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Abstract: Alzheimer’s disease (AD) is a multifactorial neurological disease of unknown etiology
that is associated with various risk factors. Various pharmacological approaches targeting distinct
mechanisms have been investigated; however, they have not yet achieved disease-modifying effects.
A series of nine trisubstituted 1,3,5-triazine-based derivatives was investigated as potential inhibitors
of the β-secretase enzyme (beta-site amyloid precursor protein-cleaving enzyme 1, BACE1), one of
the key enzymes in the pathogenesis of AD. Although the triazine-based derivatives are reported
to be potent BACE1 inhibitors, the compounds discussed in this contribution, at a concentration
of 10 µM, demonstrated completely insignificant activity. It is worth noting that methyl (4-{4-[(2,3-
dihydroxypropyl)amino]-6-[(4-sulfamoylbenzyl)amino]-1,3,5-triazin-2-yl}piperazin-1-yl)- acetate and
4-({4-chloro-6-[(3-hydroxypropyl)amino]-1,3,5-triazin-2-yl}amino)benzenesulfonamide showed an
approximately 9% and 2% inhibition of BACE1 activity, respectively.

Keywords: triazinylaminobenzenesulfonamides; Alzheimer’s disease; BACE1; modulation

1. Introduction

The triazine structure consists of a heterocyclic six-membered ring containing three
nitrogen atoms; thus, three isomers can be found: 1,2,3-triazine, 1,2,4-triazine and 1,3,5-
triazine. Triazine molecules are basic in nature but are weaker bases than pyridine. Al-
though triazines are aromatic compounds, their resonance nature is much lower than that
of benzene. Electrophilic substitution is difficult, but nucleophilic aromatic substitution is
quite easy [1,2].

The best-known derivative of 1,3,5-triazine is melamine (2,4,6-triamino- 1,3,5-triazine),
which has found industrial use in the production of resins. Other widely used 1,3,5-triazines
are, e.g., cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) and 6-alkyl/aryl-1,3,5-triazine-
2,4-diamines. Triazine-based agents such as atrazine, ametryn, prometryn, cyanazine,
propazine, simazine, terbuthylazine and terbutryn are highly effective herbicides [3], un-
fortunately also with strong adverse impacts on humans and the environment [4–9]. On
the other hand, 1,3,5-triazines represent a remarkable platform for the design of potential
drugs, especially with anti-infective (antiviral, antibacterial, antimycobacterial, antifungal,
antiprotozoal, anthelmintic) and anticancer effects, but also with anti-inflammatory, antidi-
abetic, antioxidant, antiulcer, anticonvulsant and cardioprotective activities, depending on
the specific substitution of the 1,3,5-triazine scaffold [1,10–14].

In addition to all these activities, triazines, both 1,2,4-isomers [15,16] and 1,3,5-isomers [17–19],
were found to exhibit the ability to inhibit the beta-site amyloid precursor protein-cleaving
enzyme 1 (BACE1), see Figure 1.
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disease (AD), is more prone to aggregation and deposition in the brain, leading to the de-
velopment of Aβ plaques, the main feature of AD [23], formulated in the so-called “amy-
loid cascade hypothesis” [24]. This fact led to the suggestion that abnormal BACE1 activity 
is responsible for the pathogenesis of AD [25] and highlighted the potential of BACE1 as a 
promising target for drug development against AD progression [26,27]. 

It is needless to say that AD is a progressive neurodegenerative disease that is clin-
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and time [28,29]. AD is a multifactorial disease, in which both genetic and environmental 
factors contribute to its pathogenesis [30,31]. The disease is currently incurable; existing 
drugs from the group of acetylcholinesterase inhibitors and the N-methyl-D-aspartate 
(NMDA) receptor blocker provide only symptomatic treatment for patients with AD 
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BACE1 (otherwise known as β-secretase) [20,21] is an enzyme that, in its subsequent
interaction with γ-secretase, cleaves the amyloid precursor protein into the insoluble Aβ42
isoform of the amyloid-β (Aβ) protein (the so-called “amyloidogenic pathway”) [22]. This
Aβ42 isoform, which was found in higher concentrations in patients with Alzheimer’s
disease (AD), is more prone to aggregation and deposition in the brain, leading to the
development of Aβ plaques, the main feature of AD [23], formulated in the so-called
“amyloid cascade hypothesis” [24]. This fact led to the suggestion that abnormal BACE1
activity is responsible for the pathogenesis of AD [25] and highlighted the potential of
BACE1 as a promising target for drug development against AD progression [26,27].

It is needless to say that AD is a progressive neurodegenerative disease that is clinically
manifested as memory loss, speech impairment and general disorientation in space and
time [28,29]. AD is a multifactorial disease, in which both genetic and environmental factors
contribute to its pathogenesis [30,31]. The disease is currently incurable; existing drugs
from the group of acetylcholinesterase inhibitors and the N-methyl-D-aspartate (NMDA)
receptor blocker provide only symptomatic treatment for patients with AD without the
possibility of affecting the progression of the disease in any way [28,32–34].

Recently, a series of trisubstituted derivatives based on 1,3,5-triazine were pub-
lished [35–38]. The compounds were designed as inhibitors of eukaryotic and/or prokary-
otic carbonic anhydrases [35,37]. However, the observation that triazines can inhibit BACE1
led to the selection of several compounds with different structural motifs on the 1,3,5-
triazine scaffold and their retesting as potential compounds modulating BACE1 activity.

2. Materials and Methods
2.1. Synthesis

Starting 4-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]benzene-1-sulfonamide, 4-{[(4,6-dic-
hloro-1,3,5-triazin-2-yl)amino]methyl}benzene-1-sulfonamide and 4-{2-[(4,6-dichloro-1,3,5-
triazin-2-yl)amino]ethyl}benzene-1-sulfonamide were published by Garaj et al. [39]. Com-
pound 1 was prepared according to the methodology published in [35]. Derivatives 2, 3
and 6 were prepared according to the methodology published in [36]. Compounds 4, 5 and
7 were prepared according to the methodology published in [37] and derivatives 8 and 9
were prepared according to the methodology published in [38]. All spectral data of the
discussed investigated triazines were reported in [35–38].

2.2. Determination of Lipophilicity Using HPLC

The UHPLC separation system, Waters Acquity, equipped with a Xevo TQD (Waters
Corp., Milford, MA, USA) was used. A chromatographic column, Acquity UPLC® HSS T3
1.8 µm, 2.1 × 100 mm (Waters Corp.), was applied. The UHPLC separation process was
monitored via the MassLynx software (Waters Corp.). Isocratic elution using a mixture of
LC-MS Grade ACN (40%) and H2O-HPLC Mili-Q grade (60%) as a mobile phase was used



Chem. Proc. 2023, 14, 48 3 of 8

for the determination of the capacity factor k. The total flow of the column was 0.4 mL/min,
injection 5 µL, column temperature 30 ◦C and sample temperature 10 ◦C. A thiourea
methanolic solution was used for the determination of the dead time (tD). Retention times
(tR) were measured in minutes. The capacity factors k were calculated according to the
formula k = (tR − tD)/tD, where tR is the retention time of the solute and tD is the dead time
obtained using an unretained analyte. Each experiment was repeated three times.

2.3. Determination of BACE1 Inhibitory Activity

The BACE inhibitory activity was determined via commercial assay according to
manufacturer instructions (Merck Life Science, Bratislava, Slovakia) [40]. The principle
of the assay is based on the fluorescence resonance energy transfer (FRET) method, in
which the fluorescence signal enhancement is observed after substrate cleavage by BACE1,
meaning that the lower the percentage of BACE activity, the more BACE1 is inhibited by
the test compounds.

3. Results and Discussion

The synthesis of the discussed compounds is shown in Scheme 1. The starting
1,3,5-triazin-2-yl-aminoarylsulfonamides were synthesized according to Garaj et al. [39].
Subsequently, 4-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]benzene-1-sulfonamide, 4-{[(4,6-
dichloro-1,3,5-triazin-2-yl)amino]methyl}benzene-1-sulfonamide and 4-{2-[(4,6-dichloro-
1,3,5-triazin-2-yl)amino]ethyl}benzene-1-sulfonamide with appropriate reagents provided
the final molecules as recently described [35–38]. The structures of the target compounds
are shown in Table 1.
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Table 1. Structures of discussed ring-substituted 1,3,5-triazine derivatives 1–9, experimentally deter-
mined lipophilicity (log k), predicted topological polar surface area (tPSA) of investigated compounds
and in vitro reduction of BACE1 activity (%).

No. log k tPSA 1 (Å2)
Reduction of BACE1

Activity (%)

1 [35]
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Although the discussed compounds were previously structurally fully character-
ized [35–38], their lipo-hydrophilic properties have only now been determined via reversed-
phase high-performance liquid chromatography (RP-HPLC) using an end-capped non-
polar C18 stationary RP column and expressed as the logarithm of the capacity factor k.
The retention times of the individual compounds were obtained under isocratic conditions
with acetonitrile as an organic modifier in the mobile phase. The values of log k are given
in Table 1.

Table 1 shows the structures of the tested compounds. The derivatives differ from
each other in the length of the linker (n = 0–2) between the amino-triazine and benzene-
sulfonamide fragments. In addition, the compounds differ either by substitution of the
second amino group of the triazine with 3-hydroxypropyl (compounds 1–3, 8, 9) or by the
incorporation of the amino group into the substituted piperazine (compounds 4–7), and the
last (third) substitution can be found on the triazine ring with either chlorine (compounds
1–6), 2,3-dihydroxypropylamino (compound 7), or a complex arylamine (compounds 8, 9).

Lipophilicity is one of the parameters that fundamentally influence not only the
pharmacokinetics, but also the effect, of bioactive agents [41,42]. Even in this limited
series of nine highly functionalized compounds, a wide range from −0.38 to 0.43 of
log k values is evident, with 4-[({4-chloro-6-[(3-hydroxypropyl)amino]-1,3,5-triazin-2-yl}-
amino)methyl]benzenesulfonamide (2) showing the lowest experimental log k value, while
methyl (4-{4-[(2,3-dihydroxypropyl)amino]-6-[(4-sulfamoylbenzyl)amino]- 1,3,5-triazin-2-
yl}piperazin-1-yl)acetate (7) is the most lipophilic. However, in general, it can be stated
that all derivatives are rather hydrophilic in nature, with five of them having a negative
log k value, which indicates their problematic bioavailability due to limited transport
through membranes.

In addition to lipophilicity, the topological polar surface area (tPSA), which is defined
as the sum of the surfaces of the polar atoms (most often oxygens, nitrogens and attached
hydrogens) in a molecule [43], has become a widely used molecular descriptor in the study
of drug properties (to ensure so-called drug-likeness) [42]. This descriptor, showing a
correlation with passive molecular transport through membranes, is also logically related
to the magnitude of the drug–receptor interactions [44]. Therefore, the tPSA values for
the individual studied compounds were calculated using the ChemBioDraw Ultra 13.0
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program. The most common value is approx. 142 Å2 (compounds 1–6) and ca. 172 Å2

(compounds 8 and 9). The most lipophilic compound 7 also achieved the highest tPSA
value, namely 194.54 Å2, which, similarly to its lipophilicity, is largely different from the
values of the other derivatives.

All the investigated compounds (see Table 1) were tested for their ability to inhibit
BACE1 using a commercially available kit [40]. Performance of the test is described in
Section 2.3. As the IC50 values of known BACE1 inhibitors (including the kit reference
standard [40]) are in the nanomolar range, all the evaluated compounds were tested at
a concentration of 10 µM (see, e.g., [27]), as it is conceivable that if there is no activity at
10 µM, the compound most likely does not inhibit BACE1 [27]. As can be seen from the
results in Table 1, the compounds showed no activity; only compound 7 demonstrated
some ability to slightly inhibit the BACE1 enzyme (approx. 9% reduction in BACE1
activity). It should be noted that 4-({4-chloro-6-[(3-hydroxypropyl)amino]-1,3,5-triazin-2-
yl}- amino)benzenesulfonamide (1) also showed a 2% reduction in BACE1 activity. It can
only be speculated whether the “significant” inhibition of BACE1 by derivative 7, compared
to the zero activity of the other tested derivatives, is related to its highest log k and tPSA
values within the series of the investigated compounds. Nevertheless, from the obtained
data, it can be concluded that the mentioned trisubstituted triazines do not have the ability
to interact with BACE1.

However, it must be admitted that, based on the latest studies and the situation with
the early termination of all clinical trials of the main BACE1 inhibitors such as verubecestat
atabecestat, elenbecestat lanabecestat umibecestat, LY2886721, RO5508887 or PF-06751979
by pharmaceutical companies (e.g., Pfizer, AstraZeneca, Merck, Eli Lilly, Roche, Novartis,
Janssen, Biogen, Amgen) due to serious side effects or actual ineffectiveness, it is possible
to speculate to what extent the development of BACE inhibitors (the β-secretase inhibition
hypothesis) represents a dead end, or how long the development of these inhibitors for AD
treatment will continue to be preferred by pharmaceutical companies [27,45,46]. On the
other hand, natural BACE1 inhibitors with different structures are still being discovered [47]
and the role of the Aβ peptide is being investigated in depth [48,49].

4. Conclusions

Recently, a series of trisubstituted 1,3,5-triazine derivatives was published and sig-
nificant inhibitions of therapeutically important carbonic anhydrases were found. The
finding that triazines are able to inhibit BACE1 led to an assay of their ability to inhibit
BACE1. However, none of the evaluated compounds demonstrated a significant decrease
in BACE1 activity.
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