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Abstract: The interface friction between granular materials and continuum surfaces is fundamental
in civil engineering, especially in geotechnical projects where sand of varying sizes and shapes
contacts surfaces with different roughness and hardness. The aim of this research is to investigate
the parameters that influence the peak interface friction, taking into consideration the properties
of both sand and continuum surfaces. This will be accomplished by employing a combination
of experimental and machine learning techniques. In the experiment, a series of interface shear
tests were conducted using a direct shear apparatus under differing levels of normal stress and
density. Utilising machine learning techniques, the study considered eleven input features: mean
particle size, void ratio, specific gravity, particle regularity, coefficient of uniformity, coefficient of
curvature, granular rubber content, carpet fibre content, normal stress, surface roughness, and surface
hardness. The output measured was the peak interface friction. The machine learning techniques
enable us to explore the complex relationships between the input features and the peak interface
friction, and to develop an empirical equation that can accurately predict the interface friction. The
experiment findings reveal that density, inclusion of recycled material, and normalised roughness
impact peak interface friction. The machine learning findings validate the efficacy of both multiple
linear regression and random forest regression models in predicting the peak interface friction, with
the latter outperforming the former in terms of accuracy when compared to the experiment results.
Furthermore, the most important features from both models were identified.

Keywords: peak interface friction; granular material; continuum surface; particle shape;
machine learning

1. Introduction

The study of the friction between surfaces is a branch of mechanical engineering
known as tribology [1]. An interface is the point where two materials meet and interact,
representing the common boundary between two surfaces. In geotechnical engineering,
engineers frequently encounter interfaces between soil and various construction materials
such as geomembranes, steel, concrete, polymers, wood, etc. The interaction between met-
als, such as steel and aluminium, and sand is observed in various geotechnical applications,
including retaining walls, soil-nail walls, reinforced soil slopes, pile foundations, pipelines,
sheet pile walls, cofferdams, etc. An experimental study by Su, Zhou [2] examined the
effect of D50 on sand only, and the interface shear behaviour between dry sand and steel
with different normalised roughness (Rn) values ranging from 1 to 2. Their experiment
used a modified interface direct shear box apparatus with three sand samples of different
D50 against a steel plate with constant hardness. The results show that changing D50 values
had a greater effect on the internal friction angle of pure sand compared with the interface
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friction angle of the sand versus steel. This confirms the statement by Dove, Frost [3] that
the soil/structure interface is often considered weaker than the shear strength of the soil.

The shape of sand particles can also influence interface mechanisms. In an experiment
conducted by Vaid and Rinne [4], the interface friction between a PVC geomembrane and
two different sand shapes (Ottawa: rounded, Target: angular) was studied using a ring
shear apparatus under 100 kPa normal stress. The experiment showed that the angular-
shaped particles (Target) had a slightly higher interface friction angle compared to the
round-shaped particles (Ottawa). Interface friction is usually measured by the interface
friction coefficient (µ), which is represented by Equation (1).

µp = tanδ =
τp

σn
(1)

where µp is peak interface friction coefficient, τp is interface shear strength, and σn is normal
stress. When examining the effect of particle size on interface shear strength characteristics,
Frost and Han [5] studied the interface behaviour between sand and fibre-reinforced
polymers. They concluded that the peak interface friction coefficient µp decreases as the
mean grain size D50 increases. Vangla and Latha Gali [6] also investigated the effect of
particle size on interface behaviour and found that when the particle size matches the
asperity surface, higher interface shear strength is achieved due to the better interlocking
of sand particles with the asperities. This led to the identification of an important factor
among twenty-three different surface roughness parameters [7] known as normalised
roughness (Rn), which links the granular material with the continuum counter-face surface.
Normalised roughness can be defined as shown in Equation (2).

Rn =
Rt

D50
(2)

where Rt is the relative vertical distance along a surface profile between the highest peak
and lowest valley, and D50 is mean particle size. Kishida and Uesugi [8] recommended that
the reference gauge length be equal to the D50 diameter of the granular sand.

Shaia and Abuel-Naga [9] proposed that the hardness of the counter-face material is
a variable that can influence interface shear strength. They found that on the sand/fibre-
reinforced polymer (FRP) interface, the Rn–µp relationship depends on D50. In contrast,
the Rn–µp relationship on the sand/steel interface is D50 independent. This is because
the difference in hardness between steel and FRP influences sand movement (ploughing
resistance) during interface shear. Further investigation by Abuel-Naga, Shaia [10] demon-
strated the coupling effect of normalised roughness and hardness on the peak interface
friction coefficient where four different continuum counter-face surfaces (GFRP, copper,
high carbon steel, and mild steel) interact with glass beads and sand. The results showed
that µp increased as Rn increased where the percentage of the increase was dependent
on hardness.

The interface friction coefficient can be impacted by many factors such as normal stress,
the shape and size of the particles, gradation, void ratio, and continuum surface roughness
and hardness. Despite these known factors, as yet, no detailed study that combines all of
these into a single, easy-to-understand model has been conducted, mainly because these
factors interact in complicated ways. In artificial intelligence, machine learning algorithms
have helped solve complex problems in the geotechnical field, such as understanding
soil mechanics behaviour [11–13] and improving the use of recycled materials in soil
stabilisation [14–19].

Cevallos, Jerves [20] presents a research paper introducing a convolutional neural
network (CNN) to enhance the image processing and segmentation of granular materials
from 3D X-ray computed tomography scans. The paper discusses the development of
original and improved image processing algorithms, details the CNN architecture and
training process, and provides insights into CNN performance across various soil samples.
The primary goal is to automate and streamline the creation of level set-based digital twins
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of individual grains for 3D level set discrete element method simulations, with potential
applications in engineering and space exploration. The paper also addresses challenges
and limitations of the approach while hinting at future directions. In another research
article, a team led by Jain, Chhabra [21] introduces machine learning techniques to predict
metamaterial microwave absorption performance. They propose a compact, ultra-thin
metamaterial absorber exhibiting four distinct absorption peaks in X- and Ku-band appli-
cations. Multiple machine learning regression models, including decision trees, random
forests, extra trees, and gradient boosting, are compared to optimise metamaterial ab-
sorber design and predictive modelling. Notably, the extra trees regressor emerges as the
top-performing model in terms of accuracy, computational efficiency, and generalisation.
Mital and Andrade [22] present a research paper outlining a data-driven framework utilis-
ing convolutional neural networks (CNNs) to bridge length scales in granular materials.
Drawing an analogy between images and granular systems, the authors employ CNNs
to uncover micromechanical relationships between grain-scale features and macroscopic
properties like stress and strain. This framework is validated using experimental datasets
of two-dimensional granular assemblies under uniaxial compression and simple shear. The
study also explores the impact of factors like redundant features, noisy data, partial data,
and time-biased data on framework performance, unveiling a new pattern discovered by
the CNN model. Lastly, a research paper by Zhang, Yin [23] proposes a novel method
for reconstructing 3D granular grains from CT images, with implications for studying
the mechanical properties of granular soils. The method integrates a hybrid algorithm
of particle swarm optimisation and random forest (PSO-RF) for grain classification and
segmentation, alongside a convolution kernel and level set method for grain identification
and reconstruction. Experimental testing on representative CT slice images with various
types of grains demonstrates the method’s high accuracy and efficiency in grain segmen-
tation and reconstruction, surpassing traditional watershed algorithms. This approach is
versatile and capable of handling challenges such as image noise, over-segmentation, and
identification across different grain sizes and shapes.

The application of machine learning for predicting the interface friction coefficient
of granular materials, considering the aforementioned factors, has not been sufficiently
investigated. This study aims to fill this gap by conducting and analysing a series of
interface shear tests across different granular sizes and shapes. To achieve this aim, we
employ both multiple linear regression (MLR) and random forest regression (RFR) models,
which are powerful machine learning techniques for regression analysis. The models
used eleven input features to predict the peak interface friction: mean particle size (D50),
void ratio (e), specific gravity (Gs), particle regularity (ρr), coefficient of uniformity (Cu),
coefficient of curvature (Cc), granular rubber content (GRC), carpet fibre content (CFC),
normal stress (σn), surface roughness (Rt), and surface hardness (HD). The research then
presents an empirical equation for predicting the interface friction coefficient, considering
the eleven input features. Finally, after careful examination of the results of the models,
the study presents the most effective model and investigates the significance of the inputs
involved in each model. This study provides a strong base for a deep investigation into a
new area that has not previously been explored.

2. Materials and Methods
2.1. Material

In this experiment, we utilised various granular materials, including sand, which was
categorised according to Australian Standards [24] as fine sand (B1-Sand), medium sand
(B4-Sand), and coarse sand (B6-Sand). Additionally, we used glass beads (GB5), which
have a sphericity and roundness equal to 1. Furthermore, we created mixtures of sand with
recycled materials, including granular rubber (GR-A) and carpet fibre (CF).

The GR-A had a size range of 2.36 to 0.075 mm. The CF had lengths ranging from
15 mm to 25 mm, averaging 20 mm, with a specific gravity of 1.64. The granular rubber
content varied, consisting of 10%, 20%, and 50% of the sand–rubber mixture’s dry weight.
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The carpet fibre content was made up of 0.25%, 0.5%, and 1% of the sand–carpet fibre
mixture’s dry weight. The content of granular rubber and carpet fibre in the mixture was
quantified using Equations (3) and (4), respectively.

GRC =
MGR

MTotal
(3)

CFC =
MCF

MTotal
(4)

where GRC is the granular rubber content, MGR is the mass of granular rubber, MTotal is the
mass of the mixture, and CFC and MCF represent the carpet fibre content and the mass of
carpet fibre, respectively. The size ratio of the sand–rubber mixture, calculated by dividing
the D50 of the rubber by the D50 of the sand, was found to be 0.29. Consequently, the
experiment encompassed a range of particle sizes and shapes, as well as sand mixed with
recycled material including granular rubber and carpet fibre material. Details regarding the
properties of the granular materials utilised are presented in Table 1, and a sieve analysis,
conducted in accordance with Australian Standards [25], can be seen in Figure 1.

Table 1. The properties of the used granular material.

Granular Material D50 (mm) Cu Cc Gs ρr

B1-Sand 0.11 1.45 0.96 2.70 0.454

B4-Sand 0.51 1.20 0.97 2.66 0.392

B6-Sand 1.77 1.45 0.96 2.66 0.410

GB5 0.89 1.44 0.96 2.45 1

GR-A 0.51 3.04 1.19 1.08 0.37
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Figure 1. Sieve analysis of the granular material used for the interface shear test.

Three continuum surfaces were used: two steel surfaces with different roughness
levels, and one aluminium plate with a smooth surface. The surface roughness (Rt) of these
materials was determined using a stylus profilometer, an instrument designed to accurately
measure surface texture. Furthermore, the surface hardness (HD) was measured using the
Vickers hardness test, a method that evaluates material hardness based on the ability to
resist plastic deformation from a standardised force. The properties for the used continuum
materials are shown in Table 2.
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Table 2. The properties of the used continuum surfaces.

Tested Material Rt (µm) HD

Smooth steel 8.588 150

Rough steel 93.163 150

Aluminium 18.919 89

2.2. Methods

A Matest direct shear apparatus was used to measure the interface friction. Two holes
were created on each continuum surface to link it with the top mould of the direct shear.
This setup aids in preparing the sample at different densities without disturbing it before
placement in the apparatus. After maintaining normal stress on the granular sample for
10 min, two screws were used to lift the top mould. This ensured that the interface shear
occurred between the continuum surface and the granular material, preventing contact
with the edges of the top mould, as illustrated in the schematic diagram in Figure 2. The
interface shear tests conducted on dry samples followed the Australian Standards [26] with
a shear rate of 1 mm/min. The normal stresses applied were 25, 50, 100, and 200 kPa. Each
sample was prepared anew for every normal stress to determine the peak interface friction.
This led to a total of 108 tests for different granular materials, at different densities, and on
different continuum surfaces, under various normal stresses.
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Figure 2. Schematic diagram of the interface shear test adapted for the direct shear apparatus.

For the granular sand sample, the density was achieved using the sand raining tech-
nique. In the sand–GR mixture and sand–CF mixture, the density was attained by applying
a specific amount of compaction energy [27]. Equation (5) was used to determine the energy
applied to reach the density required in this study.

E =
Nblows.Nlayers.Whammer.Hdrop

Vmold
(5)

where E, Nblows, Nlayers, Whammer, Hdrop, and Vmold represent the input compaction energy,
the number of blows per layer, the number of compaction layers, the weight of the hammer,
the height of the hammer drop, and the volume of the mould, respectively. An energy of
476 kJ was applied to achieve the desired density. The compaction energy parameters for
the sand–recycled material mixture can be found in Table 3.

Table 3. The compaction energy parameters for the sand–rubber mixture.

Type Sand–Rubber Mixture

Nblows 5

Nlayers 1

Whammer (kN) 0.026

Hdrop (m) 0.30

Vmold (m3) 0.000082

Total Energy (kJ) 475.61
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Two separate ML methods, MLR and RFR, are used for comparative analysis in
machine learning. This comparison provides valuable insights into the strengths and
limitations of each method when applied to a dataset. For instance, while MLR may
excel in terms of simplicity and interpretability, RFR can offer a more robust model in the
presence of complex, non-linear relationships. The eleven input features selected for the
machine learning models are based on properties of both the granular material and the
continuum surface that affect peak interface friction. Each feature is explained in the table
(Table 4) below.

Table 4. Key features and their descriptions.

Feature Description

D50
This feature presents the average diameter of the granular particles, which influences the contact area and

interlocking with the continuum surface.

e This feature presents the ratio of the volume of voids to the volume of solids in the granular material, which
affects the density and packing of the particles.

Gs
This feature presents the ratio of the density of the granular material to the density of water, which reflects the

mineral composition and porosity of the particles.

ρr
This feature presents the degree of deviation of the particle shape from a perfect sphere, which affects the

frictional resistance and rolling behaviour of the particles

Cu
This feature presents the ratio of the particle size corresponding to 60% passing in the sieve analysis to the

particle size corresponding to 10% passing, which indicates the gradation and sorting of the granular material.

Cc

This feature presents the ratio of the square of the particle size corresponding to 30% passing in the sieve
analysis to the product of the particle sizes corresponding to 10% and 60% passing, which indicates the shape

of the particle size distribution curve.

GRC This feature presents the percentage of granular rubber added to the sand by dry weight, which modifies the
properties of the sand such as void ratio, specific gravity, and particle regularity.

CFC This feature presents the percentage of carpet fibre added to the sand by dry weight, which modifies the
properties of the sand such as void ratio, specific gravity, and particle regularity.

σn
This feature presents the normal force per unit area applied on the granular material at the interface with the

continuum surface, which influences the shear strength and frictional resistance of the interface

Rt
This feature presents the relative vertical distance along a surface profile between the highest peak and lowest

valley, which indicates the texture and asperity of the continuum surface

HD This feature presents the ability of the continuum surface to resist plastic deformation from a standardised
force, which reflects the material and stiffness of the continuum surface

3. Results and Discussion

The peak interface friction is found to be impacted by D50, shape, gradation of the
granular material, the inclusion of recycled material, and the roughness and hardness of the
continuum surface. The results of the experiment are shown in the appendix in Table A1.

3.1. Internal versus Interface Friction

As the normal stress increases, both the shear strength of the sand alone and the
friction of the sand interface with the continuum surface increase, as shown in Table 5.
However, it was observed that the friction of granular sand alone is significantly greater
when compared to its interface friction with steel surfaces. These findings are consistent
with the work of Su, Zhou [2]. Furthermore, the friction at the sand/rough steel interface
shows higher peak friction compared to the sand/smooth steel interface, though not as
high as that of sand alone, which exhibits the highest shear strength.

3.2. Void Ratio Impact

Theoretically, the void ratio of the granular sample can impact the peak interface
friction at the sand/smooth steel surface interface. This can be explained by the fact that
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the dense sample has a higher number of grains interfacing with the continuum surface
compared to the loose sample, as shown in Figure 3. Furthermore, a well-graded sample
has a high density and low void ratio. Consequently, it has a larger contact surface area
and higher peak interface friction.

Table 5. Shear strength of sand alone, and sand versus smooth and rough steel in a dense state.

σn
(kPa)

Sand Only
(kPa)

Sand/Smooth
Steel
(kPa)

Sand/Rough
Steel
(kPa)

Fine sand
(D50: 0.11)

25 23.33 9.17 19.44

50 40 17.78 33.61

100 73.89 36.67 65.56

200 138.33 66.67 133.06

Medium sand
(D50: 0.51)

25 31.94 6.94 19.44

50 54.72 12.78 40

100 94.17 26.94 72.22

200 164.72 49.72 134.72

Coarse sand
(D50: 1.77)

25 48.06 10.83 26.94

50 88.89 14.72 40.83

100 118.61 23.89 90

200 227.22 46.39 165
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Figure 3. A cross-sectional schematic diagram showing different densities of glass beads in contact
with the continuum surface, where (a) shows the sample in a dense state, and (b) shows the sample
in a loose state.

Experimentally, to measure the impact of the void ratio only, uniform glass beads
were used. The impact of particle shape and size was neglected due to the similarity in the
shape and size of the glass beads. The samples were prepared at two different densities:
loose state and dense state. The results, as shown in Figure 4, indicate that the dense
sample produced higher peak interface friction at different normal stresses compared to the
loose sample.

3.3. Peak Interface Friction

In the peak interface friction between sand and smooth and rough steel surfaces,
as shown in Figure 5, the rough steel shows significantly higher peak interface friction
compared with the smooth steel. Furthermore, the impact of the void ratio becomes clearer
on the coarser sample, where the increase in peak interface friction is higher, specifically at
high normal stresses.
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Figure 4. Peak interface friction of glass beads/smooth steel surface at different normal stresses in
both loose and dense states.
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Figure 5. Peak interface friction versus void ratio for sands of coarse, medium, and fine grain sizes, at
different densities and normal stresses with (a) smooth steel, and (b) rough steel.

The particle shape and orientation with the continuum surface have an impact on the
peak interface friction and are considered important parameters, as shown in Figure 6. For
this specific particle shape, when the particle is flat on the surface, it has a larger contact
area and more frictional resistance. Conversely, when the particle is perpendicular to the
surface, it has a smaller contact area and less frictional resistance.
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Figure 6. A cross-sectional schematic diagram shows the particles at different orientations, where in
(a) the particles are flat on the surface, and in (b) the particles are perpendicular to the surface.

3.4. Lateral Displacement versus Peak Interface Friction

The coarser sand samples reach their peak interface frictional resistance at a smaller
displacement compared to medium and fine sand, as illustrated in Figure 7. This can be
explained by the fact that coarser samples have a lower void ratio between their particles,
which is especially noticeable near the interface with the continuous surface, thus allowing
them to reach their peak interface friction faster in comparison to medium and fine sand.

3.5. Normalise Roughness

The degree of surface roughness on a continuum surface significantly influences the
frictional resistance it experiences when encountering granular particles. Rougher surfaces
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tend to exhibit higher interface shear resistance due to the granular interlock occurring
within the asperities of the continuum surface as shown in Figure 8.
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Figure 7. Lateral displacement of fine, medium, and coarse sand at peak interface friction in a dense
state under varying normal stresses: (a) 25 kPa, (b) 50 kPa, (c) 100 kPa, and (d) 200 kPa.
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Figure 8. Cross section of the granular/continuum interface at different continuum roughness
(a) smooth surface, and (b) rough surface.

The normalised roughness parameter, which is the ratio of Rt to D50, accounts for
variations in granular size and surface roughness. As the normalised roughness increases,
different effects on smooth and rough steel surfaces are observed as shown in Figure 9.
The experiment used sands with different mean particle sizes (fine, medium, and coarse
sand). On smooth steel, friction increases due to the finer particles achieving better contact
with the smooth surface. In contrast, on rough steel, particles initially create higher friction
by interlocking with the surface texture, however, as the normalised roughness increases,
friction decreases. The coarsest sand has the highest friction, due to the particles effec-
tively interlocking with the surface’s asperities. As the particle size decreases (meaning
normalised roughness increases), there is a notable decrease in shear friction. This suggests
that the particles move more freely, potentially beginning to roll, rather than firmly sticking
to the asperities as with coarser sand.

3.6. Sand–Recycled Material/Steel Interface

The addition of recycled materials, such as granular rubber and carpet fibre to sand
influences the void ratio and peak interface friction, as shown in Figure 10. In the sand–
granular rubber (sand–GR) mixture, the angular and irregular shape of granular rubber
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typically increases the void spaces upon their addition. In the case of the sand–carpet fibre
(sand–CF) mixture, the inclusion of fibres maintains separation between sand particles,
thereby contributing to an increased void ratio.
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Figure 9. Peak interface friction versus normalised roughness at different normal stresses and levels
of roughness, where (a) represents smooth steel, and (b) represents rough steel.
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Figure 10. Peak interface friction between a dense-state sand–recycled material mixture and smooth
steel under different normal stresses, with sand mixed with: (a) granular rubber, and (b) carpet fibre.

In the sand–GR/smooth steel interface, the peak interface friction increases with
a greater amount of GRC, especially under higher normal stress conditions. For exam-
ple, at a normal stress of 200 kPa, the peak interface friction increases significantly from
46.39 kPa at 0% GRC to 94.72 kPa at 50% GRC, revealing a heightened resistance to shearing
at the interface. This resistance is further highlighted by the noticeable increase in friction
values as normal stress increases from 50 kPa to 100 and 200 kPa, with the most significant
increases noted at GRCs above 20%. For GRCs of 20%, the friction values increase from
17.22 kPa at a normal stress of 50 kPa to 33.61 kPa and 67.78 kPa at normal stresses of
100 kPa and 200 kPa, respectively. Further, in the sand–CF/smooth steel interface, the
peak interface friction experiences a slight enhancement with incremental increases in CFC.
Without CFC, the peak friction at 200 kPa stress is 46.39 kPa, whereas adding 0.25% CFC
increases the peak interface friction to 50 kPa and further to 60.28 kPa at 1% CFC. This
shows that a small amount of CFC can slightly enhance interface friction.

3.7. Multiple Linear Regression

The MLR algorithm was applied to the interface experiment results using the Python
language. The code utilises the scikit-learn library with the default hyperparameter values.
The numerical hyperparameters that were set for pre-processing data, feature importance
estimation, and the visualisation process are displayed in Table 6.
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Table 6. Hyperparameters for the MLR code, including parameters for both with and without the
application of 10-fold CV.

Phase Parameter Value

Train and Test Sets
test_size 0.2

random_state 0

KFold Cross-Validation
n_splits 10

random_state 0
shuffle True

Feature Importance Estimation n_repeats 10

Visualisation
start_point 0

boundary_shift 20%

Figure 11 compares the predicted values obtained by the MLR model during training,
testing, and 10-fold CV with the actual experiment values. The results show that the MLR
model has good accuracy.
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An MLR model was used to predict the peak interface friction, as indicated in Table 7,
which outlines the metrics from the training, testing, and 10-fold CV datasets. The model’s
performance in terms of MAE showed it to be more accurate during the testing phase with
a value of 12.59, compared to the training and cross-validation phases, which scored 10.20
and 11.22, respectively. The RMSE presented a contrasting trend, with the training phase
scoring 13.79, the testing phase slightly higher at 14.73, and the 10-fold CV showing the
highest error at 15.16. The R² values underscore the model’s fitness, with a commendable
0.86 in the training phase, dipping to 0.65 in the testing phase, and slightly increasing
to 0.81 in the CV phase. These figures suggest that while the MLR model is generally
accurate, its predictive performance varies across different phases, with the testing phase
experiencing a dip in R² despite the lower MAE. Overall, the MLR model demonstrates
a reasonable degree of precision in its predictions. As a result, an empirical equation has
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been developed using the eleven input features to accurately estimate the peak interface
friction. The equation (Equation (6)), developed from the training dataset, is as follows:

τp = 48.76 − (18.91 × D50)− (47.15 × e) + (0.24 × Gs)− (33.80 × ρr)
+(129.76 × Cu)− (23.02 × Cc)− (75.80 × GRC) + (8.91 × CFC)
+(73.99 × σn) + (41.90 × Rt)− (24.43 × HD)

(6)

where τp is the peak interface friction, D50 is the mean particle size, e is the void ratio,
Gs is specific gravity, ρr is particle regularity, Cu is the rcoefficient of uniformity, Cc is the
coefficient of curvature, GRC is the granular rubber content, CFC is the carpet fibre content,
σn is normal stress, Rt is surface roughness, and HD is surface hardness.

Table 7. The performance of MLR model in predicting the peak interface friction.

Training Database Testing Database 10-Fold CV

Observations 86 22 108

MAE 10.20 12.59 11.22

RMSE 13.79 14.73 15.16

RMSLE 0.49 0.88 -

R² 0.86 0.65 0.81

3.8. Random Forest Regression

An RFR algorithm was applied to the interface experiment results using the Python
language. The code utilises the scikit-learn library with the default hyperparameter values.
The numerical hyperparameters that were set for pre-processing data, model, and the
visualisation process are displayed in Table 8.

Table 8. Hyperparameters for the RFR code, including parameters for both with and without the
application of 10-fold CV.

Phase Parameter Value

Train and Test Sets
test_size 0.2

random_state 0

KFold Cross-Validation
n_splits 10

random_state 0
shuffle True

Model
n_estimators 100
random_state 0

Visualisation
start_point 0

boundary_shift 20%

A comparison between the actual and predicted values of peak interface friction for
training, testing, and the 10-fold CV method is shown in Figure 12. The results show that
the RFR model is highly accurate.

The metrics derived from the training, testing, and 10-fold CV data show that the
model predicts peak interface friction with excellent accuracy, as shown in Table 9. In the
training phase with 86 observations, the RFR model demonstrates outstanding performance,
evidenced by an R² value of 0.98 and minimal errors (MAE of 3.20, RMSE of 5.43, RMSLE
of 0.12). During the testing phase with 22 observations, there was a slight increase in errors,
yet the model maintained high predictability with an R² of 0.95. Finally, in the 10-fold
cross-validation with 108 observations, the error metrics increased (MAE of 7.16, RMSE of
12.81, RMSLE of 0.31), but the model still achieved a strong R² of 0.87.
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Table 9. The performance of the RFR model in predicting the peak interface friction.

Training Database Testing Database 10-Fold CV

Observations 86 22 108

MAE 3.20 4.30 7.16

RMSE 5.43 5.65 12.81

RMSLE 0.12 0.27 0.31

R² 0.98 0.95 0.87

3.9. Method Comparison

An assessment of the performance metrics between the MLR and RFR models reveals
different trends in predicting peak interface friction, as summarised in Table 10. In the
training dataset, RFR is better than MLR with significantly lower error measurements:
the MAE in MLR is 10.20 whereas it is 3.20 in RFR, while the RMSE drops from 13.79 to
5.43, and the RMSLE reduces from 0.49 to 0.12. Correspondingly, the R² value for RFR is
an impressive 0.98, which is notably higher than the 0.86 in MLR, highlighting the RFR
model’s enhanced precision in predictions.

The high-performance pattern of RFR continues into the testing dataset, where despite
a general rise in error rates, RFR continues to demonstrate its strength. It achieves a lower
MAE of 4.30 compared to MLR’s 12.59, and a reduced RMSE of 5.65 against 14.73 in the
MLR model. In terms of R², RFR maintains its superiority with a score of 0.95, a marked
improvement over the 0.65 of the MLR. The RMSLE for RFR in this phase is also indicative
of its higher accuracy, at 0.27 as opposed to MLR’s 0.88.

During the 10-fold CV phase, both models experience elevated error rates. However,
the gap in performance narrows slightly, with the RFR model recording an MAE of 7.16
and RMSE of 12.81, which are still lower than the MLR’s corresponding values of 11.22 and
15.16. The RFR model has an R² of 0.87 compared to 0.81 in the MLR model, suggesting
that RFR has a stronger predictive capability even when subjected to cross-validation. In



Geotechnics 2024, 4 122

summary, the RFR model outperforms the MLR model across all metrics in training, testing,
and 10-fold CV phases.

Table 10. Comparative performance of multiple linear regression and random forest regression on
training, testing, and 10-fold cross-validation datasets.

Multiple Linear Regression Random Forest Regression

Training
Data

Testing
Data

10-Fold
CV

Training
Data

Testing
Data

10-Fold
CV

Observation 86 22 108 86 22 108

MAE 10.20 12.59 11.22 3.20 4.30 7.16

RMSE 13.79 14.73 15.16 5.43 5.65 12.81

RMSLE 0.49 0.88 - 0.12 0.27 0.31

R2 0.86 0.65 0.81 0.98 0.95 0.87

3.10. Importance of Features

In this study, we utilise machine learning algorithms, specifically MLR and RFR, to
analyse and predict the relationship between eleven input features namely: D50, e, Gs, ρr,
Cu, Cc, GRC, CFC, σn, Rt, and HD and one output variable τρ. Figure 13 shows that both
the MLR and RFR models with the 10-fold cross-validation method identify D50 as the
most important feature and e follows as the second most influential parameter.
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4. Conclusions

This study investigated the influence of different granular materials, recycled materials,
and continuum surfaces on the peak interface friction using experiments and machine
learning approaches. The findings can be summarised in the following points:

• An increase in sample density leads to higher interface friction by reducing the void
ratio, which, in turn, increases the contact surface and enhances friction.

• The shear strength of the sand markedly exceeds the peak interface friction shown at
both the sand/smooth steel and sand/rough steel interfaces.

• Coarse sand specimens attain their peak interface frictional resistance with less lateral
deformation than medium and fine-grained sands.

• The inclusion of recycled material into sand enhances its interface friction. Mixtures of
sand and granular rubber show a significant enhancement in peak interface friction,
while mixtures with carpet fibre show a slight enhancement.

• The machine learning findings validate the efficacy of both MLR and RFR models
in predicting the peak interface friction, with the latter outperforming the former in
terms of accuracy.

• The application of 10-fold cross-validation reveals that mean particle size and void
ratio are the most significant input features.

• Future research should consider various input parameters, including soil type, sand–
rubber size ratio, carpet fibre size ratio, moisture content, temperature, shear rate, and
stress history as well as the incorporation of hybrid machine learning techniques.
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Nomenclature

D50 Mean particle size
e Void ratio
Gs Specific gravity
ρr Particle regularity
Cu Coefficient of uniformity
Cc Coefficient of curvature
GRC Granular rubber content
GR Granular rubber
CFC Carpet fibre content
CF Carpet fibre
σn Normal stress
Rt Surface roughness
HD Surface hardness
ML Machine learning
MLR Multiple linear regression
RFR Random forest regression
τ Interface friction
τp Peak interface friction
µ Interface friction coefficient
Rn Normalised roughness
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Appendix A

Table A1. Data from interface shear experiment used for machine learning analysis.

# D50
(mm) e Gs ρr Cu Cc

GRC
(%)

CFC
(%)

σn
(kPa)

Rt
(µm) HD τp

(kPa)

1 0.11 1.313 2.70 0.454 1.45 0.96 0 0.00 25 0.009 150 8.06
2 0.11 1.275 2.70 0.454 1.45 0.96 0 0.00 50 0.009 150 17.22
3 0.11 1.276 2.70 0.454 1.45 0.96 0 0.00 100 0.009 150 36.39
4 0.11 1.270 2.70 0.454 1.45 0.96 0 0.00 200 0.009 150 61.39
5 0.51 1.103 2.66 0.392 1.20 0.97 0 0.00 25 0.009 150 4.72
6 0.51 1.096 2.66 0.392 1.20 0.97 0 0.00 50 0.009 150 9.72
7 0.51 1.096 2.66 0.392 1.20 0.97 0 0.00 100 0.009 150 24.72
8 0.51 1.092 2.66 0.392 1.20 0.97 0 0.00 200 0.009 150 48.06
9 1.77 1.033 2.66 0.410 1.45 0.96 0 0.00 25 0.009 150 2.78

10 1.77 1.029 2.66 0.410 1.45 0.96 0 0.00 50 0.009 150 6.94
11 1.77 1.043 2.66 0.410 1.45 0.96 0 0.00 100 0.009 150 17.78
12 1.77 1.039 2.66 0.410 1.45 0.96 0 0.00 200 0.009 150 27.50
13 0.89 0.710 2.45 1.000 1.44 0.96 0 0.00 25 0.009 150 1.67
14 0.89 0.710 2.45 1.000 1.44 0.96 0 0.00 50 0.009 150 6.67
15 0.89 0.708 2.45 1.000 1.44 0.96 0 0.00 100 0.009 150 13.89
16 0.89 0.716 2.45 1.000 1.44 0.96 0 0.00 200 0.009 150 31.94
17 0.11 1.122 2.70 0.454 1.45 0.96 0 0.00 25 0.009 150 9.17
18 0.11 1.129 2.70 0.454 1.45 0.96 0 0.00 50 0.009 150 17.78
19 0.11 1.113 2.70 0.454 1.45 0.96 0 0.00 100 0.009 150 36.67
20 0.11 1.093 2.70 0.454 1.45 0.96 0 0.00 200 0.009 150 66.67
21 0.51 0.997 2.66 0.392 1.20 0.97 0 0.00 25 0.009 150 6.94
22 0.51 0.989 2.66 0.392 1.20 0.97 0 0.00 50 0.009 150 12.78
23 0.51 1.000 2.66 0.392 1.20 0.97 0 0.00 100 0.009 150 26.94
24 0.51 0.992 2.66 0.392 1.20 0.97 0 0.00 200 0.009 150 49.72
25 1.77 0.904 2.66 0.410 1.45 0.96 0 0.00 25 0.009 150 10.83
26 1.77 0.889 2.66 0.410 1.45 0.96 0 0.00 50 0.009 150 14.72
27 1.77 0.931 2.66 0.410 1.45 0.96 0 0.00 100 0.009 150 23.89
28 1.77 0.900 2.66 0.410 1.45 0.96 0 0.00 200 0.009 150 46.39
29 0.89 0.645 2.45 1.000 1.44 0.96 0 0.00 25 0.009 150 3.06
30 0.89 0.636 2.45 1.000 1.44 0.96 0 0.00 50 0.009 150 18.89
31 0.89 0.641 2.45 1.000 1.44 0.96 0 0.00 100 0.009 150 19.17
32 0.89 0.640 2.45 1.000 1.44 0.96 0 0.00 200 0.009 150 33.33
33 0.11 1.266 2.70 0.454 1.45 0.96 0 0.00 25 0.093 150 16.11
34 0.11 1.276 2.70 0.454 1.45 0.96 0 0.00 50 0.093 150 34.44
35 0.11 1.258 2.70 0.454 1.45 0.96 0 0.00 100 0.093 150 63.61
36 0.11 1.249 2.70 0.454 1.45 0.96 0 0.00 200 0.093 150 122.22
37 0.51 1.092 2.66 0.392 1.20 0.97 0 0.00 25 0.093 150 15.83
38 0.51 1.094 2.66 0.392 1.20 0.97 0 0.00 50 0.093 150 32.50
39 0.51 1.097 2.66 0.392 1.20 0.97 0 0.00 100 0.093 150 56.94
40 0.51 1.101 2.66 0.392 1.20 0.97 0 0.00 200 0.093 150 105.83
41 1.77 1.010 2.66 0.410 1.45 0.96 0 0.00 25 0.093 150 23.61
42 1.77 1.029 2.66 0.410 1.45 0.96 0 0.00 50 0.093 150 39.17
43 1.77 1.018 2.66 0.410 1.45 0.96 0 0.00 100 0.093 150 65.83
44 1.77 1.019 2.66 0.410 1.45 0.96 0 0.00 200 0.093 150 119.17
45 0.89 0.691 2.45 1.000 1.44 0.96 0 0.00 25 0.093 150 16.67
46 0.89 0.697 2.45 1.000 1.44 0.96 0 0.00 50 0.093 150 31.11
47 0.89 0.693 2.45 1.000 1.44 0.96 0 0.00 100 0.093 150 56.67
48 0.89 0.698 2.45 1.000 1.44 0.96 0 0.00 200 0.093 150 127.78
49 0.11 1.063 2.70 0.454 1.45 0.96 0 0.00 25 0.093 150 19.44
50 0.11 1.123 2.70 0.454 1.45 0.96 0 0.00 50 0.093 150 33.61
51 0.11 1.092 2.70 0.454 1.45 0.96 0 0.00 100 0.093 150 65.56
52 0.11 1.091 2.70 0.454 1.45 0.96 0 0.00 200 0.093 150 133.06
53 0.51 0.990 2.66 0.392 1.20 0.97 0 0.00 25 0.093 150 19.44
54 0.51 0.968 2.66 0.392 1.20 0.97 0 0.00 50 0.093 150 40.00
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Table A1. Cont.

# D50
(mm) e Gs ρr Cu Cc

GRC
(%)

CFC
(%)

σn
(kPa)

Rt
(µm) HD τp

(kPa)

55 0.51 0.978 2.66 0.392 1.20 0.97 0 0.00 100 0.093 150 72.22
56 0.51 0.952 2.66 0.392 1.20 0.97 0 0.00 200 0.093 150 134.72
57 1.77 0.913 2.66 0.410 1.45 0.96 0 0.00 25 0.093 150 26.94
58 1.77 0.907 2.66 0.410 1.45 0.96 0 0.00 50 0.093 150 40.83
59 1.77 0.918 2.66 0.410 1.45 0.96 0 0.00 100 0.093 150 90.00
60 1.77 0.902 2.66 0.410 1.45 0.96 0 0.00 200 0.093 150 165.00
61 0.89 0.645 2.45 1.000 1.44 0.96 0 0.00 25 0.093 150 17.22
62 0.89 0.665 2.45 1.000 1.44 0.96 0 0.00 50 0.093 150 34.72
63 0.89 0.654 2.45 1.000 1.44 0.96 0 0.00 100 0.093 150 58.33
64 0.89 0.655 2.45 1.000 1.44 0.96 0 0.00 200 0.093 150 120.28
65 0.11 1.307 2.70 0.454 1.45 0.96 0 0.00 25 0.019 89 14.17
66 0.11 1.300 2.70 0.454 1.45 0.96 0 0.00 50 0.019 89 31.94
67 0.11 1.309 2.70 0.454 1.45 0.96 0 0.00 100 0.019 89 58.61
68 0.11 1.300 2.70 0.454 1.45 0.96 0 0.00 200 0.019 89 115.83
69 0.23 1.152 2.69 0.427 1.45 0.96 0 0.00 25 0.019 89 16.67
70 0.23 1.139 2.69 0.427 1.45 0.96 0 0.00 50 0.019 89 31.39
71 0.23 1.158 2.69 0.427 1.45 0.96 0 0.00 100 0.019 89 57.50
72 0.23 1.153 2.69 0.427 1.45 0.96 0 0.00 200 0.019 89 113.89
73 0.51 1.075 2.66 0.392 1.20 0.97 0 0.00 25 0.019 89 18.06
74 0.51 1.068 2.66 0.392 1.20 0.97 0 0.00 50 0.019 89 31.67
75 0.51 1.073 2.66 0.392 1.20 0.97 0 0.00 100 0.019 89 58.89
76 0.51 1.083 2.66 0.392 1.20 0.97 0 0.00 200 0.019 89 106.39
77 1.77 0.980 2.66 0.410 1.45 0.96 0 0.00 25 0.019 89 13.61
78 1.77 0.975 2.66 0.410 1.45 0.96 0 0.00 50 0.019 89 28.06
79 1.77 1.002 2.66 0.410 1.45 0.96 0 0.00 100 0.019 89 53.89
80 1.77 0.972 2.66 0.410 1.45 0.96 0 0.00 200 0.019 89 98.89
81 1.77 0.700 2.45 1.000 1.45 0.96 0 0.00 25 0.019 89 7.78
82 1.77 0.700 2.45 1.000 1.45 0.96 0 0.00 50 0.019 89 14.70
83 1.77 0.710 2.45 1.000 1.45 0.96 0 0.00 100 0.019 89 30.30
84 1.77 0.700 2.45 1.000 1.45 0.96 0 0.00 200 0.019 89 49.80
85 1.70 1.050 2.50 0.406 1.56 0.96 10 0.00 25 0.009 150 6.68
86 1.70 1.030 2.50 0.406 1.56 0.96 10 0.00 50 0.009 150 12.80
87 1.70 1.030 2.50 0.406 1.56 0.96 10 0.00 100 0.009 150 33.90
88 1.70 1.010 2.50 0.406 1.56 0.96 10 0.00 200 0.009 150 60.60
89 1.62 1.150 2.34 0.402 3.45 1.94 20 0.00 25 0.009 150 9.73
90 1.62 1.150 2.34 0.402 3.45 1.94 20 0.00 50 0.009 150 17.20
91 1.62 1.150 2.34 0.402 3.45 1.94 20 0.00 100 0.009 150 33.60
92 1.62 1.160 2.34 0.402 3.45 1.94 20 0.00 200 0.009 150 67.80
93 1.18 1.490 1.87 0.390 4.93 0.84 50 0.00 25 0.009 150 11.95
94 1.18 1.490 1.87 0.390 4.93 0.84 50 0.00 50 0.009 150 28.90
95 1.18 1.490 1.87 0.390 4.93 0.84 50 0.00 100 0.009 150 55.00
96 1.18 1.490 1.87 0.390 4.93 0.84 50 0.00 200 0.009 150 94.80
97 1.77 0.920 2.66 0.410 1.45 0.96 0 0.25 25 0.009 150 5.83
98 1.77 0.920 2.66 0.410 1.45 0.96 0 0.25 50 0.009 150 13.61
99 1.77 0.920 2.66 0.410 1.45 0.96 0 0.25 100 0.009 150 29.17
100 1.77 0.920 2.66 0.410 1.45 0.96 0 0.25 200 0.009 150 50.00
101 1.77 0.915 2.65 0.410 1.45 0.96 0 0.50 25 0.009 150 8.89
102 1.77 0.915 2.65 0.410 1.45 0.96 0 0.50 50 0.009 150 14.72
103 1.77 0.915 2.65 0.410 1.45 0.96 0 0.50 100 0.009 150 29.72
104 1.77 0.915 2.65 0.410 1.45 0.96 0 0.50 200 0.009 150 54.72
105 1.77 0.907 2.65 0.410 1.45 0.96 0 1.00 25 0.009 150 7.78
106 1.77 0.907 2.65 0.410 1.45 0.96 0 1.00 50 0.009 150 19.17
107 1.77 0.907 2.65 0.410 1.45 0.96 0 1.00 100 0.009 150 29.72
108 1.77 0.907 2.65 0.410 1.45 0.96 0 1.00 200 0.009 150 60.28
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