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Abstract: Flame retardants play a crucial role in mitigating the hazards associated with fires by
impeding their ignition and spread. However, conventional halogen-based flame retardants have
encountered environmental and health concerns due to their persistence, bioaccumulation, and po-
tential toxicity. In light of these concerns, the present study aimed to develop innovative compounds
with potential applications as a flame retardant system that mitigates the drawbacks associated with
halogen-based compounds. Several phosphoramidates were synthesized in a single step under mild
conditions from the H-phosphonate dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO), following a
method based on the oxidation of the reactant in the presence of a suitable aliphatic or aromatic
amine. The compounds were isolated with high purity, and the formulations were confirmed by
multinuclear NMR spectroscopy.

Keywords: BPPO; phosphoramidates; flame retardants; P-N bond formation

1. Introduction

Since the initial report in 1972, the organophosphorus compound 9,10-dihydro-9-oxa-
10-phosphaphenanthrene-10-oxide (DOPO) and its derivatives have been known to be of
noticeable industrial interest, being viable alternatives to halogenated flame retardants [1,2].
Being a H-phosphinate, DOPO shows two different tautomeric forms in equilibrium in
solution, and it is thus able to behave both as a nucleophile and as an electrophile [3,4].
The reactivity of the P-H bond opens the possibility of formally replacing the hydrogen
atom with several functional groups, allowing compounds to have specific properties but
maintain flame-retardant activity both in the gas and condensed phases [5–9]. For instance,
the P-H bond can be replaced with a P-C bond through reactions based on the nucleophilic
attack on electron-poor carbon atoms [10–15], on the Michael addition [16–20], and on
the Michaelis–Arbuzov rearrangement [21–23]. Phosphonamidates and phosphonates
can be prepared from DOPO with the intermediate synthesis of 9,10-dihydro-9-oxa-10-
phosphaphenanthrene-10-chloride (DOPO-Cl). Such a compound is generally obtained on
the basis of the Atherton–Todd reaction using CCl4 as reactant [24–29], even if alternative
chlorinating agents were considered, such as sulfuryl chloride, trichlorocyanuric acid,
chlorine gas, and N-chlorosuccinimide [30–34].

Another cyclic phosphorus compound of growing interest in the field of flame reactants
is the H-phosphonate dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO) that can be isolated
from a three-component reaction involving 2,2′-bisphenol, phosphorus trichloride, and
water. The P-H bond revealed noticeable reactivity, and several organophosphorus BPPO
derivatives can be prepared on the basis of phospha-Michael additions to unsaturated
compounds [35–37]. It is worth noting that the different electron density on the phosphorus
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atom in BPPO with respect to DOPO alters the flame retardant behaviour since P-containing
gases are preferentially released when low positive partial charges are present on the
phosphorus atom. Hence, DOPO derivatives with low molecular weights mainly act in the
gas phase, stopping the chain radical reaction, while the flame retardant action of BPPO-
based compounds is more concentrated in the condensed phase, where the formation of a
thermally stable char layer is promoted.

It is known that synergistic effects in the flame retardant behaviour can occur on
mixing or reacting phosphorus- and nitrogen-based compounds [38–43]; therefore, the
development of phosphoramidate (or amidophosphate) derivatives of BPPO appears as
a promising approach to obtain flame retardants with tailored properties. Given our
interest in cyclic organophosphorus compounds and phosphoramidates [44–48], some
of us patented a straightforward approach for the preparation of BPPO derivatives with
P-N bonds, working under mild conditions [49]. Herein, we report the synthesis and
characterization of dibenzo[1,3,2]dioxaphosphepine-6-oxide phosphoramidates derived
from butylamine, morpholine, 4-acetylpiperazine, aniline, and p-toluidine.

2. Materials and Methods

The reactants and solvents were Merck products and they were used as received.
Dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO) was synthesized according to a reported
procedure [37]. In a 100 mL three-necked round-bottom flask equipped with condenser,
magnetic stirring bar, dropping funnel, and nitrogen inlet, 2,2′-biphenol (25.75 g, 13.8 mmol)
was dissolved in 50 mL of 1,4-dioxane and 2.5 mL of water and heated to reflux. A minimum
flow of nitrogen was continuously passed through the solution. Phosphorus trichloride
(12.1 mL, 13.8 mmol) was added within 3 h to the boiling reaction mixture. The generated
HCl gas was absorbed in a trap filled with water. The reaction mixture was heated to reflux
for an additional hour, then the solvent was removed under reduced pressure to obtain a
viscous oil that became solid overnight. The product was triturated with 50 mL of diethyl
ether, filtered, washed with fresh diethyl ether (10 mL), and dried under vacuum. Yield
75%.

Elemental analyses (C, H, N) were carried out using an Elementar Unicube microan-
alyzer. Melting points were registered using a FALC 360 D instrument equipped with a
camera. Infrared (IR) spectra were registered using a Perkin-Elmer SpectrumOne spec-
trophotometer between 4000 and 450 cm−1 using KBr pellets. Mono- and bidimensional
nuclear magnetic resonance (NMR) spectra were collected employing a Bruker Avance 400
instrument operating at 400.13 MHz of 1H resonance. 1H NMR spectra are referred to the
partially non-deuterated fraction of the solvent, itself quoted with respect to tetramethyl-
silane. 31P{1H} chemical shifts are reported with respect to 85% H3PO4, with downfield
shifts considered positive. 13C{1H} NMR spectra are referred to the solvent signal, quoted
with respect to tetramethylsilane.

2.1. Synthesis of BPPO Phosphoramidate Derivatives

6-(butylamino)dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO-NHButyl), 6-morpholi
nodibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO-Nmorph), 6-(4-acetylpiperazino)dibenzo
dioxaphosphepine-6-oxide (BPPO-NAcPz), 6-(phenylamino)dibenzo[1,3,2]dioxaphosphepine-
6-oxide (BPPO-NHPh), and 6-(p-tolylamino)dibenzo[1,3,2]dioxaphosphepine-6-oxide
(BPPO-NHTol) were all synthesized following the same general method. In a typical
preparation, BPPO (1.15 g, 5.00 mmol) and 16.5 mmol of the proper amine (butylamine,
1.6 mL; morpholine, 1.4 mL; 1-acetylpiperazine, 2.13 g; aniline, 1.51 g; p-toluidine, 1.77 g)
were dissolved in 30 mL of dichloromethane, then I2 (1.26 g, 5.00 mmol) was slowly added.
The resulting reaction mixture was kept under vigorous stirring at room temperature for
three hours. The solid by-product that separated with all the amines with the exception
of butylamine was removed by filtration and washed with dichloromethane; then the
organic solution was washed with brine (3 × 100 mL), dried with anhydrous Na2SO4 and
filtered. The solvent was removed by evaporation under reduced pressure. In the case
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of the morpholine derivative, the raw product was purified by crystallization with cold
ethanol (10 mL), followed by filtration. In the other cases, diethyl ether (10 mL) was added,
and the solid formed was collected by filtration and washed with diethyl ether. All the
products were finally dried under vacuum. Further product was collected from the diethyl
ether solution in the case of the butylamine derivative after keeping the solution at −20 ◦C
overnight. Yields: 30% (BPPO-NHButyl); 54% (BPPO-Nmorph); 12% (BPPO-NAcPZ); 94%
(BPPO-NHPh); 60% (BPPO-NHTol).

2.1.1. Characterization of BPPO-NHbutyl

Anal. calcd for C16H18NO3P (303.29 g mol−1,%): C, 63.36; H, 5.98; N, 4.62. Found (%):
C, 63.10; H, 6.00; N, 4.59. M.p. (◦C): 101. IR (KBr, cm−1): 3355 νNH, 1243 νP=O. 1H NMR
(CDCl3, 298 K): δ 7.53 (dd, 2H, JHH = 7.6 Hz, JHH = 1.8 Hz, arom), 7.42 (t, 2H, JHH = 7.6 Hz,
arom), 7.33 (t, 2H, JHH = 7.6 Hz, arom), 7.29 (d, 2H, JHH = 7.6 Hz, arom), 3.05–2.90 (m, 3H,
NH+CH2), 1.48 (m, 2H, CH2), 1.31 (m, 2H, CH2), 0.88 (t, 3H, JHH = 7.3 Hz, CH3). 31P{1H}
NMR (CDCl3, 298 K): δ 13.36 (s). 13C{1H} NMR (CDCl3, 298 K): 148.12 (d, JPC = 9.4 Hz,
arom-Cipso), 129.90 (d, JPC = 1.2 Hz, arom-CH), 129.78 (d, JPC = 1.2 Hz, arom-CH), 128.59
(d, JPC = 1.6 Hz, arom-Cipso), 126.50 (d, JPC = 1.8 Hz, arom-CH), 121.67 (d, JPC = 4.2 Hz,
arom-CH), 41.92 (s, CH2), 34.03 (d, JPC = 5.5 Hz, CH2), 19.58 (s, CH2), 13.63 (s, CH3).

2.1.2. Characterization of BPPO-Nmorph

Anal. calcd for C16H16NO4P (317.28 g mol−1,%): C, 60.57; H, 5.08; N, 4.41. Found
(%): C, 60.65; H, 5.10; N, 4.39. M.p. (◦C): 171. IR (KBr, cm−1): 1251 νP=O. 1H NMR (CDCl3,
298 K): δ 7.53 (dd, 2H, JHH = 7.7 Hz, JHH = 1.7 Hz, arom), 7.44 (tdd, 2H, JHH = 7.7 Hz,
JHH = 1.7 Hz, JPH = 0.9 Hz, arom), 7.35 (tt, 2H, JHH = 7.7 Hz, JHH = JPH = 1.2 Hz, arom),
7.32 (dt, JHH = 7.7 Hz, JHH = 1.2 Hz), 3.62 (m, 4H, O-CH2), 3.16 (m, 4H, N-CH2). 31P{1H}
NMR (CDCl3, 298 K): δ 10.17 (s). 13C{1H} NMR (CDCl3, 298 K): δ 148.31 (d, JPC = 9.6 Hz,
arom-Cipso), 130.04 (d, JPC = 1.2 Hz, arom-CH), 139.97 (d, JPC = 1.2 Hz, arom-CH), 128.23
(d, JPC = 1.4 Hz, arom-Cipso), 126.28 (d, JPC = 1.8 Hz, arom-CH), 121.70 (d, JPC = 4.4 Hz,
arom-CH), 66.98 (d, JPC = 5.0 Hz, O-C), 45.47 (d, JPC = 1.0 Hz, N-C).

2.1.3. Characterization of BPPO-NAcPz

Anal. calcd for C18H19N2O4P (358.33 g mol−1,%): C, 60.33; H, 5.34; N, 7.82. Found (%):
C, 60.09; H, 5.37; N, 7.78. M.p. (◦C): 141. IR (KBr, cm−1): 1646 νC=O, 1251 νP=O. 1H NMR
(CDCl3, 298 K): δ 7.55 (dd, 2H, JHH = 7.8 Hz, JHH = 1.2 Hz, arom), 7.44 (t, 2H, JHH = 7.4 Hz,
arom), 7.36 (t, 2H, JHH = 7.4 Hz, arom), 7.30 (d, 2H, JHH = 7.8 Hz, arom), 3.53 (s, br, 2H,
N-CH2), 3.44 (s, br, 2H, N-CH2), 3.22 (s, br, 2H, N-CH2), 3.09 (s, br, 2H, N-CH2), 2.08 (s, 3H,
CH3). 31P{1H} NMR (CDCl3, 298 K): δ 9.54 (s). 13C{1H} NMR (CDCl3, 298 K): δ 169.17 (s,
C=O), 148.16 (d, JPC = 9.6 Hz, arom-Cipso), 130.12 (d, JPC = 0.9 Hz, arom-CH), 130.05 (d,
JPC = 1.0 Hz, arom-CH), 128.15 (d, JPC = 1.5 Hz, arom-CH), 126.42 (d, JPC = 1.8 Hz, arom-
CH), 121.59 (d, JPC = 4.3 Hz, arom-CH), 46.73 (s, N-C), 45.35 (s, N-C), 41.66 (s, N-C), 21.30
(s, CH3).

2.1.4. Characterization of BPPO-NHPh

Anal. calcd for C18H14NO3P (323.28 g mol−1,%): C, 66.87; H, 4.36; N, 4.33. Found (%):
C, 66.60; H, 4.38; N, 4.35. M.p. (◦C): 155. IR (KBr, cm−1): 3378 νNH, 1197 νP=O. 1H NMR
(CDCl3, 298 K): δ 7.55 (dd, 2H, JHH = 7.4 Hz, JHH = 2.1 Hz, arom), 7.42–7.33 (m, 4H, arom),
7.24–7.16 (m, 4H, arom), 7.07 (d, 2H, JHH = 7.9 Hz, arom), 7.01 (t, 1H, JHH = 7.4 Hz, arom),
5.44 (d, 1H, JPH = 8.0 Hz, NH). 31P{1H} NMR (CDCl3, 298 K): δ 6.28 (s). 13C{1H} NMR
(CDCl3, 298 K): δ 147.84 (d, JPC = 9.3 Hz, arom-Cipso), 137.98 (d, JPC = 2.2 Hz, arom-Cipso),
130.12 (d, JPC = 1.4 Hz, arom-CH), 129.92 (d, JPC = 1.4 Hz, arom-CH), 129.33 (s, arom-CH),
128.41 (d, JPC = 1.7 Hz, arom-Cipso), 126.50 (d, JPC = 1.9 Hz, arom-CH), 123.20 (s, arom-CH),
121.80 (d, JPC = 4.4 Hz, arom-CH), 119.56 (d, JPC = 6.6 Hz, arom-CH).
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2.1.5. Characterization of BPPO-NHtol

Anal. calcd for C19H16NO3P (337.31 g mol−1,%): C, 67.65; H, 4.78; N, 4.15. Found
(%): C, 67.40; H, 4.80; N, 4.12. M.p. (◦C): 189. IR (KBr, cm−1): 3379 νNH, 1198 νP=O. 1H
NMR (CDCl3, 298 K): δ 7.54 (dd, 2H, JHH = 7.1 Hz, JHH = 1.8 Hz, arom), 7.42–7.31 (m, 4H,
arom), 7.23 (d, 2H, JHH = 7.4 Hz, arom), 7.04–6.95 (m, 4H, arom), 5.45 (d, 1H, JPH = 7.6 Hz,
NH), 2.27 (s, 3H, CH3). 31P{1H} NMR (CDCl3, 298 K): δ 6.16 (s). 13C{1H} NMR (CDCl3,
298 K): δ 147.95 (d, JPC = 9.5 Hz, arom-Cipso), 135.34 (d, JPC = 1.9 Hz, arom-Cipso), 132.74 (s,
arom-Cipso), 130.05 (d, JPC = 0.8 Hz, arom-CH), 129.86 (d, JPC = 0.9 Hz, arom-CH), 129.78 (s,
arom-CH), 128.46 (d, JPC = 1.5 Hz, arom-Cipso), 126.38 (d, JPC = 1.7 Hz, arom-CH), 121.83 (d,
JPC = 4.4 Hz, arom-CH), 119.85 (d, JPC = 6.4 Hz, arom-CH), 20.66 (s, CH3).

3. Results and Discussion

According to the recently published patent [49], the conversion of BPPO is related
phosphoramidates can be carried out in a single step by reacting the precursor with I2 in
the presence of a suitable aliphatic or aromatic amine (amH), as depicted in Scheme 1. The
compounds BPPO-NHButyl, BPPO-Nmorph, BPPO-NAcPz, BPPO-NHPh, and BPPO-NHTol
were isolated with yields comprised between 12% and 94% and had a high degree of purity.
The low yields obtained in some cases are mainly attributable to work-up issues. With
the exception of butylammonium iodide, the by-product [amH2]I was always recovered
by filtration from the reaction mixture. It is worth noting that an alternative synthetic
approach for the preparation of BPPO-Nmorph is already present in the literature [50].
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The 1H NMR spectra of all the compounds showed the disappearance of the P-H
resonance of BPPO, while the four multiplets due to the equivalent aromatic rings of
the biphenyl moiety were maintained. Besides the aromatic resonances, the 1H NMR
spectrum of BPPO-NHButyl in CDCl3 shows the superposition of multiplets between 3.05
and 2.90 ppm assigned to the N-bonded hydrogen atom and the CH2 fragment. The other
aliphatic resonances fall at 1.48, 1.31, and 0.88 ppm. The 13C{1H} NMR signals of the butyl
chain fall in the 42–13 ppm range, and the one at 34.03 ppm exhibits a coupling constant
of 5.5 Hz with the 31P nucleus, in agreement with the formation of the P-N bond. The
presence of P-bonded morpholine in BPPO-Nmorph was highlighted by two multiplets at
3.62 and 3.16 ppm, correlated to resonances in the 13C{1H} NMR spectrum at 66.98 and
45.47 ppm. The 13C{1H} NMR signals are doublets thanks to the coupling with 31P. In the
1H NMR spectrum of the comparable BPPO-NAcPz compound, the four CH2 fragments
of the piperazine heterocycle are all non-equivalent because of the different substituents
at the nitrogen atoms and because of the lack of free rotation of the acetyl group around
the N-C bond, that removes the equivalence of the two halves of the piperazine ring. The
CH2

1H NMR chemical shift values are 3.53, 3.44, 3.22, and 3.09 ppm, correlated to 13C{1H}
NMR resonances in the 47–41 ppm range. The acetyl substituent resonates at 2.08 ppm in
the 1H NMR spectrum and at 169.17 and 21.30 ppm in the 13C {1H} NMR spectrum. The
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NMR spectra of BPPO-NHPh and BPPO-NHTol are similar, with obvious differences related
to the presence in the second case of the methyl substituent. The NH resonance is clearly
observable in the 1H NMR spectrum at about 5.45 ppm, with JPH coupling constant close to
8 Hz. The 1H NMR spectra are shown in Figure 1. A single sharp resonance was observed
in all the 31P{1H} NMR spectra between 13.5 and 9.5 ppm for the derivatives of aliphatic
amines and around 6.2 ppm for BPPO-NHPh and BPPO-NHTol (Figure 2).
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The IR spectra show, in all the cases, the P=O stretching around 1200 cm−1. In some
cases, further diagnostic signals were detected, such as the νNH stretching above 3300 cm−1
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for BPPO-NHbutyl, BPPO-NHPh, and BPPO-NHTol, or the νCO stretching band at 1646 cm−1

for BPPO-NAcPz.
To conclude, in this article, we reported the straightforward synthesis of five phos-

phoramidates starting from BPPO, operating under mild conditions and avoiding the use
of aggressive reactants. Most of the compounds described here are reported for the first
time, and they are currently under investigation as flame retardants in combination with
various plastics.

4. Patents

The data provided in this work were obtained on the basis of the 2023 patent WO2023094526A1,
entitled “Preparation process of P(=O)-heteroatom derivatives of dibenzooxaphosphacy-
cles”, presented by our research group.
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