing an-
alytical technologies capable of generating diagnostic patterns through fingerprinting and
achieving absolute quantitation of specific targeted metabolites [229]. Metabolomics has be-
come an invaluable analytical tool for discerning urinary and serum biomarkers associated
with renal diseases [230]. The thorough exploration of the metabolome stands as a pivotal
method for investigating the phenotype and its alterations induced by environmental
factors, pathological conditions, or variations in genotype.

Studies employing a combined proteomics and metabolomics approach, utilizing label-
free mass spectrometry, have unveiled, for the first time, the implication of the glycoprotein
afamin and several specific metabolites—hydroxyphenylacetate, uridine, glutamate, and
phenylalanine—in the pathogenesis of primary NS [231]. Importantly, analogous patterns
were evident in both protein and metabolite datasets, underscoring the potential of this
integrated approach for advancing non-invasive diagnostic strategies for NS and its possible
incorporation into routine clinical screening procedures for the condition.

Using a metabolomic discovery approach [232], Gooding et al. found a small group
of candidate biomarkers predictive of SRNS in pediatric patients, such as glutamine and
malonate. Through paired-sample analyses, a broader set of potential candidate metabo-
lite biomarkers has been identified, offering insights into specific mechanistic molecular
pathways and targets associated with steroid resistance. This expanded group includes
lipoproteins, adipate, pyruvate, creatine, glucose, tyrosine, valine, and glutamine [232].
Additionally, glucocorticoid treatment in children with SRNS has been found to induce
changes in a singular endogenous metabolite, sn-glycero-3-phosphocholine, distinguishing
it from individuals with SSNS. Collectively, these findings pinpoint specific candidate
metabolite biomarkers capable of predicting SRNS at the onset of the disease, while also
highlighting potential therapeutic target pathways that could pave the way for the future
development of more precise and effective treatments for NS.

3.4. Biomarkers Associated with Histological Features

The morphological picture of glomerulopathies is of great practical importance since,
among all kidney diseases, they are the most diagnosable with a renal biopsy. The same
form of clinical presentation can relate to very different morphological lesions with different
pathogenic mechanisms, prognosis, and therapeutic approaches. Similarly, a morphological
lesion pattern can be associated with different etiologies, involving specific prognosis
and treatment.
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Although kidney biopsy is the gold standard for NS diagnosis, this kind of invasive
procedure is not routinely performed in children [233]. It is usually requested in certain
specific situations, such as when there is the possibility of a coexisting nephritic syndrome
or when the patient is evolving with symptoms that are not typically associated with MCNS,
such as hypertension, altered renal function, gross hematuria, hypocomplementemia, and
steroid resistance [234].

Generally, patients with FSGS present a low percentage (20%) of remission with steroid
therapy. Thus, these patients are more likely to be submitted for a renal biopsy. On the other
hand, about 90% of patients with MCNS are steroid-sensitive, and, for this reason, renal
biopsies are not indicated [11]. With the purpose of minimizing the number of unnecessary
biopsies, especially in children, there are some biomarkers associated with histological
features that can help establish whether this procedure is really needed.

3.4.1. Transforming Growth Factor Beta (TGF-β)

It is known that TGF-β is overexpressed by podocytes in patients who are diagnosed
with progressive podocytopathies, especially FSGS. This cytokine regulates the hypertrophy,
proliferation, and apoptosis of renal cells. TGF-β also stimulates extracellular matrix (ECM)
protein synthesis, GBM thickening, and mesangial matrix expansion [235]. Considering
these actions, TGF-β could serve as a potential diagnostic biomarker in NS. In addition, this
cytokine is correlated with hypoalbuminemia and dyslipidemia, which are typical clinical
features of NS [236].

3.4.2. CD44

Another molecule that can play an important role as a histopathological marker is
CD44. The expression of this glycoprotein, which is considered a marker of activated
podocytes and parietal epithelial cells (PECs), has been implicated in the progression of re-
nal fibrosis and the pathogenesis of FSGS. Therefore, CD44 immunostaining in PECs allows
the differentiation of FSGS from MCNS. Patients with significantly increased PEC-CD44-
positive renal tissue exhibited faster deterioration of renal function and the characteristics
of typical FSGS [237,238].

3.4.3. CD80

CD80 (B7-1) is a co-stimulatory molecule that has been reported to be expressed
in patients who have been diagnosed with glomerular diseases [239], especially those
with FSGS. Expressed on antigen-presenting cells, this histological marker significantly
contributes to T-cell activation. CD80, a key player in this process, is modulated via the
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), primarily found on regulatory T
cells (Tregs) [240]. Therefore, the detection of CD80 in the renal tissue of patients with
SRNS indicates lower amounts of Tregs [241].

3.4.4. Extracellular Vesicles

Extracellular vesicles (EVs) are small, membrane-enclosed structures released via cells
into the extracellular environment that play a crucial role in intercellular communication
by carrying and transferring various bioactive molecules, including proteins, lipids, and
nucleic acids (such as RNA and DNA), between cells. EVs have been implicated in various
physiological and pathological processes, including immune response regulation, tissue
repair, and the progression of diseases. In that sense, Eroglu et al. (2021) have found
that patients with SSNS during relapse had higher protein content in circulating plasma
EVs, especially proteins that involved actin cytoskeleton rearrangement, such as Ras-
related C3 botulinum toxin substrate 1 (RAC-1) [242]. EVs have also been shown to induce
mesangial cell proliferation in pediatric patients with FSGS through the phospho-STAT-3
pathway [243]. This topic has been recently reviewed elsewhere [244].
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4. Conclusions

NS is a very complex disease with different outcomes, therapeutic responses, and
histopathological patterns. The most characteristic finding of NS is the presence of podocy-
topathy. The function and/or the structure of the components of the podocytes can
be altered through several mechanisms, including gene mutations, immunologic alter-
ations, infectious diseases, and circulating factors. The pathophysiology of NS is still not
fully understood.

There are potential biomarkers that can help with understanding the pathophysiology
of NS. The advances in this research field might improve the clinical outcomes and thera-
peutic approaches of patients with NS. Furthermore, recent studies showing that different
methods of assessing urinary molecules are less invasive and potentially more accurate for
diagnosing SRNS are of particular importance for pediatric patients.
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