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Abstract: This study aims to investigate the impact of spatial rainfall distribution scenarios from
ground observation stations on runoff simulation using hydrological modeling specific to the Rainfall-
Runoff-Inundation (RRI) model. The RRI model was applied with six different spatial distribution
scenarios of input rainfall, including Inverse Distance Weight (IDW), Thiessen polygon (TSP), Surface
Polynomial (SPL), Simple kriging (SKG), and Ordinary kriging (OKG), to simulate the runoff of a
13,000 km2 watershed, namely the Nan River Basin in Thailand. This study utilized data from the
2014 storm event, incorporating temporal information from 28 rainfall stations to estimate rainfall
in the spatial distribution scenarios. The six statistics, Volume Bias, Peak Bias, Root Mean Square
Error, Correlation, and Mean Bias, were used to determine the accuracy of the estimated rainfall and
runoff. Overall, the Simple kriging (SKG) method outperformed the other scenarios based on the
statistical values to validate with measured rainfall data. Similarly, SKG demonstrated the closest
match between simulated and observed runoff, achieving the highest correlation (0.803), the lowest
Root Mean Square Error (164.48 cms), and high Nash-Sutcliffe Efficiency coefficient (0.499) values.
This research underscores the practical significance of spatial interpolation methods, such as SKG,
in combination with digital elevation models (DEMs) and landuse/soil type datasets, in delivering
reliable runoff simulations considering the RRI model on the river basin scale.
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1. Introduction

The rainfall is significant data in hydrological processes and is well-established, par-
ticularly in the context of runoff modeling. Rainfall patterns, with regard to their spatial
distribution and uniformity, are integral to shaping hydrological systems, particularly when
utilizing distributed hydrological models. These models are designed to simulate and
predict the behavior of water flow through intricate networks of interconnected channels,
streams, and rivers. Therefore, accurate and reliable rainfall data are crucial to ensuring
the effectiveness and accuracy of these models. Several studies have emphasized the
importance of understanding the impact of rainfall characteristics on discharge estimation.

For instance, Goodrich et al. [1] highlighted the applicability of uniform rainfall in
modeling runoff for small catchments, but they also stressed the significant influence of
rainfall spatial distribution on discharge. Schuurmans and Bierkens [2] emphasized that
relying on a single rainfall observation point outside the river basin watershed can lead to
erroneous predictions and underscored the essential role of rainfall spatial data in runoff
modeling. This paper aims to summarize the findings from eight different rainfall scenarios,
investigating the effects of spatial distribution and uniformity on runoff simulation in a
hydrological model for small catchments.

Precipitation characteristics have a considerable impact on the estimation of discharge.
The spatial distribution of rainfall directly influences the accuracy of runoff prediction,
particularly concerning the spatiotemporal resolution of rainfall [3]. Different precipitation
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regimes, such as peak rainfall intensity and timing, can significantly impact peak discharge
in catchments prone to debris flow [4]. Additionally, the temporal evolution of rainfall plays
a crucial role in the hydrograph and pollutant discharge of combined sewer overflow (CSO)
systems [5]. In storm drainages linked to sewage, the total rainfall and discharge volume
are critical factors that affect the concentration and load of pollutants per unit area [6].
Furthermore, the variability of rainfall time distributions can impact peak discharge, with
different rainfall time distribution patterns triggering unique response patterns in debris
flows [7].

Moreover, Tsntikidis et al. [8] and Chintalapudin et al. [9] observed that several wa-
tersheds lack an adequate distribution of rainfall observation stations; it is challenging to
consider the spatial variation of rainfall in the accuracy of runoff simulation. The relation-
ship between precipitation and discharge, especially for frequent events, was emphasized
by Arnaud et al. [10]. This study focuses on four artificial river basin watersheds ranging
from 20 to 1500 km2 and evaluates the data with three hydrological models. Drawing from
the work of Bell and Moore [11], they place particular emphasis on high spatial resolution
rainfall data, especially in the context of convective rainfall events.

The distribution of rainfall observation stations significantly influences the accuracy of
runoff simulations. In particular, the spatial variability of precipitation input, especially for
short-duration rainfall events and small catchments, substantially impacts modeling perfor-
mance [12]. Increasing the station density to a specific resolution may improve modeling
accuracy, depending on the catchment area, event type, and station distribution [13]. The
number and location of rainfall stations play a vital role in modeling rainfall-runoff, with
optimal results obtained using a sub-network of well-distributed stations [14]. Furthermore,
characteristics of rainfall spatial distribution, such as normalized root-mean-square error,
skewness, and second-scaled spatial moment, determine the lower limit of rainfall spa-
tiotemporal resolution for runoff models and runoff prediction accuracy [15]. Incorporating
spatial information about rainfall distribution enhances the performance of deep-learning
models in runoff simulations [16].

The Rainfall Runoff Inundation (RRI) model is an essential hydrological tool for pre-
dicting flood events and assessing the potential inundation areas caused by heavy rainfall.
Widely used in various regions, the model facilitates flood discharge simulation, flood
return period prediction, and economic loss analysis caused by flooding. The RRI model
integrates rainfall data from several sources, including ground stations and satellites, and
topographic and land data from remote sensing. The model provides valuable information
for flood mitigation and disaster management by incorporating rainfall-runoff and flood
inundation simulations. As such, it is an indispensable tool for professionals in hydrology
and disaster management.

Several studies have applied the RRI model to simulate hydrological processes and
generate runoff. Notably, Sayama et al. [17] established and verified the RRI model’s
effectiveness by comparing simulated inundation maps with MODIS satellite data for flood
events in large-scale river basins. Applications of the RRI model for runoff simulation in
the Chao Phraya River Basin, Thailand, were mentioned by Shakti et al. [18]; also, the RRI
was demonstrated by including the 2011 flood event, which was used to estimate damage
costs [19].

The RRI model has been effectively utilized in the Batang Sinamar River Basin lo-
cated in Lima Puluh Kota Regency [20], as well as in Jakarta and the Ciliwung-Cisadane
Watershed [21], and the Bekasi River Basin situated in Bekasi City [22]. Additionally, a
budget-friendly deep learning model called Rain2Depth has been created to mimic the RRI
model and estimate the maximum inundation depth’s spatial distribution [23]. The model
has been applied to simulate flooding and the impact of land cover changes on inundation
in the Indus River basin [24].

In this context, the primary point of this study is to examine how spatial rainfall
scenarios impact runoff simulation using the Rainfall-Runoff-Inundation (RRI) model. The
study area is a catchment covering 13,000 km2 in northern Thailand and utilizes rainfall
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data from 2014 to interpolate spatial and temporal rainfall patterns. This analysis spans
wet and dry seasons, offering insights into river basin catchment behavior. We conducted a
sensitivity study, comparing different rainfall datasets as the input data for the RRI model
and evaluating the simulated runoff with observed discharge hydrographs. It is significant
to reveal that this study points to sensitivity analysis without calibration and assesses the
effect of varying rainfall data inputs on the RRI model’s performance.

This introduction provides an overview of the paper’s context, objectives, and key
findings. Section 2 delves into the characteristics of the study area and the hydrological
model used. Section 3 details the interpolation methods, performance metrics, and model
setup. Section 4 presents this study’s results, featuring discharge hydrographs, and Section 5
offers conclusions and a discussion of the findings.

This study highlights the effectiveness of hydrological modeling in identifying the sen-
sitivity of spatial rainfall to river basin responses. However, the accuracy of such an analysis
depends on the precise replication of the watershed response by the employed model. This
research offers valuable insights into daily rainfall variability in spatial terms, aiming to
improve runoff predictions in hydrological modeling at the scale of river basin watersheds.

2. Data Sets and Methods
2.1. Nan River Basin

The upstream area of the Nan River Basin is considered by the study area to be a
region of great significance due to its role in supplying water from the SIRIKIT dam to
Thailand’s central area, including the capital area, Bangkok City. Figure 1 describes the
study area in northern Thailand, with a total watershed area of approximately 13,000 km2.
The main river originates in the Bor-Klua District, Nan Province, at the north of the area,
between latitude 17d 42′12′′ N and latitude 19d 37′48′′ N and longitude 100d 06′30′′ E to
longitude 101d 21′48′′ E. Approximately 88% of the region consists of mountainous terrain,
while the remaining 12% is inhabited by residents within the watershed. Downstream
from the SIRIKIT dam, which serves as the modeling river outlet, the river bed features a
steep slope of approximately 1/1500. Moving upstream, the slope becomes flat (1/10,000),
followed by a steep slope (1/600). The elevation in this area ranges from 70 to 1200 m
above mean sea level and has a mean annual rainfall of approximately 1380 mm. The Wa
River, Nam Pua River, and Nam Yao River are essential tributaries contributing to the
complex hydrological system. Fluvial has been observed in the Tawang Pha, Muang Nan,
and Wiang Sa areas as vulnerable areas.

2.2. Rainfall-Runoff-Inundation Model

The model used to simulate runoff in this study is the Rainfall-Runoff-Inundation (RRI)
model, a two-dimensional model that models surface and river channels separately [17].
The model sets the river channel within a grid pixel to consider the surface and river at
the same grid pixel. The river channel was set by a line along the centerline of the pixel
of the surface grid. The represented channel provides an additional flow path between
grid pixels along the river line. The simulation of lateral flows is estimated on the surface
grid by the two-dimension approach. The river channel in each grid contains two water
depths: channel and surface. In the channel grid, inflow and outflow were estimated by
the overflow condition, water level, and levee height.

To solve the two-dimensional scheme of the RRI model, it applied diffusive wave
routing using the numerical method of the fifth order of the Runge-Kutta algorithm. This
model estimates water depth on the surface pixel based on a difference in water level
between the upstream grid and downstream grid, where the water level is the combination
of water depth and ground surface level. The model requires three main inputs: rainfall
data in temporal grid format, topography data (Digital Elevation Model (DEM), Flow
direction, and Flow accumulation), and landuse/soil type data for infiltration processes.
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Figure 1. Location of this study area. (a) The Nan River Basin location in Thailand. (b) The Nan River
Basin in detail: the red dot represents the observation station for rainfall, and the yellow triangle
represents the runoff observation station.

2.3. Storm Events and Rainfall Observation Data

Over the last 20–30 years, Northern Thailand has seen an increasing trend in precip-
itation levels [25]. The period of the year characterized by rainfall, typically spanning
from June to September, has been observed to commence earlier and extend further, en-
compassing May to October [26]. In the region, the mean annual rainfall values have
been discovered to be most pronounced in the northeastern sector, gradually diminishing
towards the southwest [27]. Furthermore, applying clustering techniques to assess the
precipitation patterns within this area has also revealed the presence of the highest rainfall
zone in the northern section, displaying moderate precipitation levels in the southeastern
region and the lowest levels in the southwestern area [28]. Consequently, these findings
suggest an overall escalation in precipitation in Northern Thailand over the preceding few
decades, alongside variations in rainfall distribution throughout different sections of the
region [29].

This study focuses on the 2014 events, which were instrumental in evaluating different
rainfall products used in the RRI model for the basin. These events included tropical
storms, thunderstorms, and significant rainfall associated with weather patterns from the
Pacific Ocean that traveled westward to the area from March to August. The Inter-Tropical
Convergence Zone (ITCZ) typically impacts the northern area of Thailand from May to
August, as mentioned by Schneider et al. [30]. Conspicuously, the monsoon event from
28 to 30 August 2014 led to heavy rainfall, ranging from 100 to 150 mm, causing severe
flooding and river bank overflow.
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Rainfall observations were collected from 28 stations, as indicated in Figure 1b, with
17 stations located within the watershed and 11 on the western side. These stations provided
daily temporal data that drove the RRI model throughout 2014. The spatial distribution of
rainfall was constructed using these 28 stations, as detailed in Section 3.

2.4. Topography Data

Topography data were provided by the United States Geological Survey (USGS) and
sourced from the Shuttle Radar Topography Mission (SRTM). The SRTM project was
a collaboration between the National Imagery and Mapping Agency (NIMA) and the
National Aeronautics and Space Administration (NASA). The SRTM data are online from
the Consultative Group for International Agriculture Research Consortium for Spatial
Information (CGIAR-CSI). The provided DEM data covers approximately 80% of the
earth’s surface, from a latitude of 60 degrees in the north to 60 degrees in the south. This
DEM provides a one-arc-second resolution of approximately 30 m to contain 16 m in
vertical accuracy at 90% confidence and 20 m in horizontal accuracy at 90% confidence, as
reported by Javis et al. [31]. In this study, the original SRTM was upscaled to 500 m pixel
resolution (approximately 15 × 15 arc-seconds). This pixel size encompasses 457 rows and
292 columns, representing the watershed area of 13,000 km2, as shown in Figure 2a. The
specific SRTM data for the study area was obtained under index No. srtm_57_09.
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Figure 2. Topographical characteristics of the Nan River Basin. (a) Topography; (b) Flow direction;
and (c) Flow accumulation.

Flow direction data were derived from the slope of the DEM to establish downstream
direction based on the eight surrounding directions, as shown in Figure 2b. The flow
accumulation data, presented in Figure 2c, was calculated from the flow direction data,
representing the number of upstream areas for a given point in the form of grid cells. These
values are crucial for understanding the channel network within the basin.

2.5. Landuse and Soil Types

The USGS provided landuse data through the Global Land Cover Characteristics
(GLCC), and soil type data were provided by the Land Development Department (LDD)
in Thailand. Both datasets were resampled to match the resolution of the DEM through
projection. The GLCC dataset was observed in 2000 to comprise the NDVI composite of
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1 km of AVHRR data. This data are essential for landuse characterization, covering the
period from April 1992 to March 1993 [32]. Figure 3a shows that the landuse categories
were classified into six types based on the GLCC data. Forested areas dominate the study
area, accounting for 70.69%, and are predominantly located along the watershed’s border.
Approximately 14.58% of the land is cropland, followed by grassland at 9.61%, water bodies
at 2.1%, deforested areas at 1.91%, and urban areas at 1.1%. The cropland and urban areas
are primarily distributed along the floodplain area in the upstream and middle paths of the
river basin.
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Figure 3. (a) Landuse and (b) Soil type in the Nan River Basin, Thailand.

Soil type data were provided by the LDD [33], Thailand, and categorized into nine
types. Most of the soil is represented by the stone type, which is located in mountainous
areas and constitutes 83.68% of the total. The floodplain areas have eight different soil
types: silty clay, clay loam, sand clay, sandy loam, silty loam, sand clay loam, loam, and
clay. This is shown in Figure 3b.

3. Methodology

The methodology, illustrated in Figure 4, aims to address the primary research question
of this study. We utilized daily rainfall spatial distribution data from five different scenarios
in 2014 to answer this question. These scenarios encompassed three deterministic spatial
methods and two geostatistical spatial methods. The performance of these methods was
assessed by comparing their outputs to observed discharge data at the runoff station
(Figure 1b) using five statistical coefficients.
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3.1. Rainfall Spatial Scenario

Two methods of interpolation were employed: deterministic and geostatistical meth-
ods. The deterministic method was selected by three algorithms: Inverse Distance Weight-
ing, Thiessen Polygon, and Surface Polynomial. The geostatistical method was selected by
two algorithms: Simple Kriging and Ordinary Kriging. All algorithms were implemented
in Python programming to reproduce the daily rainfall distribution in a grid format for the
2014 event. Five statistical indexes evaluated the performance of the considered algorithm.

Typically, spatial interpolation involves estimating values at sampling points based on
the weighted values of surrounding observed points. The sampling points are located at
the centers of the regular grid with a resolution of 0.1 × 0.1 degrees, covering the study
area and featuring 13 rows and 20 columns. The spatial interpolation formula takes the
following forms for each method:

Re = ∑n
i=1 wi·Ri, (1)

where Re: the interpolated value at point e; Ri: the measured value at point i; n: the number
of measured points as rainfall stations in the study area; w: the weight of rainfall station for
interpolation. The coordinates of the rainfall stations are xi and yi in two-dimensional, and
Ri is related on xi and yi. Equation (1) can be applied to interpolate Re in any coordinate xe
and ye [34].

3.1.1. Inverse Distance Weight (IDW)

The IDW algorithm interpolates values at a sampling point using the average weight
of the measured points from the neighboring points. The weight is inversely proportional
to distance, increasing as the distance to the observed point decreases [35]. The weight can
be estimated by:

wi =

1
Dk

i

∑n
i=1

1
Dk

i

, (2)

where Di: the distance between the measured and considering point, and k: friction distance
is assumed as 2 in this study [36]. The Inverse Distance Square method is revealed by the
friction distance value of 2.

3.1.2. Thiessen Polygon (TSP)

The TSP algorithm is considered by the nearest neighbor method [37] and estimates
values at unknown points (the centers of rainfall grids) by using the value of the nearest
observed point. The weight is determined based on the closest distance. The weight can be
estimated by:

Dei =

√
(xe − xi)

2 + (ye − yi)
2, (3)



Eng 2024, 5 58

for Dj = min(De1, . . . , Den) and then wi = 0 for i ̸= j while wi = 1 for i = j. This
algorithm is revealed to be a simple algorithm and is unsuitable for mountain areas due to
the orographic effect of the rain [38].

3.1.3. Surface Polynomial (SPL)

The SPL algorithm involves fitting a global function by using an algebraic and trigono-
metric polynomial method. In this study, we used a cubic spline method with a degree of
three. The general function is followed by:

Re(x, y) = ∑m
k1=0 ∑m

k2=0 ak1,k2·xk1·yk2, (4)

where ak1,k2: the k1 and k2 is polynomial coefficient; x and y are the coordinates of the
estimated point; and m: number of polynomial functions to fit degree. From the study of
Tabios and Salas [39], the weight value of each measured point is calculated using the least
squares method. The equation form is followed by:

wi = ∑m
k1=0 ∑m

k2=0 ak1,k2,i·xk1·yk2, (5)

The polynomial function’s coefficients can be estimated by the inverse matrix algo-
rithm. The number of polynomial functions fitted in degrees is used as 3 in this study, as
considered by the Cubic Spline method.

3.1.4. Simple Kriging (SKG)

The SKG algorithm is a method of using the mean sampling data set and the semi-
variogram model to estimate the weight at each measured point. The weight equation is
followed by:

wi = γi
[
C − γ

(
hij
)]−1·

(
C − γ

(
hip
))

, (6)

where γ
(
hij
)
: the semi-variogram model from point i to j; hip: the semi-variogram distance

of measured and interpolated point.

3.1.5. Ordinary Kriging (OKG)

The OKG algorithm is a linear geostatistical method that calculates weights based on
minimized variance and provides an unbiased value. The weight is followed by:

wi = γ
(
hij
)−1·γ

(
hip
)
; ∑n

i=1 wi = 1, (7)

where γ
(
hij
)
: the semi-variogram from point i to j; hip: the semi-variogram distance of

measured and interpolated point. Based on the unbiased estimation value, the constraint
function of the weight is equal to 1.

3.1.6. Semi-Variogram Model

The semi-variogram model is fundamental in geostatistical methods for representing
spatial correlations at a spatial point [40–44]. This model is applied to analyze the vari-
ance in distance between all pairs of sampling points. The semi-variogram equation is
followed by:

γ̂(h) =
1

2N(h)∑
N(h)
i=1 (Ri − R(Ui + h))2, (8)

where N(h): the number of pairs separated by lag h; U: vector of spatial coordinates. The
semi-variogram model in this study was estimated by 28 rainfall stations with a daily
rainfall temporal scale. The estimated semi-variogram on a pooled semi-variogram was
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fitted using a spherical semi-variogram model. The semi-variogram model function is
followed by:

γ(h) =


C0 + C

(
3h
2a

− 1
2

(
h
a

)3
)

, 0 < h ≤ a

C0 + C, h > a

0, h = 0

, (9)

The spherical variogram model parameters are followed by the nugget variance (C0)
0.425, the partial sill (C) 1.404, and the range (a) 0.545. The model’s coefficients were used to
estimate the weight through Equation (1) with two different geostatistical methods: simple
kriging and ordinary kriging.

3.2. Simulation Model Setup

The RRI model’s input data comprises three data types: rainfall, topography, and
landuse/soil type. The hydrological parameters were recommended from previous stud-
ies [45], which are based on calibration in previous RRI modeling studies [46]. Table 1
shows Manning’s roughness coefficient related to the landuse type for the flow routing
processes in the RRI model. Table 2 presents the Green-Amp parameter related to the soil
type for the infiltration processes in the RRI model. These parameters were applied to
simulate runoff through the RRI model in the rainfall distribution scenarios.

Table 1. Landuse type is related to the n’s Manning coefficient.

Landuse Type n’s Manning

Forest 0.50
Deforestation 0.40

Grasslands 0.30
Cropland 0.35

Urban and Build-up 0.05
Water bodies 0.04

Table 2. Soil type is related to soil parameters for the RRI model.

Soil Type Soil Depth,
m

Saturated Hydraulic
Conductivity (ka),

cm/h

Beta,
ka/kc

Green-Ampt Parameter

Ksv,
cm/h Porosity Capillary Head,

cm

Clay 1.0 0.462 0.06 0.475 31.63
Clay loam 1.0 0.882 0.20 0.464 20.88

Loam 1.0 2.500 1.32 0.463 8.89
Sandy clay 2.0 0.781 0.12 0.430 23.90

Sandy clay loam 1.5 2.272 0.30 0.398 21.85
Sandy loam 1.5 12.443 2.18 0.453 11.01

Silty clay 1.0 0.366 0.10 0.430 29.22
Silty loam 1.0 2.591 0.68 0.501 16.68

Stone 1.5 - - - -

The characteristics of the river channel, width, and depth are estimated by the flow
accumulation represented by the upstream area of the consideration point. The flow
accumulation is based on the flow direction created from the resampled DEM. The flow
direction is represented by eight directions: E, SE, S, SW, W, NW, N, and NE, around
the consideration point [47,48]. The width and depth of the river channel are based on
the following:

W = 16.93·A0.186
basin, (10)

D = 16.93·A0.120
basin, (11)
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where W: the width of river channel in m, Abasin: the upstream area of the river channel
point in km2, and D: the depth of river channel in m.

3.3. Performance Statistics

The performance of the spatial distribution scenarios applied to the daily rainfall
data were evaluated by six key performance statistics: Volume Bias, Peak Bias, Root Mean
Square Error, Correlation Coefficient, Mean Error, and Nash-Sutcliffe Efficient coefficient.
These five statistics were applied to estimate the accuracy of interpolated rainfall and
simulated runoff [49].

Volume Bias (Vbias) and Peak Bias (Pbias) measure the systematic bias of modeled
rainfall and simulated runoff in percentage (%).

Vbias =
|Qvo − Qvs|

Qvo
× 100, (12)

Pbias =

∣∣Qpo − Qps
∣∣

Qpo
× 100 (13)

Correlation Coefficient (r) quantifies the degree of correlation between two datasets,
with 0 indicating no correlation and 1 representing a perfect correlation.

r =
∑n

i=1
((

Qoi − Qo
)
·
(
Qsi − Qs

))√
∑n

i=1
(
Qoi − Qo

)2·∑n
i=1
(
Qsi − Qs

)2
, (14)

Root Mean Square Error (RMSE) measures the magnitude of differences between
two datasets.

RMSE =

√
∑n

i=1(Qoi − Qsi)
2

n
, (15)

Mean Error (ME) quantifies the bias between two datasets.

ME =
∑n

i=1(Qoi − Qsi)

n
, (16)

Nash-Sutcliffe Efficiency coefficient (NSE) is used to evaluate model efficiency by
comparing the variance of the simulated time series to the variance of the observed time
series, with 1 representing a perfect fit.

NSE = 1 − ∑n
i=1(Qoi − Qsi)

2

∑n
i=1
(
Qoi − Qoi

)2 , (17)

where Qvo: total volume of measured data, Qvs: total volume of simulated data, Qpo: peak
of measured data, Qps: peak of simulated data, Qo: measured data, Qs: simulated data,
and n: number of sampling data.

4. Results and Discussion
4.1. Rainfall Spatial Distribution Interpolation

Rainfall distribution scenarios were estimated using five spatial interpolation methods:
Inverse Distance Weighting (IDW), Thiessen Polygon (TSP), Surface Polynomial (SPL),
Simple Kriging (SKG), and Ordinary Kriging (OKG). These datasets contained the same
spatial and temporal resolution, with a grid size of 0.01 degrees (equivalent to 10 km) and
daily time steps (24 h). Figure 5 illustrates a comparison of the rainfall at each observation
for the year 2014. All scenarios exhibited patterns generally similar to the observed data,
albeit with some variability. Conspicuously, OKG was slightly overestimated, while TSP
was underestimated. Furthermore, all scenarios underestimated the peak.
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Figure 6 shows the spatial distribution of rainfall for all five scenarios. In general, all
scenarios displayed spatial patterns that were similar to the actual event. In specific details,
IDW, TSP, OKG, and SPL exhibited their maximum rainfall intensity in the northeastern part,
along the watershed’s border (both inside and outside), while SKGs maximum intensity
was located within the watershed’s northern part. The discrepancies in SKGs spatial
interpolation were attributed to variations in the number and distribution of measured
rainfall data points, affecting the quality of the semi-variogram model.
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Figure 6. Average rainfall spatially for each distribution scenario.

Table 3 presents the total volume of rainfall for the five scenarios, calculated over the
watershed area. The total volume of the observed rain gauge was approximately 7900.01
million cubic meters (MCM). OKG produced the highest value, followed by SKG, while
TSP yielded the lowest. The maximum rainfall volume recorded during this event using
OKG was approximately 10,654 MCM.

Table 3. Rainfall Volume for five distribution scenarios over the watershed area.

Rainfall Distribution Scenario Rainfall Volume, MCM

OBS 7900.01
IDW 7045.41
TSP 3012.01
SPL 7578.28
SKG 7787.04
OKG 10,653.01
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The accuracy of all interpolation scenarios was moderate, as evidenced by significant
differences between observed and interpolated data, as summarized in Table 4. SKG is
exhibited by the best correlation coefficient of approximately 0.95, followed by OKG, SPL,
IDW, and TSP. According to RMSE, the SKG scenario outperformed the other. This superior
performance of kriging methods was consistent with previous research. Mainly, OKG was
the best at capturing peak values among the interpolation scenarios. All interpolation
scenarios underestimated observed daily rainfall, as indicated by the negative values of
Volume and Mean Bias. IDW, TSP, and SKG underestimated the measured data, while the
two scenarios (SPL and OKG) overestimated it. Among the scenarios, TSP exhibited the
highest negative value of Volume Bias and Mean Bias in underestimating observed rainfall
by 59.47%. For NSE consideration, all estimated rainfall scenarios had a negative value
close to zero, which reveals a significant difference between the estimated error variance
and the observation variance. The best NSE value of approximately −0.049 is the SKG,
followed by the OKG of approximately −0.048. The study area is a complex topography
featuring elevations ranging from 100 to 2000 m above sea level over a short distance of
approximately 200 km, highlighting TSPs limited suitability. This factor contributed to
TSPs notable underestimation due to orographic effects on rainfall [50].

Table 4. Performance statistics for each rainfall distribution scenario on the rainfall estimation.

Distribution
Scenario Volume Bias, % Peak Bias, % RMSE, mm Correlation Mean Bias, mm Nash-Sutcliffe

IDW −1.84 −18.35 7.66 0.85 −0.24 −0.053
TSP −59.47 −60.23 11.22 0.80 −5.51 −0.073
SPL 0.38 −23.66 7.11 0.88 0.05 −0.047
SKG −0.18 −20.12 5.08 0.92 −0.02 −0.049
OKG 4.39 −12.94 6.86 0.90 0.46 −0.048

Bold is the highlight of the highest accuracy of the distribution scenario.

The accuracy of the five scenarios over the Nan River Basin, Thailand, particularly the
spatial distribution, is assessed using RMSE as presented in Figure 7. Figure 7 shows that
SKG agreed best with the rain gauge data. It is interesting to reveal that the interpolation
scenario performed best in the northern part of the watershed boundary, despite its high
mountainous terrain, while the middle and southern areas had the lowest RMSE values for
the five scenarios. SKGs superior performance in mountainous areas might be attributed
to its semi-variogram model, which effectively accounted for the complex terrain and
orographic rainfall [50].

Among all the spatial interpolation rainfall scenarios, the kriging method with the
semi-variogram model offered the best agreement with observed rainfall in this study and
was consistent with findings from other studies: Tabios and Salas [37], Ly et al. [39], and
Ly et al. [44].

4.2. Runoff Data Resulted from Rainfall Spatial Distribution Interpolation

The RRI model represents the hydrological modeling that was applied to simulate
the runoff from the selected storm events using a consistent set of hydrologic parameters.
The five rainfall distribution scenarios were used to estimate daily runoff, matching the
measured runoff data provided by the Royal Irrigation Department, Thailand. The runoff
stations were limited by three measured stations along the Nan River: N.64 in the upstream
area of the watershed, N.1 in the middle area, and N.13 in the downstream area, as shown
in Figure 1b. Figure 8 presents the simulated daily runoff hydrograph for all five rainfall
interpolation scenarios at the measured runoff stations. Among all scenarios during the dry
season from January to April, the TSP revealed the simulated value close to the observation
data, while other scenarios revealed overestimation. Using two sets of parameters for
rainfall estimation specific to dry and wet seasons is recommended.
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on rainfall estimation.

All modeled runoff, generated using various interpolation scenarios, exhibited tem-
poral patterns that closely resembled the observed hydrographs. However, the simulated
runoff before the peak was consistently underestimated, while the simulated runoff af-
ter the peak was overestimated. OKG exhibited a significant overestimation of the peak
and runoff volume for N.64 and N.1, although N.13 showed a slight underestimation. In
contrast, TSP significantly underestimated runoff for all three stations.

All three runoff stations were assessed using performance statistics, as summarized in
Table 5, which includes five performance indexes. SKG performed the best with measured
runoff data, with the highest correlation of approximately 0.803 and the lowest RMSE
of approximately 164.48 cm. Nevertheless, SKG overestimated runoff volume and mean
runoff while underestimating peak flow by 6.8%, 19.4 cubic meters per second, and −35.8%,
respectively. OKG yielded the lowest peak flow, but its simulated runoff volume exhib-
ited the highest bias. SPL reveals an overestimation of runoff volume and mean runoff,
considering Volume Bias and Mean Bias, respectively. In contrast, the SPL reveals an un-
derestimated peak flow, resulting in a high RMSE with a strong correlation. TSP exhibited
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a high RMSE value and moderate correlation, while runoff volume, peak flow, and mean
runoff are underestimations. IDW overestimated runoff volume and mean runoff while
underestimating peak flow, with a low RMSE and the lowest correlation value. To consider
in the NSE evaluation, all scenarios reproduced the NSE value less than 0.5, and only OKG
was the negative value. The best NSE value among all scenarios was SKG, approximately
0.499, followed by IDW, approximately 0.437.
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Table 5. Performance statistics for each rainfall distribution scenario on the runoff simulation.

Distribution
Scenario Volume Bias, % Peak Bias, % RMSE, cms Correlation Mean Bias, cms Nash-Sutcliffe

IDW 16.88 −29.20 184.12 0.755 64.19 0.437
TSP −40.59 −59.46 275.05 0.691 −168.02 0.427
SPL 33.25 −16.73 239.53 0.704 135.89 0.223
SKG 6.80 −35.80 164.48 0.803 27.99 0.499
OKG 43.64 1.92 275.37 0.702 185.38 −0.557

Bold is the highlight of the highest accuracy of the distribution scenario.

This study and previous research have mentioned that kriging rainfall distribution
significantly impacts runoff simulation accuracy [51]. The spatial distribution of rain-
fall influences hydrograph shape, peak discharge, and flood volume [16]. Despite the
increasing use of kriging in rainfall-runoff modeling, current work on the impact of rainfall
spatial distribution [13]. Utilizing the kriging spatially distributed rainfall data improves
performance in runoff simulations [52]. In light of the spatial and temporal correlation in
basin response, the temporal distribution of rainfall holds greater sensitivity than its spatial
distribution, as elucidated in a recent study [53].

5. Conclusions

This study emphasizes the significant impact of variable rainfall patterns on estimating
river basin discharge during specific storms. The distribution of rainfall within a river basin
impacts the water budget and hydrological processes.

To achieve the objectives of this study, the five rainfall interpolation scenarios, IDW,
TSP, SPL, SKG, and OKG, were evaluated by using hydrological modeling through the
Rainfall-Runoff-Inundation (RRI) model on the Nan River Basin, Thailand. The five in-
terpolation scenarios were evaluated for runoff estimation during the 2014 event without
calibration of hydrological parameters. Daily simulated runoffs were compared with
measured data from the RID in Thailand.

First, evaluation of the interpolated rainfall results revealed that both kriging scenarios,
SKG and OKG, provided the best fit to measured rainfall data, although both scenarios
underestimated peak flow with a high ratio of NSE. SPL is an overestimation of runoff
volume and mean runoff, while the peak is an underestimation, resulting in low RMSE, high
correlation, and low NSE. On the other hand, TSP showed a significant underestimation of
the runoff volume, peak flow, and mean runoff. IDW underestimated the peak flow while
overestimating runoff volume and mean runoff.

The kriging algorithm based on the semi-variogram model presented the best agree-
ment with measured rainfall among the five spatial interpolation scenarios. SKG emerged
as the optimal algorithm for interpolating spatial rainfall data to model streamflow in
this study. While OKG also performed well in reproducing observed data, it consistently
overestimated the results. SPL and IDW reveal an overestimation of runoff volume and
mean runoff, while the peak flow is an underestimation. TSP revealed the most significant
underestimation of runoff volume, peak flow, and mean runoff, attended by a low correla-
tion and high RMSE. SKG was applied to the semi-variogram model and stood out as the
most suitable interpolation algorithm for runoff estimation at the river basin scale.

This study demonstrates the efficacy of hydrological modeling in revealing the sensi-
tivity of spatial rainfall to river basin responses. The validity of such an analysis, however, is
contingent on the faithful reproduction of the watershed response by the model employed.
As emphasized in this study, the effect of rainfall variability is dependent on the spatial and
temporal characteristics of both the rainfall and the river basin’s hydrological attributes. It
is worth noting that the spatial and temporal aspects are intricately correlated with rainfall
variability in reality. The present study offers valuable insights into spatial daily rainfall
variability with a view toward enhancing runoff predictions in hydrological modeling at
the river basin watershed scale.
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Although this study presents valuable findings, the proposed numerical simulation
has several limitations that should be considered. The hydrological modeling was limited
to the Nan River Basin in Thailand, and the results may not be generalizable to other
regions with different hydroclimatic conditions. Hydrological parameter calibration was
not performed, which could affect the accuracy of runoff estimations. The evaluation
was based on a specific storm event in 2014, and the results may vary under different
climatic conditions or for other storm events. This study relied on traditional interpolation
methods, and while the selected kriging algorithm demonstrated effectiveness, there is
potential for further improvement through the integration of advanced AI technologies,
such as machine learning algorithms. These techniques could enhance rainfall interpolation
accuracy, overcome spatial heterogeneity challenges, and improve hydrological modeling
predictions by capturing complex data relationships. Therefore, future research should
address these limitations and advance the hydrological modeling field.
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