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Abstract: LED devices are increasingly gaining importance in lithography approaches due to the
fact that they can be used flexibly for mask-less patterning. In this study, we briefly report on
developments in mask-free lithography approaches based on nano-LED devices and summarize
our current achievements in the different building blocks needed for its application. Individually
addressable nano-LED structures can form the basis for an unprecedented fast and flexible patterning,
on demand, in photo-chemically sensitive films. We introduce a driving scheme for nano-LEDs in
arrays serving for a singularly addressable approach. Furthermore, we discuss the challenges facing
nano-LED fabrication and possibilities to improve their performance. Additionally, we introduce
LED structures based on a hybrid nanocrystal/nano-LED approach. Lastly, we provide an outlook
how this approach could further develop for next generation lithography systems. This technique
has a huge potential to revolutionize the field and to contribute significantly to energy and resources
saving device nanomanufacturing.
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1. Introduction

Although a large amount of work was carried out on the development of optical
lithographical techniques during the last half century, there still is a lack of fast and cheap
as well as energy and resources saving solutions. Therefore, next developments in this field
will be focused on mask-free approaches, which can serve with an unprecedented flexibility
in structure patterning on demand. Nevertheless, several “building blocks” are needed for
a new generation mask-less approach, before this could be realized. First, the development
of group III nitrides material and appropriate epitaxial techniques were successfully driven
forward since the end of the 1980’s [1–7]. Additionally, advanced fabrication technologies
are required in the micro- down to the nanoscale device processing. Indeed, sophisticated
methods for the fabrication of efficient light emitter sources as well as several approaches to
produce them down to the micro- [8–12] and to the nanoscale [13–20] were already achieved.
With respect to singularly addressable light emitter sources, Orenstein and co-workers
reached an important milestone in their pioneering work where matrix driven arrays
with surface emitting laser diodes were developed [21–24] albeit for signal processing
and optical communication. The further developments, which represent a significant step
forward, were reported on the arrangement of LEDs in arrays [25–31] and the possibility to
drive them preferably singularly (among others for displays) [32–43]. Hence, if all of these
“ingredients/building blocks” are available within a lithography system, in principle, next
generation lithography can be carried out mask-free, allowing time and resources savings,
flexible structure patterning on demand. Indeed J. N. Kurtin presented in 2005 an array of
LED structures suitable for such individually addressable lithographical patterning [44].
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The application of UV (microscale) LEDs to lithography was also reported [45–52]. Alter-
native approaches were pursued such as amongst others plasmonic lithography [53]. In
2012 and 2015 we presented a first proof of principle [54,55], where nano-LED devices with
diameters ~100 nm arranged hexagonally in arrays were used in the lithographical expo-
sure process for “hole” shaped structure fabrication. A “hole” structure size down to about
400 nm was achieved when the nano-LED sources emitted light with a central wavelength
of ~405 nm. Finally, in 2020, we presented for the first time (to the best of our knowledge)
nano-LED devices with metallic apertures for the lithographical process in the so-called
“near-field” regime [56]. Photochemical reactions initialized by those nano-emitter devices
resulted in a space-lateral distribution of photo-induced reactions in the exposed regions
of ~75 nm in diameter. This confirms that nano-LED devices with appropriate apertures
for near-field applications can be potentially applied in mass-production successfully for
nanomanufacturing. Nevertheless, the ultimate demonstration of single photon lithog-
raphy was up to now/date not demonstrated. Since favorable photochemical reactions
could be theoretically driven by single photons, with an appropriate energy in processes
where—depending on the molecule cross-section—one or a couple of photons can alter one
chemical bond, this technique would allow to enable the era of mass nanomanufacturing
for, e.g., molecular electronics. However, in nowadays/conventional photoresists, a higher
yield of incident photons is required for the photochemical reaction. Additionally, before
this concept can be realized, suitable single photon sources operated at room temperature,
and their industrial mass production, have to be developed. Besides other “light emitting”
solutions, our previous studies reveal that III-nitride based nano-LEDs are very promising
as multifunctional photon emitting devices, which can be used as hybrid photon emitting
sources. In such hybrid device architectures, we presented single nano-LED structures
driven electrically, and integrated with freestanding CdSe nanocrystals [57]. Such hybrid
architectures can serve as testing platforms for the investigation of plasmonic effects. This
could be of benefit especially for the sake of field enhancement at the position of a light
emitting nanoparticle. Further methods discussed for micro-LEDs with respect to localized
surface plasmon enhancement for device improvement [58] and the improvement of light
extraction and shaping using metamaterials could in the far future also be applied to nano-
LEDs [59] and their employment for future mask-free singularly addressable lithography.
Here, in this study, we deliver a short overview/roadmap of the most promising develop-
ments in this new arising nanomanufacturing field and present current achievements for
(hybrid) nano-LED assisted mask-less lithography.

2. Materials and Methods

The singularly addressable nano-LEDs employed for the mask-free lithography ap-
proach were all based on the same parent structure. To this end 2′′ c-plane sapphire
substrates were chosen and group III-nitride heterostructures were deposited by met-
alorganic vapor phase epitaxy (MOVPE). First, n-doped GaN 5 × 1018 cm−3 was grown
followed by a five-fold superlattice structure consisting of 16 nm GaN barriers and 2.5 nm
In0.16Ga0.84N wells. At last, a 250 nm thick GaN layer p-doped to 5 × 1017 cm−3 followed
by 20 nm of p+-doped GaN (6 × 1018 cm−3) were deposited.

In the next building block nano-LED devices positioned in arrays were defined by
using e-beam lithography to pattern holes in the PMMA 600 K resist and subsequent
developing in AR 600-55 developer. After the physical vapor deposition (PVD) of Ni and
the lift-off process, 100 nm Ni caps were formed serving as the etching mask for the space
definition/formation of nano-LEDs. In a first step, reactive ion etching was performed
up to the bottom n-doped GaN contact layer in an Oxford Plasmalab 100 reactor with an
inductively coupled plasma (ICP) 180 source at a pressure of 4 µbar, a sample temperature
of 5 ◦C, a chlorine:argon gas mixture of 16:4, and an ICP power of 750 W [18,60]. In the
next step, n-doped GaN bottom contacts (word lines) were defined with the help of optical
lithography. The photoresist AZ 5206 was chosen followed by developing in a standard
developer (MIF 326). An Ar-ion beam etching process (Ar-IBE, Oxford Instruments, 200 V,
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20 mA) was carried out down to the sapphire substrate. The nano-LEDs were insulated
from neighbors using hydrogen silsesquioxane (HSQ), which was spun onto the structured
template to obtain a planar surface. The template was then annealed to induce the chemical
reaction to the SiO2 layer. At last, transparent top contacts (bit lines) were prepared using
optical lithography and the same photoresist and developer mentioned above followed
by deposition of the transparent Ni/Au (5 nm/5 nm) top-contact metallization and a
subsequent conventional rapid thermal annealing process. The nano-LEDs were annealed
locally with the laser micro-annealing (LMA) process presented earlier [60]. Furthermore, it
becomes possible to fabricate an array of hybrid nano-LEDs. A micropipette is used [57,61]
to apply the polymer—nanocrystal suspension, the details and procedure of which will be
published separately.

The structures were inspected with optical microscopy and scanning electron microscopy
(SEM). Furthermore, micro-photoluminescence (µ-PL) and micro-electroluminescence spec-
troscopy (µ-EL) were carried out at room temperature to assess the fabrication procedure
and to evaluate the long-term stability of the nano-LED performance. For both the LMA
process as well as the µ-PL and µ-EL spectroscopy experiments, a confocal Raman and pho-
toluminescence spectrometer (Renishaw inVia FSM REFLEX, New Mills, Gloucestershire,
UK) was used which was equipped with a HeCd laser (325 nm) and a CCD detector [60].

The basic idea behind mask-free singularly addressable LED lithography is presented
in Figure 1. In general, nano-LEDs are arranged in a crossbar geometry, allowing for their
individual driving after the fabrication of “word” and “bit” lines. In such a way, different
patterns can be “created” on demand flexibly. This lithographical approach has the potential
to simplify and accelerate patterning significantly compared to conventional mask-based
lithographical processes, since large areas of the photosensitive films/photoresists can be
exposed at the same time.
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3. Results

It is well known that conventional argon ion beam etching (IBE) as well as reactive ion
etching (RIE) used for the spatial definition/formation of nano-LEDs leads to a degradation
of the devices’ optical properties which is manifested by a significant decrease in their
electroluminescence [57,60,62]. Here, in this study, SEM investigations (Figure 2) reveal
inhomogeneous surface nano-LED morphology. This inhomogeneity is a result of the
surface damage of the combined physical and chemical reactive ion etching processes.
These physical and/or most probably chemical processes take place along the whole
surface of the nano-LED. However, a physical damage up to 20 nm was observed only at
the “top” of the nanostructure regions. This can be explained by the longer times that the
tops of the nanostructures are exposed to the etching reactants during the RIE processes.
Deeper regions close to the nano-LED’s “base” are affected only by “shorter” etching
times (i.e., a shorter exposure) which is manifested among others by “smoother” surface
morphology. With respect to the morphology of the nano-LEDs it must be taken into
account that the LED parent structure used as the basis for the etched nano-LEDs has a high
defect density and defects themselves will most probably affect their morphology. Here
it should be noted, that even though the SEM inspection over a large area reveals almost
individual surface morphology (damage) for every nano-LED structure, nevertheless, the
nano-LEDs all have the same average dimensions (e.g., top and bottom diameter, total
height). Therefore, the SEM image in Figure 2 is only an example of such a nano-LED. A
comprehensive analysis on the causes of the defects is in preparation and will be the subject
of a future report. The photoluminescence measurements presented e.g in our earlier
stuides [60,62] reveal the negative effect of RIE processes on the optical and electrical device
characteristics. Hence, alternative technological steps are required to “heal” such “defect”
structures. Previously, we presented such an approach—a local laser micro annealing (LMA)
procedure [60], a next building block, which will be described in the following section.
After the nano-LED’s device definition/formation, n-GaN regions located at a depth of
~1 µm schematically shown in Figure 1, are defined by conventional photolithography
and a subsequent Ar-IBE procedure. An example for nano-LED structures located on the
“word line” is presented in Figure 3. Details of the structures presented in Figure 3B reveal
that the etched regions do not reach the nano-LED structures themselves. The Ar-IBE
etching process leads to a significant surface damage only in the n-GaN/sapphire interface
region (Figure 3C) as well as in “deeper” regions where the n-GaN layer was already
fully removed and the sapphire substrate was reached. Here it should be noted, as is
evident in Figure 3B, the defined n-GaN layer regions, which later serve as a “word line”,
are not affected by the etching technology. An example for the large array of “buried”
nano-LED structures with a diameter of ~100 nm is presented in Figure 4. All devices are
encompassed in a SiO2 layer as can be seen in detail in Figure 5. It serves on the one hand
for electrical insulation and on the other hand as a planarization layer for the subsequent
final top contact and bit line processing. These “buried” nano-LEDs arranged in large
testing arrays were subsequently characterized by micro-photoluminescence (micro-PL)
spectroscopy at room temperature. An example for a micro-PL mapping is presented in
Figure 6. Details are discussed in the following section “Discussion”. Furthermore, after top
contact metallization, apertures are formed, which can take up the polymer—nanocrystal
suspension. Figure 7a presents a “buried” single nano-LED structure with an aperture
filled with polymer—nanocrystal suspension in detail and Figure 7b shows exemplarily a
layout for hybrid nano-LEDs singularly addressable by the respective “word” (grey) and
“bit” lines (gold). This device layout represents a first example for “combined” hybrid
nano-LED structures. We demonstrated the nano-LEDs with a metallic aperture in our
previous report [56]. The fabrication process and characterization of hybrid nano-LED
devices was reported in [57]. The combination of both device architectures results in the
structure presented in detail in Figure 7a. If the appropriate nanocrystals with different
materials and/or diameters are locally injected in the targeted nano-LED´s aperture regions,
such combined structures allow to create “multicolor” light emitter arrays suitable for a
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lithographical process where “mixtures” of photosensitive films or layer-stacks could
be selectively photo-chemically altered. This would allow the processing of complex
patterning architectures simultaneously in the future.
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Figure 2. Example for an SEM image of a single nano-LED structure directly after the reactive
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nano-LEDs is inhomogeneous: a shallower chemical/physical corrosion depth and lower roughness
is observed near the base region of the nanostructure. The roughness and chemical/physical damage
to the nano-LED structure were determined in the SEM.
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Figure 3. (A) Scanning electron micrograph of single hybrid-nano-LED structures positioned on
the “base” region formed by the Ar-IBE process, (B) in detail and (C) showing the GaN/sapphire
interface region. The n-GaN region serves as the bottom contact and the word line (as can be seen in
Figure 7b). The “interface” region visible in the images is a product of material re-deposited during
the etching process.
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Figure 6. (a) Micro-PL mapping from the single nano-LEDs in the array. Three different luminescence
bands/maxima were observed previously [60] and are presented here graphically in colors. They are
attributed to GaN band edge luminescence (blue), radiative recombination from the multi quantum
well region with the emission maxima in the PL spectra at ~440–445 nm (pink/violet color) and defect
luminescence ~540–600 nm (green-red). The etching process is responsible for the suppression of
radiative recombination from the MQW region. (b) Detail of micro PL mapping for a single nano-LED
structure without the injected nanocrystal-polymer suspension.
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4. Discussion

Developments in mask-free singularly addressable nano-LED lithography with respect
to its future implementation are closely connected to a number of challenges such as the
reproducibility and control of the fabrication process, its simplicity and efficiency as well
as the long-term stability of the light emitter sources. Therefore, selected/critical steps
involved are discussed and assessed in the following. As we already mentioned in the
previous section, conventional reactive ion etching (RIE) is used for the spatial definition
and/or structure formation of nano-LED devices. The optimization of the nanoman-
ufacturing/etching procedure is key to obtaining nano-LEDs, that can be (singularly)
adressable [18,55]. The nano-LED/structure definition is carried out up to the n-doped
GaN contact layer which should not degrade by the etching process. For the preparation of
the nano-LEDs into individual “word lines”, etching in a further step must be carried out
(Ar-IBE procedure) to define the respective contact layer.

Therefore the sapphire substrate has to be reached to ensure the insulation of the
lines. The principle of this device architecture is presented in Figure 1. It needs to be taken
into account that a redeposition of etched GaN takes place along the lines (Figure 3C in
detail). In spite of careful etching optimization, the etching procedure nevertheless leads to
a significant decrease in the nano-LEDs’ electroluminescence intensity. Hence, alternative
fast and efficient technological procedures need to be applied for device performance im-
provement. A number of technological approaches are available to heighton the efficiency
of micrometer and nano-sized LED structures. One of these is the precise local laser micro
annealing (LMA) procedure, a building block the full potential of which has still to be
uncovered. As we already mentioned in Section 3 (Results) the etching process for the
formation and fabrication of nano-LED devices leads to a degradation of their optical prop-
erties [60]. Since various emerging applications such as “nano-LED singularly addressable
lithography” introduced in this work and others require full control and/or tuning of
the electroluminescence intensity of individual devices, a suitable technology needs to be
developed. The application of the LMA process resulted in meeting the requirement and
the expected optical properties can then be achieved. In our previous study [60], the simple
model based on a defect layer depth described the direct correlation between the suppres-
sion of radiative recombination as a follow of the MQW’s effective volume reduction after
the etching procedure. As a result, the respective effective volume can be increased after the
LMA procedure was applied locally for the individual nano-LED structures. This effect was
confirmed by our photoluminescence studies and an about 70% decrease in the defect layer
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depth was evaluated [60]. Hence, the application of the LMA is advantageous also in the
fabrication of the singularly addressable nano-LED architecture, since the precise control
of the EL intensity of all the individual devices reduces along the way the overall device
power consumption as well as increases their lifetime as it was reported previously [60].
Nevertheless, LMA is not limited only to nano-LED devices, this technique can be applied
also to transmistor based devices forming core components for optical computing [63,64].
The conditioning of LED devices plays [60] an important role also in the development
of novel correlative characterization techniques as we already presented in our previous
studies [60,62]. Unfortunately, the formation of nano-LED devices remains a crucial point
in spite of all of these development efforts. This is demonstrated in Figure 2.

After SEM inspection of the fabricated nano-LEDs it was confirmed that the RIE
procedure has to be further optimized in future—targeting the aim to prevent surface
and/or detrimental damage especially in the MQW region. In this “building” block, special
attention has to be paid also to alternative gas mixtures for RIE, which could be used
instead of the conventional one. As a consequence of the etching procedure and the
damage related to the chemical and physical etching processes, the distribution of the
photoluminescence differs strongly over the array as can be seen in Figure 6a. It presents
an intensity mapping of the single nano-LEDs in the array at the individually measured
points. The mapping consists of hundreds of PL-spectra, which were then evaluated for
the map presentation. Where only GaN remains after etching, a high GaN band edge
luminescence (denoted in blue) is observed. Defect luminescence (emission maxima in
the PL spectra range of ~540–600 nm, denoted in green-red) is detected presumably at
the circumference of the nano-LEDs and PL emission maxima (~440–445 nm) denoted in
pink/violet color are attributed to the MQW luminescence of the nano-LEDs. The mapping
discloses that radiative recombination is suppressed due to the damage induced by the
etching process as was previously reported [60]. Therefore, a further building block—the
LMA technique—has to be applied in the nano-LED’s device processing as well. A simple
model showing the effect of the reduction of defect layer depth after laser micro annealing
was introduced in our previous work [60]. The subsequent micro photoluminescence
studies disclosing an increased photoluminescence intensity indicated that the LMA process
has a direct impact on the curing of etching related defects. These are deemed responsible
for the suppression of radiative recombination in the nano-LED devices. Photoluminescence
measurements on the nano-LED structures revealed [60] that by using the LMA procedure,
the nano-LED properties were enhanced in comparison to their non-locally annealed
counterparts. According to the simple model mentioned above, the integrated PL-intensity
enhancement of the nano-LEDs observed can be explained by the reduction of the defect
layer depth from ~17 nm to ~5 nm [60]. Furthermore, the application of the LMA process
to the nano-LEDs leads to a current increase up to ~3.7-fold at 5 V [60]. Additionally, only a
“moderate reduction” ~15% in electroluminescence intensity (during continuous wave long
term operation for 5000 h) in comparison to its non-locally annealed counterpart (~50%),
was demonstrated. Furthermore, micro-Raman thermography investigations performed on
single nano-LED structures (after the LMA procedure) revealed an up to 60 K decrease in
work temperature [60]. This is advantageous, since lithographical processes, in general,
are temperature “sensitive”. One other important issue are the long-term “costs” for such
lithographical techniques. They can be decreased significantly if the device lifetime, stability
as well as reliability could be increased in comparison to/with existing “light/exposure”
sources used for conventional lithography. Indeed, it has already been disclosed that the
application of the LMA procedure for nano-LED devices could be of a large benefit. During
up to 5000 h of operation, the electroluminescence of such nano-LEDs barely decreases
(i.e., the optical properties do not degrade). This means that the nano-LED lifetime and
reliability increase by local annealing with the LMA process. The performance of such
locally annealed nano-LEDs renders them suitable for a future employment as a key
component for on chip integrated electro-optic convertors [62]. Additionally, they may
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achieve still unprecedented importance in the development of novel optical computing
architectures based on transmistor/all optical switch units.

5. Conclusions

In this contribution, we discussed the technology of nano light emitting diodes (nano-
LEDs) for future mask-free singularly addressable lithographical techniques. Our previous
studies revealed that the nano-LEDs are suitable devices for the local initialization of
photochemical reactions. Hence, advanced “LED-based” lithographical techniques such as
for applications in the “near” field regime could potentially revolutionize the fabrication of
nanodevices. Ultimately, if appropriate arrays of single photon sources could be developed
and integrated into a singularly addressable approach, they could serve for future molecular
lithographical/patterning techniques. In addition, inspired by the technology developed
for color displays, “light” sources of different wavelengths can be applied principally in
the future to “multi-color” singularly addressable nano-LED lithographical techniques.
Nevertheless, the development of the LEDs’ device nanomanufacturing technologies are
not limited only to the in this study presented advanced lithographical techniques. They
are also driven/motivated by strong technological needs and demand on highly efficient,
energy and resources saving solutions as well. Highly resolved illumination microscopy
and a large range of spectroscopic and diagnostic methods such as in security (e.g., gas
and drugs monitoring) and/or where localized light sources attaining deeper insights into
biological cells are needed, are just a selection of applications in which the nano-LEDs could
gain importance. They could potentially represent key/basic components in sophisticated
technological architectures necessary for future developments towards on chip optical
communication, advanced data processing and storage for optical and/or neuromorphic
computing as well. Finally, singularly addressable nano-LEDs introduced in a driving
scheme for the lithographical approach in this work could also be of benefit in emerging
optogenetic and neuronal stimulation applications. The key to their successful application
will be, however, the development of such nanofabrication technologies as presented in
this report.
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