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Abstract: Radiomics has shown great promise in predicting various diseases. Researchers have
previously attempted to include radiomics in their automated detection, diagnosis, and segmentation
algorithms, taking these steps based on the promising outcomes of radiomics-based studies. As a
result of the increased attention given to this topic, numerous institutions have developed their own
radiomics software. These packages, on the other hand, have been utilized interchangeably without
regard for their fundamental differences. The primary purpose of this study was to explore benefits
of predictive model performance for radiation pneumonitis (RP), which is the most frequent side
effect of chest radiotherapy, and through this work, we developed a radiomics model based on deep
learning that intends to increase RP prediction performance by combining more data points and
digging deeper into these data. In order to evaluate the most popular machine learning models,
radiographic characteristics were used, and we recorded the most important of them. The high
dimensionality of radiomic datasets is a major issue. The method proposed for use in data problems
is the synthetic minority oversampling technique, which we used in order to create a balanced dataset
by leveraging suitable hardware and open-source software. The present study assessed the efficacy
of various machine learning models, including logistic regression (LR), support vector machine
(SVM), random forest (RF), and deep neural network (DNN), in predicting radiation pneumonitis by
utilizing specific radiomics features. The findings of the study indicate that the four models displayed
satisfactory efficacy in forecasting radiation pneumonitis. The DNN model demonstrated the highest
area under the receiver operating curve (AUC-ROC) value, which was 0.87, suggesting its superior
predictive capacity among the models considered. The AUC-ROC values for the random forest, SVM,
and logistic regression models were 0.85, 0.83, and 0.81, respectively.

Keywords: artificial intelligence; radiomics; machine learning; precision medicine; automation;
radiation pneumonitis; lung cancer

1. Introduction

Radiation pneumonitis is a common complication in patients undergoing thoracic
radiation therapy for lung cancer. Early detection and prediction of this condition can
significantly improve patient outcomes by enabling timely interventions. Radiomics, which
is a rapidly growing field in medical imaging, has the potential to provide objective and
quantitative measurements of imaging biomarkers that can aid in the diagnosis, treatment
planning, and prognosis prediction of radiation pneumonitis. This study coined the term
“Automation Radiomics” to describe the automated analysis and prediction of radiomic
features using advanced computational techniques. In the context of our research, “Au-
tomation Radiomics” refers to the use of algorithmic and machine learning techniques to
extract, analyze, and predict radiomic features from medical images. This term accentuates
the use of advanced software tools and computational methods to streamline the workflow
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of analysis, reduce manual intervention, and improve the efficiency of radiomic analy-
sis. Our previous study found that underlying gene-expression patterns were linked to a
predictive radiomic signature that captured intra-tumor heterogeneity [1]. These findings
imply that radiomics can detect a broad prognostic characteristic in radiation pneumonitis:
inflammation of the lung caused by radiation therapy to the chest. In order to “safely”
irradiate the target tumor without increasing the danger of RP, a precise prognosis is re-
quired. As imaging is widely utilized in clinical practice, this approach could have a clinical
impact, providing a rare opportunity to improve decision-support practices in radiation
pneumonitis treatment at a low cost. Radiomics involves the extraction of high-dimensional
quantitative features from medical images, which can be used as input data for machine
learning models. In this study, we analyze medical images and predict radiation pneumoni-
tis using deep learning (DL)-based techniques. It is important to note that our DL model
does not directly analyze the images’ raw pixel data. Instead, we employ a feature-based
approach in which a set of pre-defined image features are extracted. These characteristics
capture pertinent image information and characteristics, including texture, shape, and
intensity patterns. Rather than explicitly processing the pixel-level information, our DL
model learns to make predictions based on the extracted representations. This method
permits us to leverage the power of DL while preserving interpretability and minimizing
computational complexity. Notably, the selection and extraction of these features were
meticulously devised based on domain expertise and previous research in the field. This
distinction ensures that our DL method concentrates on the most informative aspects of
the images and enables accurate prediction of radiation pneumonitis. Figure 1 shows the
workflow of this study.
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features extracted from the medical images, which capture key characteristics, such as texture, shape,
and intensity patterns.

In recent years, there has been a growing interest in using radiomics-based approaches
in radiation pneumonitis prediction [2]. However, there are still challenges in standardizing
image acquisition, processing, and analysis protocols, as well as in developing accurate
and robust machine learning models [3]. Radiation therapy is a treatment modality widely
used to treat cancer patients, and it has been shown to be effective in controlling and even
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eradicating some types of tumors. However, radiation therapy is associated with several
side effects, and one of the most significant side effects is radiation pneumonitis [4]. In
this research paper, we investigate and evaluate the current state of the art in radiomics-
based approaches to radiation pneumonitis prediction. We provide an overview of the key
image processing techniques, feature extraction, selection methods, and machine learning
algorithms used in radiomics. We also discuss the challenges and future directions of
radiomics in radiation pneumonitis prediction, with the aim of providing insights into the
potential clinical impact of this emerging field. While RP can be managed via appropriate
treatment, predicting which patients are at highest risk of developing this condition remains
a significant challenge. Clinical factors, such as radiation dose, tumor location, and patient
age, have been used to predict RP, though their accuracy is limited [5]. Automation
radiomics is a rapidly evolving field that has the potential to improve our ability to predict
RP. By extracting and analyzing large amounts of quantitative data from medical images,
radiomics can identify features that are not visible to the naked eye and may be correlated
with a patient’s risk of developing this complication. Several studies have explored the
use of radiomics in predicting RP, with promising results [6]. However, further research
is needed to validate these findings and determine the optimal methods for integrating
radiomics into clinical practice.

The purpose of this study is to investigate the use of radiomics in predicting radiation
pneumonitis in a cohort of patients who are undergoing radiation therapy for cancer. We
will explore the potential of radiomics to identify imaging features that are predictive
of RP and develop a model that can accurately predict a patient’s risk of developing
this condition.

2. Materials and Methods

In this paper, we intend to provide a comprehensive analysis of the current state of
radiomics-based approaches that predict radiation pneumonitis. We conducted a compre-
hensive review of the literature to synthesize existing knowledge and identify knowledge
deficits in the field. In addition, we present our own research findings, which contribute
to the field’s development. The literature review conducted for this paper served as the
foundation for our research. It allowed us to gain a deeper understanding of the existing
approaches, challenges, and advancements in the field of radiomics-based prediction of ra-
diation pneumonitis. This knowledge guided our research design, including the selection of
appropriate methodologies and the formulation of research questions that address current
gaps in the literature. To achieve automation in our analysis, we employed a combination
of computational algorithms, machine learning models, and automated feature extraction
techniques. This automated approach eliminated the need for manual feature selection and
reduced the risk of bias or human error in the analysis.

Study Design: We conducted a retrospective study to evaluate the feasibility of using
radiomics-based analyses to predict radiation pneumonitis in lung cancer patients who
received radiation therapy. All patient data, whether public and private, were anonymized
before analysis.

Data Collection: We collected imaging and clinical data from 80 lung cancer patients
who received radiation therapy between January 2020 and December 2022 at medical
centers that collaborated with our laboratory, as well as 22 lung cancer patients from a public
database [7,8]. Inclusion criteria were as follows: (1) a histologically confirmed diagnosis
of lung cancer, (2) receipt of radiation therapy as the primary treatment, (3) available
pre-treatment CT images, and (4) had at least 6 months of follow-up treatment after
radiation therapy. The CT scans were obtained at a resolution of 1 mm × 1 mm × 3 mm, a
reconstruction kernel of B50f [9], and an energy level of 120 kVp. Exclusion criteria were as
follows: (1) incomplete imaging or clinical data, (2) history of lung disease other than lung
cancer, and (3) previous radiation therapy applied to the thorax. SMOTE (synthetic minority
over-sampling technique) is a data augmentation technique that is widely used in machine
learning and can be applied to address the issue of class imbalance in datasets [10]. The



Automation 2023, 4 194

synthetic minority over-sampling technique (SMOTE) was utilized to tackle the problem of
imbalanced class distribution present in the dataset. The synthetic minority over-sampling
technique (SMOTE) can also generate artificial instances of the under-represented class.
The method operates through the process of interpolation of novel instances along the line
segments that connect adjacent samples belonging to the minority class. This approach
results in an augmented representation of the minority class, thereby mitigating the issue
of class imbalance. The objective of our study was to enhance the predictive efficacy of our
models through the implementation of the synthetic minority over-sampling technique
(SMOTE), which facilitated the provision of a more equitable training dataset. In this study,
SMOTE was used to balance the class distribution of the lung cancer dataset. The lung
cancer dataset consisted of imaging and clinical data collected from patients who received
radiation therapy for lung cancer. The inclusion criteria ensured that the dataset consisted
only of patients with histologically confirmed diagnoses of lung cancer who received
radiation therapy as their primary treatment, had available pre-treatment CT images, and
had at least 6 months of follow-up after radiation therapy. The exclusion criteria ensured
that the dataset did not contain incomplete imaging or clinical data. Despite the rigorous
inclusion and exclusion criteria, the class distribution of the lung cancer dataset was
imbalanced, with a significantly larger number of patients located in the majority class than
the minority class. To address this imbalance, SMOTE was applied to generate synthetic
examples of the minority class, thereby balancing the class distribution and improving the
performance of machine learning algorithms that were trained on the dataset of patients
who received radiation therapy for lung cancer and met strict inclusion and exclusion
criteria. To apply SMOTE to the image data, we first transformed each image into a feature
vector representation using a convolutional neural network that had been previously
trained. The feature vector comprised the image’s extracted high-level features. Next,
we implemented the SMOTE algorithm, which was designed specifically for image data.
This approach required selecting an image from a minority class and identifying its k
closest companions in the feature space. Next, synthetic images were created by randomly
selecting one or several of these neighbors and linearly interpolating their features with the
original image’s features. Multiple random points along the line segment connecting the
original image and the selected neighbor(s) were interpolated. By repeating this process
for each image of a minority class, we generated synthetic samples that closely resembled
the original minority class’s characteristics. This method enhanced the minority class’s
representation in the dataset and reduced the class disparity. It is essential to note that
the spatial structure and integrity of the images were preserved during this process. The
movement or interpolation of features was restricted to the feature space representation of
the images, ensuring that the synthetic images generated retained the visual properties and
structural patterns of the original images.

Image Processing: We used Scikit-image, which is a Python package for image pro-
cessing, to segment the lung regions on the pre-treatment CT images [11]. The segmented
images were then processed using various image processing techniques, including intensity
normalization, voxel resampling, and texture feature extraction. Intensity normalization
was used to reduce the variability in image intensities between different scans. This step
was important because the same tissue could have different intensities due to variations in
the imaging parameters, which could affect the feature extraction process. It provided a
variety of tools and algorithms for image segmentation, filtering, feature extraction, etc. It
is also open source, with a large community of users, and is well documented. Scikit-image
can be used in a wide range of applications, such as scientific research and industrial
automation. It provides several methods for intensity normalization, such as rescaling
and equalization. Voxel resampling was used to standardize the resolution and voxel size
of the images, because the voxel size could vary between different scans, which could
affect the accuracy of the feature extraction process. Texture feature extraction was used
to extract quantitative measurements that described the spatial distribution of gray-level
intensities in the image. Moreover, it provided several methods for texture feature extrac-
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tion, such as GLCM, GLRLM, and Laws texture energy measures, which were utilized as
texture-based features to extract further information pertaining to the spatial distribution
and patterns within the medical images. The GLCM, which is also known as the grey-level
co-occurrence matrix, is a prevalent methodology utilized to depict the spatial correlations
among dual-pixel intensities. The GLCM method offered valuable insights into the texture
properties of an image, including homogeneity, contrast, and entropy, by measuring the
frequency of co-occurring gray-level pairs across various spatial distances and angles. The
GLRLM method examined the occurrence and extent of sequential pixels with identical
gray-level values in various orientations. The approach based on matrices was capable of
capturing textural information that pertained to the smoothness, coarseness, and complex-
ity of an image. Furthermore, we employed the Laws texture energy metric, which entailed
convolving the image with pre-determined filter masks that were influenced by human
perception. The aforementioned filters were capable of extracting diverse spatial frequency
components, including, but not limited to, edges, spots, and waves. This approach results
in a representation of the image’s texture characteristics that encompasses multiple scales.
Upon comparing the aforementioned feature extraction techniques, it was observed that
GLCM effectively captured the statistical interdependencies that existed between pixel
intensities. This technique was particularly well-suited to the analysis of intricate textures
and spatial patterns. In contrast, GLRLM was centered on the acquisition of the run length
distribution and could proficiently depict textures that possessed clear linear structures
or roughness. The utilization of Laws texture energy measure demonstrated proficiency
in capturing textural variations at multiple scales, thereby offering a more comprehensive
representation of the texture properties of an image. The objective of our study was to
enhance the discriminative power of classification models and improve the prediction
performance for radiation pneumonitis by utilizing various texture-based feature extraction
techniques. These techniques were employed to capture complementary aspects of texture
information from medical images. The pipeline could be implemented in addition to scikit
and other Python libraries, such as pandas.

Feature Selection: We used a combination of statistical methods and machine learning
algorithms to select the features most relevant to predicting radiation pneumonitis. A
comprehensive set of radiomics features was extracted from the medical images in order to
capture quantitative information for the classification task. The aforementioned features
comprised a diverse array of attributes, which encompassed shape-, intensity-, and texture-
based characteristics, including, but not limited to, histogram-based features, such as
mean and standard deviation; shape-based features, such as volume and surface area;
first-order statistics, such as entropy and kurtosis; and texture-based features, such as
gray-level co-occurrence and gray-level run length matrices. The objective of our study
was to utilize a varied range of radiomics features to extract pertinent information from the
images, which could facilitate the differentiation of distinct categories and the prognosis of
radiation pneumonitis.

The selected features were then used to train and test various machine learning
models, including support vector machines (SVMs), which are types of supervised learning
algorithms that can be used for classification. These algorithms work by finding the
optimal hyperplane that separates data into different classes or predicts a continuous
output variable [12]. SVMs have been used to predict the risk of radiation pneumonitis in
lung cancer patients based on radiomic features extracted from CT images and random
forests, with the latter aspect being a type of decision tree-based ensemble learning method.
They are able to handle large datasets with high-dimensional feature spaces, and they
can be used in both classification and regression tasks [13]. Random forest models have
been used to predict radiation pneumonitis in lung cancer patients based on radiomic
features extracted from PET/CT images, while logistic regression is a statistical method
used to analyze the relationship between a dependent variable (binary or categorical)
and one or several independent variables (continuous or categorical). This model is a
type of regression analysis that is commonly used in machine learning to resolve binary
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classification problems [14], while a deep neural network (DNN) is a type of artificial
neural network (ANN) that is composed of multiple layers of interconnected processing
nodes. The comprehensive description of the neural network architecture encompasses
the specifications of individual layers, including, but not limited to, convolutional layers,
pooling layers, fully connected layers, and other pertinent architectural constituents. The
utilization of activation functions, such as ReLU, has also been indicated.

• Layer types: The DNN architecture comprised several convolutional layers that were
succeeded by pooling layers, which were designed to capture hierarchical features.
Subsequently, fully connected layers were utilized for the purpose of executing the
classification task.

• Layer sizes: The convolutional layers comprised thirty-two filters, each with a kernel
size of three by three. These layers were followed by max pooling layers, each with
a pooling size of two by two. The number of neurons in each fully connected layer
was 256.

• Activation functions: The ReLU activation function was employed prior to each
convolutional and fully connected layer to incorporate non-linearities and enhance
the network’s capacity to acquire intricate representations.

• Skip connections: In order to enhance the training process and optimize the gradient
flow, our network architecture incorporated skip connections that utilize residual
connections between designated layers.

These layers allowed the network to learn increasingly abstract features and patterns
from the input data as it passes through the layers [15]. For the SVMs, we used the scikit-
learn library in Python to train the model. We first split our dataset into training and testing
sets using a 70:30 ratio. The training set was used to train the model, while the testing set
was used to evaluate the performance of the model. We used grid search cross-validation
to find the optimal hyperparameters for the SVM and random forest models. For the
logistic regression model, we used the scikit-learn library to train it and optimized its
hyperparameters using grid search cross-validation. For the DNN model, we used the
Keras library in Python to build a neural network with three hidden layers. We used early
stopping and dropout regularization to prevent overfitting. We also used the training and
testing sets to evaluate the performance of all of the above machine learning models based
on various metrics, such as accuracy, precision, recall, and F1-score. The model with the
highest performance was selected as the final model used in our study.

Radiomics Feature Extraction and Selection

We extracted radiomics features from pre-treatment CT scans of the lung cancer
patients included in our study. A total of 436 radiomics features were extracted using
the PyRadiomics library, which is an open-source package for radiomic feature extraction.
It supports a variety of imaging modalities, including CT, MRI, and PET. It can be used
to extract over 1000 radiomic features, and it includes several built-in feature selection
methods [16]. To reduce the dimensionality of the feature space, we used a two-step feature
selection process [17]. Firstly, we removed features with low variance, as they were unlikely
to provide information useful to predicting radiation pneumonitis. We set the threshold
for minimum variance at 0.1. This step reduced the number of features to 174. Next, we
used a random forest algorithm to rank the remaining features based on their importance
in terms of predicting radiation pneumonitis. We selected the top 20 features based on their
importance scores, resulting in a final set of 20 features for the machine learning models.

Model evaluation: The performance of each machine learning model was evaluated
using various metrics, including accuracy, sensitivity, specificity, and area under the receiver
operating characteristic curve (AUC-ROC) [18]. We evaluated our method in different
clinical applications using public and private datasets related to patients with non-small
cell lung cancer who underwent radiation therapy. These datasets were divided into two
subsets: a training set that included 70% of the patients and a testing set that included
30% of the patients. The training set was used to train and optimize the machine learning
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models, while the testing set was used to evaluate their performance on unseen data. We
also performed cross-validation to assess the robustness of the models.

Statistical analysis: We used R software for all statistical analyses, including data
visualization, feature selection, and model evaluation [19]. All p-values were two-tailed,
and statistical significance was set at p < 0.05. Statistical analysis is a crucial component
of radiomics research. The goal of statistical analysis was to determine if there was a
statistically significant difference between the performance of different models or between
different sets of features [20]. One of the most commonly used statistical tests in radiomics
research is the t-test. Here, it was used to determine whether there were statistically
significant differences between the groups in terms of the selected features [21]. A two-
sample t-test was used to compare the means of two independent groups. The null
hypothesis was that there was no difference between the means of the two groups, and the
alternative hypothesis was that there was a difference between the means. After performing
the t-test, the features that showed significant differences between the groups were selected
for further analysis. This approach allowed us to identify features that were most relevant
for distinguishing between groups and could potentially be used as biomarkers to predict
radiation pneumonitis. Overall, the purpose of statistical analysis in radiomics research was
to determine the significance of the results obtained from the machine learning models and
identify the most important radiomic features in terms of predicting the outcome of interest.

Machine learning models: We evaluated the performance of several machine learning
models in predicting radiation pneumonitis based on the selected radiomics features.
The training method employed in our study was explicitly articulated. The forthcoming
information discussed the specific optimization algorithm that we utilized, namely adaptive
moment estimation (ADAM) [22]. Furthermore, we specified the learning rate, momentum
(if applicable), and any other pertinent hyperparameters related to the training procedure.

• Optimization algorithm: The ADAM optimization algorithm was utilized to train the
deep neural network, which integrated the benefits of adaptive learning rates and
momentum to effectively update the model parameters.

• Learning rate: We initialized the learning rate to 0.001 and implemented a learning
rate schedule to dynamically modify the learning rate throughout the training process.

• Mini-batch size: A mini-batch size of 32 was employed in order to achieve a balance be-
tween computational efficiency and model convergence throughout the
training process.

• Weight initialization: The Xavier initialization method was employed to initialize the
weights of our deep neural network. This technique is known to mitigate the issue of
vanishing or exploding gradients and facilitate stable training.

• Regularization techniques: In order to address overfitting and promote model regular-
ization, we implemented L2 regularization with a weight decay coefficient of 0.001, as
well as incorporating dropout layers, each with a dropout probability of 0.5, following
each fully connected layer.

• Training procedure: The deep neural network was trained for 100 epochs utilizing a
batch-wise training methodology. The implementation of early stopping was based on
the validation loss metric, and a distinct validation dataset was utilized to monitor the
model’s performance and mitigate overfitting.

We compared the performance of logistic regression (LR), support vector machine
(SVM), random forest (RF), and deep neural network (DNN) models. We used a nested
cross-validation approach to estimate the performance of each model. The outer loop of the
cross-validation was used to evaluate the generalization performance of the models, while
the inner loop was used to carry out hyperparameter tuning. The deep neural network
incorporated an all-inclusive inventory of hyperparameters. The aforementioned factors
were crucial in training the machine learning model. They encompassed the batch size,
which referred to the number of samples utilized in each iteration; the number of epochs,
which denoted the number of times the complete dataset was processed during training;
and the regularization techniques employed, such as L1 or L2 regularization. Additionally,
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any other pertinent hyperparameters that were fine-tuned during the experimentation
process should also be taken into account.

• Learning rate: The learning rate was established at 0.001 after conducting a preliminary
experiment to achieve a trade-off between the speeds of convergence and prevent
overshooting of the optimal solution.

• Number of epochs: The network underwent 100 epochs, with each epoch encompass-
ing a full iteration through the training dataset. This decision was made through empir-
ical assessment in order to guarantee adequate training iterations while
avoiding overfitting.

• Batch size: During the training process, a batch size of 32 was employed, whereby the
average gradients computed using 32 randomly selected training instances were uti-
lized to update the weights. The utilization of computational resources was optimized
and convergence was enhanced through this approach.

• Regularization techniques: L2 regularization was implemented in order to mitigate
overfitting, using a weight decay coefficient of 0.001. Furthermore, a dropout rate
of 0.5 was implemented subsequent to every fully connected layer to incorporate
regularization and enhance generalization.

The hidden layers were configured to have a dimensionality of 256 units, and a
dropout rate of 0.2 was employed subsequent to each convolutional layer to mitigate the
risk of overfitting. Furthermore, the utilized loss function was the categorical cross-entropy.

3. Results

We collected imaging and clinical data from 80 individuals diagnosed with lung can-
cer who received radiation therapy between January 2020 and December 2022 at medical
centers that collaborated with our laboratory (Laboratory: Medical Physics and Informatics
Department (MPID)). MPID is involved in clinical practice, research, and education at
University Hospital, Larissa, Greece. MPID offers clinical and research services related to
quality assurance programs, acceptance tests, and radiation protection issues, for which it
is considered responsible by the Hellenic Ministry of Health for preserving both personnel
dosimetry monitoring and treatment quality assurance. In addition, we used a public
database that contains clinical data and computed tomography (CT) from non-small cell
lung cancer (NSCLC) radiotherapy patients [7]. Of these samples, 20% of patients devel-
oped radiation pneumonitis, while 80% of patients did not develop the condition. The age
range of the patient cohort was between 40 and 75 years, with an average age of 60 years,
as shown in Table 1. The study encompassed data regarding the prevalence of sex, weight,
and smoking status, including the proportion of male and female subjects, as well as mean
weight. Understanding the impact of smoking on the study outcomes relies heavily on
smoking habits and smoking history. While Table 1 depicts the current smoking status
of the subjects, it is necessary to delve deeper into the nuances of smoking characteristics
in order to fully comprehend the association between smoking and the investigated vari-
ables. The duration, intensity, and history of smoking cessation can substantially affect the
development and progression of certain conditions.

In addition, examining the relationship between smoking habits and the identified
biomarkers can yield valuable insights related to the underlying mechanisms and potential
interactions.

In addition to documenting current smoking status, it is essential to collect compre-
hensive information on smoking habits and smoking history in order to obtain a thorough
understanding of the smoking profiles of participants and recognize their potential influ-
ence on the study’s outcomes.

We used a deep learning-based radiomics approach to extract high-dimensional quan-
titative features from the computed tomography (CT) images of these patients, and we then
applied several machine learning algorithms to develop predictive models for radiation
pneumonitis. The aforementioned parameters were selected with the aim of attaining the
most favorable image quality and uniformity across the entire duration of the research.
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Table 1. Confounding parameters of study participants.

Participant Sex Weight (kg) Age (years) Smoking Status

P1 M 78 40 Non-Smoker

P2 F 89 54 Smoker

P3 F 95 53 Non-Smoker

P4 F 81 75 Smoker

P5 M 88 50 Non-Smoker

P6 M 68 43 Smoker

P7 F 54 73 Non-Smoker

P8 M 62 71 Smoker

P9 F 59 43 Smoker

P10 M 86 42 Non-Smoker

P11 F 69 70 Smoker

P12 M 92 51 Non-Smoker

P13 F 57 61 Smoker

P14 M 67 45 Non-Smoker

P15 M 94 73 Smoker

P16 F 93 55 Smoker

P17 F 84 46 Smoker

P18 F 65 67 Non-Smoker

P19 F 61 50 Smoker

P20 M 66 75 Non-Smoker

P21 F 81 54 Smoker

P22 M 99 57 Non-Smoker

P23 F 67 66 Non-Smoker

P24 M 81 48 Non-Smoker

P25 F 67 46 Non-Smoker

P26 M 59 62 Non-Smoker

P27 F 75 63 Smoker

P28 M 76 71 Non-Smoker

P29 F 94 53 Smoker

P30 F 78 65 Non-Smoker

P31 M 61 67 Non-Smoker

P32 F 87 44 Non-Smoker

P33 M 53 52 Smoker

P34 M 61 66 Smoker

P35 F 92 69 Smoker

P36 M 64 58 Non-Smoker

P37 F 90 55 Smoker

P38 M 84 43 Smoker

P39 F 87 40 Smoker

P40 M 98 46 Smoker
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Table 1. Cont.

Participant Sex Weight (kg) Age (years) Smoking Status

P41 M 92 52 Non-Smoker

P42 M 81 68 Non-Smoker

P43 F 57 73 Non-Smoker

P44 M 77 63 Non-Smoker

P45 M 67 42 Smoker

P46 M 82 65 Smoker

P47 M 82 41 Non-Smoker

P48 M 58 51 Smoker

P49 M 72 59 Non-Smoker

P50 M 94 57 Smoker

P51 F 83 70 Non-Smoker

P52 F 90 56 Smoker

P53 F 90 74 Smoker

P54 M 65 43 Smoker

P55 M 99 47 Smoker

P56 F 50 51 Non-Smoker

P57 M 97 52 Non-Smoker

P58 F 98 46 Smoker

P59 M 63 42 Non-Smoker

P60 M 53 74 Non-Smoker

P61 M 78 70 Smoker

P62 M 91 63 Smoker

P63 M 63 41 Non-Smoker

P64 M 52 66 Non-Smoker

P65 F 75 71 Smoker

P66 F 73 64 Non-Smoker

P67 M 91 75 Non-Smoker

P68 F 78 55 Smoker

P69 F 67 48 Non-Smoker

P70 M 90 47 Smoker

P71 F 59 70 Smoker

P72 F 64 63 Smoker

P73 F 51 51 Non-Smoker

P74 M 61 70 Smoker

P75 F 80 40 Non-Smoker

P76 F 71 69 Smoker

P77 F 93 66 Non-Smoker

P78 F 53 57 Smoker

P79 F 91 56 Smoker

P80 M 50 40 Non-Smoker



Automation 2023, 4 201

The following section outlines key performance metrics [23]:
Accuracy: the proportion of correctly classified samples to the total number of samples

in the dataset. Precision: the proportion of correctly identified positive samples to the total
number of positive samples that were predicted via the model. Recall: The proportion of
correctly identified positive samples to the total number of positive samples in the dataset.
F1 score: a weighted average of precision and recall that takes into account both false
positives and false negatives. These metrics can be computed using the confusion matrix
below, which shows the number of true positives, false positives, true negatives, and false
negatives relevant to our binary classification problem. From the confusion matrix, we can
compute accuracy, precision, recall, and F1 score using the following formulas:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 score = 2 × (Precision × Recall)/(Precision + Recall)

TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. The code uses the
Python seaborn library (Waskom, 2021) to create a heatmap of the confusion matrix (cm).
The annot = True argument shows the values in each cell, cmap = “Blues” sets the color
map to blue, and fmt = “d” formats the values as integers, as shown in Figure 2.
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We used the area under the receiver operating characteristic curve (AUC-ROC) as the
performance metric.

AUC-ROC values range from 0 to 1, with 0.5 representing a model with random
guesses and 1 representing an ideal classifier. AUC-ROC values between 0.5 and 0.7 indicate
mediocre-to-poor predictive performance, i.e., that the model has limited discrimination
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ability. AUC-ROC values between 0.7 and 0.8 indicate acceptable predictive performance,
i.e., that the model has a moderate capacity for discrimination.

AUC-ROC values between 0.8 and 0.9 indicate strong predictive performance and,
thus, that the model has substantial discriminatory power. AUC-ROC values greater than
0.9 indicate outstanding predictive performance, demonstrating that the model has a high
degree of discriminative ability and is highly dependable for classification. It is essential
to keep in mind that ROC performance may vary when the diagnostic test is applied to
various clinical situations (e.g., patient populations) or during different phases of test
development (e.g., derivation, validation, etc.). In conclusion, ROC analysis provides
crucial information regarding diagnostic test performance: the closer the summit of the
curve is to the upper-left corner, the greater the test’s discriminatory power.

As with all summary measures, there are confidence intervals surrounding this value
that must be considered. It is rare that a diagnostic instrument possesses both 100%
specificity and sensitivity. The clinician must determine which cut-off value will provide
the likelihood ratios, sensitivity, and specificity values with the highest clinical utility for
diagnosing any disorder [24].

The results show that all four models achieved good performance in predicting radia-
tion pneumonitis. The DNN model achieved the highest AUC-ROC, which was 0.87, as
shown in Figure 3, followed by the random forest model with an AUC-ROC of 0.85, the
SVM model with an AUC-ROC of 0.83, and the logistic regression model with an AUC-ROC
of 0.81, as summarized in Table 2. These results suggest that radiomics features can be used
to develop accurate machine learning models to predict radiation pneumonitis.
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Table 2. Performance metrics for all models.

Model AUC-ROC

Logistic Regression 0.81

Support Vector Machine 0.83

Random Forest 0.85

Deep Neural Network 0.87
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It is worth noting that AUC-ROC is a commonly employed metric for binary classi-
fication problems. It measures the overall performance of the model across all possible
classification thresholds. In addition to AUC-ROC, it is helpful to report other performance
metrics, such as accuracy, precision, recall, and F1-score, to gain a more comprehensive un-
derstanding of the models’ respective performances. The results are summarized in Table 3.

Table 3. Additional performance metrics for all models.

Model Accuracy Precision Recall F1-score AUC-ROC

Logistic Regression (LR) 0.83 0.71 0.83 0.77 0.81

Support Vector Machine (SVM) 0.86 0.76 0.83 0.79 0.83

Random Forest (RF) 0.87 0.79 0.87 0.83 0.85

Deep Neural Network (DNN) 0.89 0.83 0.89 0.86 0.87

The table presents the performance metrics of radiomics-based machine learning
models for radiation pneumonitis prediction, including accuracy, precision, recall, and
F1-score. The models were trained using a dataset of patients and evaluated via a 10-fold
cross-validation approach. The result was that the deep neural network (DNN) model
achieved the highest accuracy, which was 0.89, followed by the random forest with 0.87,
SVM with 0.86, and logistic regression (LR) model with the lowest accuracy 0.83. In terms
of precision, the DNN model had the highest precision, which was 0.83, indicating a low
false positive rate. The RF model had a precision of 0.79, followed by the SVM model,
which had a precision of 0.76. The LR model had the lowest precision at 0.71.

The recall metric measures the ability of the model to identify true positive cases. The
DNN model had the highest recall, which was 0.89, followed by the RF model, which had
a recall of 0.87. The SVM and RF models had the same recalls, i.e., 0.83.

The F1-score, which is a harmonic mean of precision and recall, provides a measure of
the model’s overall performance. The DNN model achieved the highest F1-score, which
was 0.86, followed by the RF model, which had an F1-score of 0.83. The SVM and LR models
had F1-scores of 0.79 and 0.77, respectively. This score is a measure of how successfully
a model is able to distinguish between positive and negative samples. It is calculated by
plotting the true positive rate (sensitivity) against the false positive rate (1-specificity) at
various thresholds of predicted probabilities. The AUC-ROC is equal to the area under
this curve and ranges from 0 to 1, with a value of 1 indicating perfect discrimination and a
value of 0.5 indicating no better than random performance. In this study, the AUC-ROC
was calculated using the scikit-learn library in Python. Overall, these results suggest that
radiomics features can be used to develop accurate machine learning models to predict
radiation pneumonitis, and the DNN and random forest models appear to be particularly
promising. However, further studies and validation on larger and more diverse datasets
are needed to confirm the generalizability of these models.

3.1. Comparison with Clinical Factors

We also compared the performance of the radiomics-based machine learning models
with clinical factors commonly used to predict radiation pneumonitis, including radiation
dose, tumor location, and patient age. We used logistic regression models to evaluate
the predictive power of each factor individually and in combination with the radiomics
features. The results showed that the radiomics-based models outperformed the clinical
factor models in all cases, as summarized in Table 4.
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Table 4. A comparison of performance metrics for radiomics-based machine learning models and
clinical factors in predicting radiation pneumonitis.

Model AUC-ROC

Radiomics features alone 0.87

Radiation dose 0.60

Tumor location 0.65

Patient age 0.70

Radiomics features + Radiation dose 0.88

Radiomics features + Tumor location 0.88

Radiomics features + Patient age 0.88

Radiomics features alone achieved an AUC-ROC of 0.87, which indicates that the
model has excellent discrimination ability, enabling it to distinguish between patients who
will and will not develop radiation pneumonitis. In contrast, the clinical factors alone
achieved AUC-ROCs ranging from 0.60 to 0.70, which suggests that they have limited
predictive power for radiation pneumonitis. When the clinical factors were combined with
the radiomics features, the models did not show a significant improvement in performance.
This result indicates that the radiomics features are the dominant factors in predicting
radiation pneumonitis and the clinical factors do not provide additional predictive power
beyond what is already captured by the radiomics features. These results suggest that
radiomics-based machine learning models have great potential in terms of improving the
prediction of radiation pneumonitis and can provide valuable insights to clinicians for
developing personalized treatment plans.

3.2. Impact of Synthetic Minority Oversampling Technique (SMOTE)

Moreover, we investigated the impact of using the synthetic minority oversampling
technique (SMOTE) to address the class imbalance present in our dataset [25]. To rectify
the class imbalance present in our dataset and enhance the efficacy of the deep neural
network (DNN) training process, we integrated the artificially generated samples pro-
duced via the SMOTE algorithm. The integration of synthesized samples into the training
process involved a series of steps that aimed to combine the array and image data in an
effective manner.

1. The input images underwent data pre-processing procedures to ensure uniformity
and suitability for the deep neural network. The process entailed standardizing the
resolution of the images and normalizing the values of the pixels.

2. The process of extracting significant features from the images was carried out through
the utilization of a feature extraction tool, namely PyRadiomics. The utilization of
this tool facilitated the acquisition of diverse quantitative attributes pertaining to the
radiographic properties exhibited in the images.

3. The process of constructing tabular data involved amalgamating the extracted features
from the images with supplementary clinical and demographic data to generate a
comprehensive tabular representation of the dataset. The tabular data consisted of
rows that corresponded to individual image samples, while the columns represented
the extracted features and their associated attributes.

4. The SMOTE algorithm was applied to the tabular data, which included the original
samples and their respective features, for oversampling purposes. The synthetic
minority over-sampling technique (SMOTE) is a method that creates synthetic samples
by interpolating feature values between instances of the minority class. This approach
effectively balances the distribution of classes in the dataset.

5. Data integration was performed by combining the augmented dataset, which included
the original samples and the synthesized samples. The resultant dataset achieved a
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balanced class distribution by virtue of the augmented samples, which contributed to
the increased representation of the minority class.

6. The deep neural network (DNN) was trained using an augmented dataset that in-
cluded both the original and synthesized samples. In this process, the DNN archi-
tecture was utilized, which encompassed the particular layers and sizes, training
technique (e.g., ADAM), and initialization, as previously expounded. The objective of
our study was to enhance the performance of the model in capturing the features of
the minority class by integrating the synthesized samples produced via SMOTE into
the training process and merging the array and image data. The utilization of this
methodology facilitated the deep neural network (DNN) to acquire knowledge from
a more equitable and heterogeneous collection of specimens, ultimately amplifying
its aptitude to extrapolate and generate precise prognostications.

Without SMOTE, the dataset had class distributions of 21.4% for radiation pneumonitis
cases and 78.6% for non-cases. After applying SMOTE, the class distribution was balanced
at 50% for each class. The results showed that SMOTE improved the performance of the
machine learning models in predicting radiation pneumonitis. The AUC-ROC for the DNN
model increased from 0.87 to 0.90 after applying SMOTE, while the AUC-ROC for the
random forest model increased from 0.85 to 0.88. These results suggest that SMOTE can be
a useful technique for improving the performance of machine learning models in predicting
rare events, such as radiation pneumonitis.

4. Discussion

This paper investigates the potential of radiomics in predicting radiation pneumonitis,
which is a common complication in patients undergoing thoracic radiation therapy for lung
cancer. Variations in algorithm implementation, picture pre-processing, importing, and
feature definitions can all cause differences between software programs. Different image
acquisition parameters (e.g., voxel size, image reconstruction, or imaging system manu-
facturer) were demonstrated to produce considerable changes in radiomics feature values
when recovered from a variety of imaging modalities in a number of studies. These studies
are difficult to repeat and evaluate due to the difficulty of reporting a complete overview of
their procedures, and the lack of reproducibility has hampered the clinical deployment of
several promising radiomics-based detection and diagnosis schemes. Radiomics involves
extracting high-dimensional quantitative features from medical images, which can be used
as input data for machine learning models. The data in the above tables were obtained by
evaluating the performance of several machine learning models in predicting radiation
pneumonitis based on selected radiomics features. The models were trained and tested
using a dataset of patients who underwent radiation therapy for various types of lung
cancer. The dataset was curated and pre-processed to extract radiomics features from
CT images of the patients’ lungs before and after radiation therapy. The performance of
each model was evaluated using a nested cross-validation approach; the outer loop of the
cross-validation was used to evaluate the generalization performance of the models, while
the inner loop was used for hyperparameter tuning.

The paper presents an overview of the key image processing techniques, feature ex-
traction, selection methods, and machine learning algorithms used in radiomics, as well as
discussing the challenges and future directions of radiomics in radiation pneumonitis pre-
diction. Despite the fact that the feature selection methods utilized in this study produced
optimistic results, it is essential to recognize their inherent limitations. Due to the problem’s
complexity and the vast number of potential features, the selected subset of features may
not be the absolute optimal subset. To identify potentially superior subsets, additional
research is required, which could investigate alternative feature selection techniques and
assess their performance. The efficacy of individual feature selection approaches is another
limitation. Different algorithms may produce varying outcomes, and biases may be intro-
duced based on the selected method. To guarantee the dependability and generalizability
of the feature selection procedure, it is essential to conduct benchmarking and sensitivity
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analyses. Additionally, it is essential to consider feature interactions and potential syn-
ergistic effects in order to capture the complete predictive power of the chosen features.
Recognizing that the selected feature subset may not provide a comprehensive under-
standing of the data’s underlying mechanisms and relationships is essential. Focusing on
specific features may limit the interpretability of the models; however, domain knowledge
and expert insights can improve the interpretability and contextual understanding of the
results. These constraints emphasize the need for future research to resolve these obstacles.
Exploring alternative feature selection methods, undertaking comparative studies, and in-
tegrating domain knowledge are promising avenues for advancing the field and enhancing
comprehension of the issue at hand. We also discuss the importance of standardizing image
acquisition, processing, and analysis protocols, as well as developing accurate and robust
machine learning models, to ensure the clinical deployment of promising radiomics-based
detection and diagnosis schemes. The study proposes using the synthetic minority over-
sampling technique to address the high dimensionality of radiomic datasets and balance
the dataset. The authors leverage suitable hardware and open-source software frameworks
created by Pytorch and Keras, as well as other software solutions, like DNN library [26].
The paper highlights the potential clinical impact of radiomics in predicting radiation
pneumonitis and improving patient outcomes by enabling timely interventions.

The choice of the appropriate scoring criteria and parameters set, as well as the
suitability of the clinical case from which the data were collected, all have a significant
impact on the goodness-of-fit of a particular radiomics model for a given clinical case [27].

The automation of our data analysis and prediction process provides a number of
significant benefits. By employing computational algorithms, machine learning models,
and automated feature extraction techniques, we substantially reduced the need for manual
intervention and subjective decision-making. This success not only increases the efficiency
of the analysis, but also increases its reproducibility across various datasets and environ-
ments. Additionally, the automation aspect facilitates the potential for a broader application
of radiomics analysis as it reduces the amount of expertise required for manual feature se-
lection and analysis. Our research demonstrates the transformative potential of automation
in radiomics research and its capacity to uncover new insights and applications.

5. Related Works

Radiomics-based approaches have gained significant attention in recent years as a
non-invasive method for predicting radiation pneumonitis. Numerous studies have been
conducted to investigate the potential of radiomics in predicting radiation pneumonitis, and
various machine learning algorithms have been employed for this purpose. In the synopsis
below, we discuss the current state-of-the-art regarding radiomics-based approaches for
radiation pneumonitis prediction, as presented in the literature.

One of the earliest studies in this field was conducted by Zhang [28], who developed
a radiomics model using computed tomography (CT) images to predict radiation pneu-
monitis. They extracted radiomics features from the CT images and used a support vector
machine (SVM) algorithm for prediction. The model achieved an area under the receiver
operating characteristic curve (AUC-ROC) of 0.89, demonstrating the potential of radiomics
in predicting radiation pneumonitis.

Several studies also investigated the combination of radiomics features with clinical
factors to improve prediction of radiation pneumonitis. For example, Dong [29] developed
a hybrid model that combined radiomics features and clinical factors to predict radiation
pneumonitis in non-small cell lung cancer patients. The model achieved an AUC-ROC of
0.86, which was higher than those of the radiomics-only (AUC-ROC of 0.77) and the clinical
factors-only models (AUC-ROC of 0.72).

In recent years, deep learning algorithms, such as convolutional neural networks
(CNNs) and deep neural networks (DNNs), have been increasingly used in radiomics-
based approaches for radiation pneumonitis prediction. For instance, Liu [30] developed a
DNN model to predict radiation pneumonitis in lung cancer patients. The model achieved
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an AUC-ROC of 0.85, which was higher than those of the radiomics-only (AUC-ROC of
0.79) and the clinical factors-only models (AUC-ROC of 0.76).

Another approach that has gained attention in recent years is the use of radiomics
to guide treatment planning and personalize radiation therapy. For example, Guo [31]
developed a radiomics-based model for personalized radiation therapy planning in lung
cancer patients. The model predicted the risk of radiation pneumonitis and guided the
selection of radiation therapy parameters. This approach has the potential to improve
therapeutic outcomes and reduce the risk of radiation pneumonitis.

Moreover, a study published in 2021 by Wu [32] used a convolutional neural network
(CNN) to predict radiation pneumonitis based on CT images. The model achieved an AUC-
ROC of 0.81, out-performing traditional radiomics models. Another study by Wang [33]
used a combination of radiomics and deep learning techniques to predict radiation pneu-
monitis in lung cancer patients.

The model achieved an AUC-ROC of 0.87, demonstrating the potential utility of hybrid
approaches that combine the strengths of radiomics and deep learning.

Radiomics-based approaches for radiation pneumonitis prediction are still an active
area of research, with many studies being conducted to improve the accuracy and reliability
of these models. Some studies investigated the use of machine learning algorithms other
than those mentioned earlier, such as gradient boosting machines and artificial neural
networks. Additionally, there is ongoing research that aims to identify new and more
informative radiomic features, as well as validate the robustness and generalizability of
radiomics-based models across different patient populations and treatment protocols. The
ultimate goal is to develop radiomics-based models that can be readily used in clinical
practice to assist radiation oncologists in developing personalized treatment planning and
patient management practices.

6. Future Research Directions

Future work can be pursued to address research goals following the primary directions
listed below:

Validating the results on a larger and more diverse dataset.
While our study focused on lung cancer patients who received radiation therapy at

specific medical centers, it would be beneficial to confirm the results using a larger and
more diverse dataset, including patients from different geographic regions with different
types of lung cancer and who receive different treatment modalities.

Investigating the impact of other data augmentation techniques.
While SMOTE has been shown to be effective in addressing class imbalance, it would

be interesting to explore the impact of other data augmentation techniques, such as over-
sampling with synthetic minority examples (SMOTE-NC) or undersampling with the
majority class, on the performance of the predictive model.

Exploring the potential to combine imaging and clinical data.
Our study focused on using imaging data to predict treatment response; however, it

may be worth investigating the potential of combining imaging and clinical data, such as
patient demographics, smoking history, and comorbidities, to improve the accuracy of the
predictive model.

Examining the predictive model’s ability to be generalized.
While our study demonstrated good predictive performance on the test dataset, it

would be beneficial to investigate the generalizability of the model on unseen datasets,
including those from different medical centers and that use different imaging and clinical
data acquisition protocols.

Investigating the impact of different feature selection techniques.
Our study used a correlation-based feature selection technique to select the most

relevant features for the predictive model. It may be worth exploring the impact of other
feature selection techniques, such as recursive feature elimination or principal component
analysis, on the performance of the model.
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Developing personalized treatment plans.
Ultimately, the goal of predictive modeling in the context of lung cancer treatment is to

identify the most effective treatment plan for each patient. Future research could focus on
developing personalized treatment plans based on predictive models, taking into account
factors such as treatment effectiveness, side effects, and patient preferences.
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