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Abstract: Using the Bingel–Hirsch reaction, new hexakis methanofullerenes containing strained
polycyclic hydrocarbons were synthesized. Organic field-effect transistors were manufactured based
on the obtained compounds.
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1. Introduction

One of the most popular and promising areas for the use of fullerene derivatives is
the creation of organic field-effect transistors due to the covalent binding of fullerenes with
electron-donating or photoactive macromolecules, which forms a molecular heterojunction [1].

The most selective method for the synthesis of hexakis methanofullerenes is the Bingel–
Hirsch reaction [2,3], which makes it possible to obtain fullerene C60 [4–6] hexaadducts with
Th-symmetry [4] that can be used as n-type acceptor materials with a high charge carrier
mobility and electrical stability [7–11]. The search for organic semiconductors for creating
field-effect thin-film transistors is an urgent task. It is known from the literature [12,13]
that manufactured organic field-effect transistors based on styrylfullerenes are significantly
superior in efficiency to devices created on the basis of PCBM. Based on the above, it
follows that C60 fullerene derivatives are promising objects for creating organic systems
that can act as n-type semiconductors.

2. Results and Discussion

Previously, we [14] were the first to synthesize hybrid molecules from C60 fullerene
and strained polycyclic hydrocarbons, on the basis of which organic field-effect transistors
(OFETs) with high-quality films were created. In development of these studies, according
to the well-known method [4], we carried out the selective synthesis of C60 hexaadducts
containing six SPH (strained polycyclic hydrocarbon) addends in order to increase the
solubility of new hybrid molecules, as well as their promising direction associated with
the creation of methanofullerenes, which are an effective n-type organic semiconductor,
due to a larger number of covalently attached SPH groups to the C60 carbon cage. Thus,
using the reaction of nucleophilic addition to fullerene C60 of α-halocarbanions generated
in situ by the interaction of esters 1–3 with CBr4 in the presence of the base 1,8-diazabicyclo
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[5.4.0]undec-7-ene (DBU) in the ratio 1:10:100:10, respectively, under the developed condi-
tions (orthodichlorobenzene, 20 ◦C, 24 h) (Scheme 1), the target fullerene hexaadducts 4–6
were synthesized with a yield of ~96%.
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To manufacture transistors, we used a method described earlier [14]; the structure
of a field-effect transistor is shown in Figure 1. In a similar way, the current–voltage
characteristics were measured and the mobility of charge carriers in the active layer of µ
OFETs was calculated (Table 1).
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Figure 1. Structure of a field-effect transistor with films of fullerene derivatives.

Table 1. Charge carrier mobility values.

Sample Mobility, cm2/V·s
4 0.005
5 0.007
6 0.012

Current–voltage characteristics (Figures 2–4) were measured at room temperature
without an inert atmosphere. Under the application of a positive gate voltage, the current
exhibits an increase, indicating the prevalence of electronic conductivity in the transport
channel of the OFETs. The dependences are non-linear, lacking saturation regions in the
output characteristics of the devices. The absence of saturation sections in the output
characteristics may be attributed to the existence of leakage currents.
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Figure 4. The output (a) and transfer characteristics (b) of the field-effect transistor with active layer 6.

Current–voltage characteristics were measured at room temperature without an inert
atmosphere.

3. Materials and Methods

All reactions were performed under an argon atmosphere and in anhydrous solvent.
The solvents and reagents were dried or refined according to the literature procedures.
Commercially available [60]fullerene (99.5% pure, Sigma-Aldrich, 9402 Alberene Drive,
Houston, TX, USA) was used. The reaction products were analyzed on an HPLC chro-
matograph Shimadzu SPD-20A (1900 SE 4th Avenue, Canby, OR, USA) equipped with
a UV detector at 313 or 340 nm. The mixtures were separated on a preparative column
Cosmosil Buckyprep Waters (250 × 10 mm) at ~20 ◦C. Toluene was used as an eluent; the
flow rate was 3.0 mL·min–1. The 1H and 13C NMR spectra were procured on a Bruker
Avance-500 spectrometer at 500.17 and 125.78 MHz, respectively. A mixture of CDCl3 and
CS2 (1:5) was used as a solvent. The chemical shifts are reported as δ values in parts per
million relative to the internal standard Me4Si. The coupling constants (J) are reported
in Hertz. The mass spectra were obtained on an UltraFlex III TOF/TOF (Bruker Dal-
tonik GmbH, Karlsruhe, Germany) operating in linear (TOF) and reflection (TOF/TOF)
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positive and negative ion modes. S8 and DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-
propenyliden]malononitrile) were used as the matrix. For the application on a metal target,
toluene solutions of the samples were used.

For transistor creation, ITO-coated glass substrates were used. A 400 nm-thick AlOx
film was spin-coated onto the ITO layer. Then, using the vacuum thermal evaporation
method, aluminum electrodes with a thickness of 500 nm were deposited onto the AlOx di-
electric layer. After this, fullerene derivatives with a thickness of 150 nm were deposited us-
ing the centrifugation method. To prepare a solution for centrifugation, 5 mg of the fullerene
derivative and 200 µl of toluene were used. The size of the source and drain contacts with
a gap of 2 mm between them was 4 mm. To carry out the process, an SM-6M centrifuge,
a vacuum unit (VUP5), an HY3005D-3 direct current source, a GDM 8245 multimeter (mi-
croammeter), an AFM Nanoeducator II and Gwyddion software (http://gwyddion.net/
accessed on 3 December 2023) were used. Fullerene derivatives 4–6 were synthesized using
a known procedure [6].

3.1. Hexamethanofullerene 4

Brown powder. 1H NMR (500 MHz, CDCl3): δ (ppm) = 4.43–4.34 (m, 12H, CH2),
2.55 (b, m, 12H, CH), 2.17–2.02 (m, 12H, CH), 1.97–1.93 (m, 12H, CH), 1.83–1.74 (m, 12H,
CH), 1.61–1.55 (m, 12H, CH), 1.38–1.34 (m, 18H, 6CH3), 1.13–1.07 (m, 12H, CH), 0.93–0.77
(m, 12H, CH). 13C NMR (125 MHz, CDCl3): δ (ppm) = 163.90, 163.35, 145.99, 145.54, 145.41,
141.29, 141.03, 140.99, 89.56, 69.11, 62.75, 57.63, 54.43, 53.89, 46.88, 43.57, 41.78, 39.45, 36.89,
36.00, 34.86, 29.36, 29.07, 14.14. MALDI TOF [M]− calcd. for C174H144O24 2616.9981; Found
2616.9978. Yield 48 mg, 96%.

3.2. Hexamethanofullerene 5

Brown powder. 1H NMR (500 MHz, CDCl3): δ (ppm) = 4.41–4.35 (m, 12H, CH2),
2.54 (b, m, 12H, CH), 2.28–2.24 (m, 12H, CH), 2.17–2.11 (m, 12H, CH), 2.05–1.99 (m, 12H,
CH), 1.89–1.82 (m, 12H, CH), 1.46–1.43 (m, 12H, CH), 1.37–1.31 (m, 18H, 6CH3), 0.92–0.84
(m, 12H, CH), 0.79–0.77 (m, 12H, CH). 13C NMR (125 MHz, CDCl3): δ (ppm) = 163.87,
163.40, 147.15, 145.57, 141.30, 140.92, 89.85, 69.11, 62.74, 54.59, 53.43, 50.64, 50.08, 46.87,
42.30, 41.87, 40.45, 38.98, 36.93, 36.41, 24.04, 14.12. MALDI TOF [M]− calcd. for C174H144O24
2616.9981; Found 2616.9985. Yield 44 mg, 95%.

3.3. Hexamethanofullerene 6

Brown powder. 1H NMR (500 MHz, CDCl3): δ (ppm) =4.99–4.90 (m, 12H, CH2),
2.33–2.32 (m, 12H, CH), 2.31–2.30 (m, 12H, CH), 2.13–2.11 (m, 12H, CH), 2.05–1.95 (m, 12H,
CH), 1.93–1.77 (m, 12H, CH), 1.66–1.63 (m, 12H, CH), 1.55–1.47(m, 12H, CH), 1.36–1.32
(m, 18H, 6CH3), 1.23–1.20 (m, 12H, CH), 1.02–0.98 (m, 12H, CH). 13C NMR (125 MHz,
CDCl3): δ (ppm) = 163.67, 162.81, 147.19, 145.49, 141.48, 86.07, 84.25, 69.22, 52.42, 44.65,
42.94, 41.40, 40.06, 36.63, 35.66, 34.61, 33.64, 32.32, 30.12, 15.83, 14.95, 14.82. MALDI TOF
[M]− calcd. for C174H132O24 2604.9042; Found 2604.9039. Yield 46 mg, 95%.

4. Conclusions

The calculated charge carrier mobilities reflect the corresponding changes for pairs
(a and b). Hybrid molecules of hexakis adducts of C60 fullerene 4 and 6 contain six frag-
ments of a strained polycyclic hydrocarbon; the best charge carrier mobility µ result for the
device shown in Figure 1 was shown by methanofullerene 6, where µ = 0.012 cm2/V·s, and
methanofullerenes 4 and 5, with µ = 0.005 cm2/V·s and µ = 0.007 cm2/V·s, respectively.
The manufactured organic field-effect transistors showed a high electrical stability; the
current value remained the same during repeated measurements.
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