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Abstract: For a robot to pick up an object viewed by a camera, the object’s position in the image
coordinate system must be converted to the robot coordinate system. Recently, a neural network-
based method was proposed to achieve this task. This methodology can accurately convert the
object’s position despite errors and disturbances that arise in a real-world environment, such as
the deflection of a robot arm triggered by changes in the robot’s posture. However, this method
has some drawbacks, such as the need for significant effort in model selection, hyperparameter
tuning, and lack of stability and interpretability in the learning results. To address these issues, a
method involving linear and nonlinear regressions is proposed. First, linear regression is employed
to convert the object’s position from the image coordinate system to the robot base coordinate system.
Next, B-splines-based nonlinear regression is applied to address the errors and disturbances that
occur in a real-world environment. Since this approach is more stable and has better calibration
performance with interpretability as opposed to the recent method, it is more practical. In the
experiment, calibration results were incorporated into a robot, and its performance was evaluated
quantitatively. The proposed method achieved a mean position error of 0.5 mm, while the neural
network-based method achieved an error of 1.1 mm.

Keywords: hand-eye calibration; regression; artificial bee colony; evolutionary computation

1. Introduction

Vision technologies and robots are employed in various fields, including industry and
medicine. In manufacturing, advancements in robot-based automation have addressed
the problem of manpower shortage and enabled 24-h production. One common task in
robot-based automation is picking up objects viewed by a camera with a robot hand. To
accomplish this, precise conversion of object locations from the image coordinate system
to the robot coordinate system is required. The general procedure to achieve it involves
constructing a precise mathematical model for accurate conversion [1–6] and optimiz-
ing this model through calibration [7–15], known as hand-eye calibration. This can be
accomplished by taking images of a board with a specific pattern, such as a checker-
board pattern, from various positions and then using the image group taken to optimize
a mathematical model.

However, a reported drawback to precise mathematical models is that they lack
robust responses to the various changes and errors found in real environments [16,17].
For example, if calibration is based upon structure from motion, then incorrect feature
correspondences often arise in real environments, causing large camera posture estimation
errors [18]. In addition, robot structural deflections complicating accurate co-registration
of robot arms and vision systems have been reported [19]. Thus, expressing all the errors
that might occur in a real environment by a mathematical model could significantly reduce
robot hand location errors. However, this is difficult. Recently, an approach has been
proposed to address these problems using a neural network [16]. This approach involves
training a neural network to convert an object’s location in the image coordinate system into
the robot coordinate system accurately. Using the learning data, including various errors
acquired in real environments, and a neural network with high expressivity makes robust
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conversion possible. This process has the advantage of simplicity since it no longer requires
the design of complicated mathematical models while enabling end-to-end learning, thus
simplifying its use. However, as learning results depend on the type of network model and
hyperparameters, learning results are unstable and low in explainability.

To solve these problems, this study proposes a regression-based approach using data
acquired in real-world environments. A linear regression model is used to convert object
positions from the image coordinate system to the robot coordinate system, and a nonlinear
regression model based on B-splines is used to handle errors that cannot be handled by
linear regression. Using both linear and nonlinear regressions simplifies the calculation and
results in more accurate conversion with better stability. In the experiments, the proposed
method was compared to three neural network models with different structures in terms of
calibration performance. The calibration results were used to operate a robot and evaluated.
The proposed method has the following advantages:

• The proposed method has more stability and explainability than the neural network-
based method because the regression equations are obtained;

• The proposed approach needs reduced effort because the number of hyperparameters,
which must be adjusted by a user, is smaller;

• Compared to the approach based on the neural network, the proposed method can
achieve better calibration performance.

2. Related Work

Several studies conducted on hand-eye calibration have adopted the approach of
designing a mathematical model [1–6]. A basic model example is AX = XB [4]. A and B are
both homogeneous transformation matrices, respectively, expressing the relative motions
of a camera attached to a robot hand. X is a transformation matrix between a camera
and hand that must be estimated through calibration. The general procedure includes
capturing images of a board with a specific pattern, such as a checkerboard, and optimizing
the model using the captured image set. Several mathematical models and calibration
boards [20] have been proposed to achieve more accurate and faster calibration. To optimize
the mathematical model, there are two main approaches, which are the separation and
simultaneous methods. In the former, a rotation matrix of X and translation vector are
optimized separately [7–11]. In the latter, both are solved for simultaneously [12–15].

Recent research related to hand-eye calibration is reviewed next. Fu et al. devel-
oped constrained least squares and nonlinear calibration models that consider the effect of
robot pose error [21]. Calibration for high-precision robotic machining was achieved by
selecting rotation parameters that have a significant impact on solution accuracy. Do et al.
addressed the recognition of six degrees of freedom for workpieces using an RGB-D camera
to automate robot picking and placing for production works [22]. For accurate grasping,
robot error compensation using a checkerboard was introduced. In this compensation,
a polynomial fitting algorithm was used to reduce errors. Su et al. developed a cali-
bration method to manipulate products with variable height using a robot [23]. They
experimentally calibrated a rigid transformation model and considered distortion in the
camera lens. The four-point calibration method with a calibration plate set at different
heights was applied to calculate the rigid transformation matrix. Dekel et al. proposed
a least squares formulation using dual quaternions and efficient optimization algorithms
to solve a noisy hand-eye calibration problem [24]. In this approach, a global minimum
is guaranteed by using only a 1D line search of a convex function. Yang et al. developed
a tool center point (TCP) calibration method without the need for external tools [25]. The
efficiency and accuracy of TCP calibration were achieved by establishing a constraint
model and minimizing reprojection error. Zhang et al. proposed a calibration method
using a time-of-flight camera [26]. After capturing a calibration board from different robot
poses, the calibration using singular value decomposition was performed to achieve stable
manipulation. Kalia et al. developed a method for accurate medical augmented reality [27].
In this method, a procedure of hand-eye calibration was divided into pre-operative and



Automation 2023, 4 153

intra-operative steps. Accurate calibration is possible by utilizing information that a camera
position does not change drastically. Valassakis et al. solved a calibration problem using
learning-based methods from a single RGB image [28]. The developed models predict an
extrinsic matrix from an image and regress 2D keypoints, depth, and segmentation maps,
achieving better performance than other approaches. Lembono et al. proposed a calibration
method that simultaneously improves kinematic parameters of six degrees of freedom
and extrinsic parameters of a 2D laser range finder [29]. A flat plate was located around
the robot, and calibration parameters were optimized using geometric planar constraints,
which reduced average position and orientation errors.

In addition to the above studies, some methods not based on mathematical mod-
els have been proposed [2,16]. One of the reasons for adopting these approaches is the
complexity of mathematical models accounting for the various noise and errors in real
environments. Examples include mismatching of feature points in structure from mo-
tion [18] and robot arm deflection [19]. Using data including noise and errors acquired in
real environments and learning a network model with high expressivity enables robust
conversion; this approach is expressed by B = fNN(A). A is the location of an object in
the image coordinate system, fNN is a neural network, and B is the result of A converted
with a neural network and expresses the location in the robot coordinate system. This
approach enables preparing learning data while a network model enables calibration, thus
simplifying its use.

However, this approach has several disadvantages. For example, it is difficult to
find which model structure is best. In addition, hyperparameter adjustment is time- and
labor-intensive, and there is no stability to final calibration results. Moreover, the network
model is low in explainability. Therefore, this study proposes a linear and nonlinear
regression-based approach. First, a linear regression model is trained using data acquired
in a real environment to convert the location from the image coordinate system to the
robot coordinate system. Then, a nonlinear regression model is trained to further minimize
the conversion error. By combining these models in a coarse-to-fine manner, the stability
and accuracy of the calibration process are improved, and the results are highly explainable.
The hyperparameter selection problem is also avoided. This new approach can be expressed
as B = fNLR( fLR(A)); fLR is a linear regression model and fNLR is a nonlinear regression
model. The details of this procedure are described below.

3. Proposed Method

Algorithm 1 summarizes the logical flow of the proposed method. First, data to be
used for regression analysis are created using a robot and tablet terminal. Next, linear
regression is employed to convert a position in the image coordinate system to the robot
base coordinate system using the data. To reduce error in the linear regression, nonlinear
regression based on B-splines is applied. To minimize the error as much as possible,
the control points are optimized using an evolutionary computation technique, artificial
bee colony (ABC). Finally, the obtained calibration results are used for evaluation using
the robot.

Algorithm 1 Flow of the proposed method.

1: // Regression phase
2: Data creation using a robot and tablet terminal for regression analysis (Section 3.1)
3: Linear regression to transform the coordinate system (Section 3.2)
4: while Not end of iteration do
5: Nonlinear regression based on B-splines (Section 3.3)
6: Optimization of control points to minimize error by ABC (Section 3.3.1)
7: // Evaluation phase
8: Evaluation of the calibration results using a robot (Section 4)
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3.1. Preparation

In the neural network-based method proposed by Hua et al. [16], the preliminary
preparation involves taking images of a checkerboard with a camera and acquiring multiple
corner coordinates in the image coordinate system (ΣI). This coordinate group corresponds
to A in B = fNN(A). Subsequently, a robot is manually operated such that a manipulator
tip touches one corner, and the hand location in a robot coordinate system is acquired (ΣR).
B is obtained when this data acquisition is performed for all corners. By using A as the
learning data and B as the ground truth to learn a neural network ( fNN), it is possible to
directly convert location in the image coordinate system into the robot coordinate system.

The proposed method necessitates the prior preparation of A and B as shown in
Figure 1. Considering this requirement, a system was constructed, as shown in Figure 2a.
A 6-axis articulated robot (DENSO VP-6242 [30]) and a tablet terminal (Surface Pro 7
(Microsoft, Redmond, WA, USA)), instead of a checkerboard, were used. This reason is
explained later. Figure 2b shows the details of the end-effector. A plastic box was attached
to the hand tip, with an RGB-D camera and tablet pen further attached to this box. To
acquire A, 100 black dots were displayed in Figure 3a. Tablet images were taken using an
RGB-D camera. In this study, calibration was performed for tasks, such as bolt picking in
Furukawa et al. [31], and the workspace accounts for the area were covered with black dots.
The attached camera was an Intel RealSense SR300; thus, there was no need to account
for image distortion [32]. When images were taken, OpenCV [33] was used to acquire
the location at the black dot ΣI (Figure 3b). To acquire B, the robot hand was manually
manipulated such that one black dot and the tablet pen tip touched. Thus, the hand location
in ΣR was acquired. By performing this for all black dots, it is possible to acquire B.

2. Position recognition

(Obtain data [px] in )

1. Capture the 

tablet display
3. Obtain data [mm] in 

Touched

Figure 1. Outline of the prior preparation.

(a)

Plastic box

Tablet pen

RGB-D camera

(b)

Figure 2. (a) Appearance of developed system. (b) Details of end-effector.
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(a) (b)

Figure 3. (a) Captured tablet display. (b) Circle detection to acquire ith position in ΣI ((x′i , y′i)
T).

When the prepared A and B are plotted, they appear as in Figure 4. Both distributions
are the same, but there are several points to note. First, the units are different. Therefore,
while A is the image coordinate system and has a unit of px, B is the robot coordinate
system with a unit of millimeters. To account for this difference in units, the location in ΣI ,
which is conventionally based on a pinhole camera model, is converted into the camera
coordinate system in millimeters. Then, a mathematical model is used to convert it into
a location in ΣR [2,16]. In contrast, the method proposed by Hua et al. and the proposed
method perform direct conversion with a neural network ( fNN) or linear and nonlinear
regression ( fLR and fNLR) without the need for the above procedure. Second, errors occur
when preparing B, making it difficult to manipulate the robot hand manually such that
the black dots and pen tip exactly match, resulting in frequent small errors. Although
preparing an error-free B is time-consuming, it is not realistic due to the intensive labor
involved. Consequently, calibration using data that include such errors is required.

� ��� ��� ��� ��� ��� ���
��	���
�
���

���

���

���

���

��
	�

��

�

�

��

(a)

��� ��� ��� ���
��
����
�	��

���

���

���

���

�

��

��

��

�

��
�

�	

��

(b)

Figure 4. (a) Created A (px). (b) Created B (mm).

3.2. Linear Regression

As shown in Figure 4, the distributions of A and B are the same. Therefore, linear
regression analysis can be used to obtain fLR by converting the location in ΣI ((x′i , y′i)

T)
into ΣR. Figure 5 shows an example of conversion results; while the conversion is generally
accurate, many mislocating errors are present due to errors in the ground truth B. As the
misplacement direction was irregular, it was difficult to transform the results of fLR(A) such
that errors at all points were minimized by affine transformation or perspective projection
transformation. To overcome this problem, nonlinear regression analysis ( fNLR) based on
B-splines was applied in this method.
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Figure 5. Prediction result by the linear regression ( fLR(A)).

3.3. Nonlinear Regression Based on B-Splines

The deformation based on B-splines can realize the deformation that cannot be realized
by affine transformation and perspective projection transformation [34,35]. The specific
formula is shown below.

p′i = fNLR(pi) =
3

∑
n=0

3

∑
m=0

fm(u) fn(v)cj+m,k+n (1)

u =
(

xi − xc
j+m,k+n

)/
w (2)

v =
(

yi − yc
j+m,k+n

)/
h (3)

f0(t) = (1− t)3
/

6 (4)

f1(t) =
(

3t3 − 6t2 + 4
)/

6 (5)

f2(t) =
(
−3t3 + 3t2 + 3t + 1

)/
6 (6)

f3(t) = t3
/

6 (7)

The above equations are explained in Figure 6. pi = (xi, yi)
T represents the coor-

dinates of the ith black dot converted by fLR. Moving these using the control points
(cj+m,k+n = (xc

j+m,k+n, yc
j+m,k+n)

T) represented by gray squares is considered. First, 4× 4
enclosing control points with pi at the center are selected. If the number of control points
arranged in the horizontal and vertical directions is J and K, respectively, the top-left control
point is expressed by cj,k (j ∈ [0, J − 1], k ∈ [0, K − 1]). Consequently, each of the 4× 4
control points are expressed by cj+m,k+n (m, n ∈ [0, 3]). Subsequently, Equations (2) and (3)
are used to determine u and v. w and h are the width and height between adjacent control
points, respectively. Inputting u and v into cubic B-splines basis functions ( fm, fn), it is
possible to obtain the converted coordinate (p′i). In the proposed method, the artificial bee
colony (ABC)—an evolutionary computation method—is used to optimize the location
of all control points such that these coordinates are as close as possible to B, which is the
ground truth.
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Figure 6. B-splines-based deformation.

3.3.1. Optimization of Control Point Locations with ABC

ABC [36], proposed by Sato et al., is used in the proposed method to optimize the
locations of the control point group. ABC is an evolutionary computation method with
a higher search performance than other population-based metaheuristic algorithms in
deformation parameter estimation tasks for image alignment [37]. It also has the advantage
of adjusting fewer hyperparameters by trial and error in advance. For these reasons,
the ABC proposed by Sato et al. is adopted.

Algorithm 2 shows the procedure for using this ABC to optimize control point lo-
cations. First, a target point group resulting from fLR(A) and ground truth B is used as
input. Next, J × K control points are arranged. Then, the search range of the control points,
number of individuals, and generations that are the hyperparameters of ABC are set. The
arrangement of the control point group in ABC is arranged such that it minimizes the
fitness function (F). The fitness function used is the sum of the Euclidean distances between
the point group moved by the optimized control points and each point (pGT

i ) of B, which is
the ground truth, as shown below.

F =
99

∑
i=0

∣∣∣∣∣∣p′i − pGT
i

∣∣∣∣∣∣
2

(8)

Algorithm 2 Optimization by artificial bee colony (ABC).

1: Input target points (result of fLR(A)) and ground truth (B)
2: Place J × K control points
3: Set search range of the control points and hyperparameters of ABC
4: Optimize the control point locations based on a fitness function

Figure 7 shows an example of optimization results. By comparing (a) with (b), the ar-
rangement of the control points indicated by the green squares has changed. In (b),
the points where the error is less than the result of fLR(A) due to the introduction of
nonlinear regression are rendered in cyan. In this example, the 3/4 error is reduced, indi-
cating that the introduction of nonlinear regression contributes to further error reduction.
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Figure 7. An example of the optimization result of the control points (a) before and (b) after.

4. Experiment

One A and five B were prepared to evaluate the proposed method and a comparative
method through the five-fold cross validation (Figure 8). Four learning datasets for learning
regression analysis or a neural network model were used. Then, each of the learning results
was evaluated using one remaining dataset as test data. Equation (8) was used to evaluate
the learning results by test data.

・・・

Five patterns

: Train data : Test data

Figure 8. Five-fold cross validation.

In linear regression analysis in the proposed method, Equation (9) was employed.[
xi
yi

]
=

[
α00 α01
α10 α11

][
x′i
y′i

]
+

[
β0
β1

]
(9)

Here, α and β are the coefficients and intercepts estimated by regression analysis,
respectively. The three models shown in Figure 9 were prepared as the comparative
neural network model. In order to compare the proposed method with that of Hua
and Zeng [16], it would have been ideal to reproduce their model. However, detailed
information was not provided in their paper, making replication difficult. I considered
alternative models, but the number of hyperparameters is too large and this is not the
main objective of this study. Considering this reason and the fact that the dataset used in
this study does not have a complex distribution, as shown in Figure 4, the simple three
models shown in Figure 9 were prepared and compared. They are capable of linear and
nonlinear regressions like the proposed method. The number of weights affects regression
performance. However, it is difficult to predict in advance the best number of weights
for hand-eye calibration. Therefore, models with three different numbers of weights were
prepared. These models were developed previously by the author through trial and error
and have good performance. A mean squared error loss function was set for learning. For
the optimizer, Adam [38] was used, and a learning coefficient of 0.01 was set. The number
of epochs was 5000.
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24842Model 1

281682Model 2

23264322Model 3

[px] [mm]

ReLU ReLU ReLU

Figure 9. Compared multi-layer perceptrons (MLPs).

The individual size of ABC used in control point optimization was set to a sufficiently
large value of 1000 to avoid falling into a local solution. The number of evaluations for the
fitness function was set to 3× 106. The number of control points arranged in the horizontal
and vertical directions (J and K) was 14 and 13, respectively. Therefore, the number of
dimensions of variables optimized by ABC was 14× 13× 2 = 364. The horizontal and
vertical distances (w and h) between adjacent control points were 20 and 14, respectively.
The search range of each optimized control point was [−5, 5].

4.1. Results and Discussion
4.1.1. Five-Fold Cross Validation (CV)

Table 1 shows the results of five-fold CV. When comparing fLR, which performs only
linear regression, and a neural network-based method ( fNN), the former has a smaller mean
test data error. In addition, minimal error variance was observed. Consequently, the linear
regression model has higher stability. In addition, the neural network model was equal to
that of the linear regression model in results. However, the large variance in results resulted
in poor stability. Table 2 lists the partial regression coefficient and constant term obtained
by linear regression analysis using the learning data. By comparing the result of applying
the nonlinear regression formula based on B-splines to the obtained linear regression
formula ( fNLR( fLR)), the mean distance error was smaller than fLR. Consequently, nonlinear
regression contributes to the further reduction in error. Figure 10 shows the absolute errors
of x and y directions by fLR(A) and fNLR( fLR(A)), respectively. Not all, but many errors
were decreased.

Table 1. Results of five-fold cross validation (CV).

Mean Distance Error (mm)
CV fNLR( fLR) fLR fNN (Model 1) fNN (Model 2) fNN (Model 3)

1 0.53 0.69 1.08 0.80 0.86
2 0.57 0.70 0.71 0.79 4.64
3 0.61 0.66 1.44 0.88 5.08
4 0.66 0.67 1.65 1.61 2.84
5 0.64 0.68 2.15 1.98 5.67

Ave. 0.60 0.68 1.40 1.21 3.82
SD 0.04 0.01 0.49 0.49 1.76
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Figure 10. Absolute errors of x (left column) and y (right column) directions by fLR(A) and
fNLR( fLR(A)), respectively. Each row from the top shows the result of CV 1 to CV 5.
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Table 2. Acquired partial regression coefficients and constants by the linear regression analysis.

CV Partial Regression
Coefficients Constants

1
[

3.3× 10−1 8.1× 10−4

−6.8× 10−5 3.3× 10−1

] [
203.8
−93.4

]
2

[
3.3× 10−1 8.4× 10−4

−5.6× 10−6 3.3× 10−1

] [
203.8
−93.4

]
3

[
3.3× 10−1 9.8× 10−4

1.1× 10−6 3.3× 10−1

] [
203.7
−93.4

]
4

[
3.3× 10−1 9.6× 10−4

−9.6× 10−5 3.3× 10−1

] [
203.7
−93.5

]
5

[
3.3× 10−1 9.0× 10−4

−1.4× 10−4 3.3× 10−1

] [
203.7
−93.4

]

4.1.2. Evaluation Using Robot

Subsequently, the calibration results obtained through each method were evaluated by
introducing them to the robot hand shown in Figure 2. A hand holding a tablet pen touched
100 black dots displayed on the tablet screen, and the mean touch error was obtained.
As a tablet terminal was used, it is possible to measure the distance error of the ground
truth black dots and touched locations. The obtained results were in px units and can be
converted to mm using the following formula:

pmm = ppx ×
25.4
PPI
× s, (10)

where pmm, ppx, PPI, and s are the converted result in mm, position in pixel, pixel per
inch, and display scale of the tablet computer, respectively. The PPI and s depend on a
used tablet computer. In the developed system, PPI = 267 and s = 2 were set. For fNN,
the experimentation was conducted using Model 2, which had the smallest error, with the
results listed in Table 1.

Even in the experiment using a robot (Table 3), the mean touch error of fNLR( fLR)
was the smallest. Compared to fLR, the error was reduced by 0.28 mm. Consequently,
introducing nonlinear regression contributes to error reduction. In addition, the neural
network model mean touch error was 1 mm or more. If other network structures or models
were used, this error may be even smaller. However, several structures and models have
been previously proposed and selecting the optimal model for the tasks in this study
was not easy. Even tentative selection requires the adjustment of various parameters
at then time of learning. When these points are considered, fewer hyperparameters in
the proposed method must be considered, thus making it stable and robustly responsive
to differences in learning data. The mean touching error of fNLR( fLR) was not a great
achievement compared to the position repeatability of the used robot (±0.02 mm [30]).
However, the error was the smallest compared to the other methods. Consequently, when
comprehensively assessed, the approach in the proposed method has higher performance
than a neural network-based approach.

Table 3. Evaluation results for each calibration method using robot.

Mean Touching Error
Method px mm

fNLR( fLR) 2.63 0.50
fLR 4.12 0.78

fNN (Model 2) 5.79 1.10
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5. Conclusions

This study attempted to construct a method with improved stability and better perfor-
mance than the recently proposed neural network-based hand-eye calibration. A neural
network uses high expressivity and can directly convert locations in the image coordinate
system to the robot coordinate system. However, the learning results are not stable. There-
fore, the proposed method focuses on regression analysis to address the stability problem.
As the linear regression of data, including various noise and error, is insufficient, nonlinear
regression based on B-splines has been introduced. When learning results were introduced
to a robot and the touch error was measured, the regression-based hand-eye calibration
could achieve higher stability and lower touch error than that of the neural network-based
model. In addition, linear regression analysis error could be further reduced by introducing
nonlinear regression analysis.

In future work, the method must be improved to further reduce error. In addition,
a method that takes into account 3D space will be constructed. The reason for this is that it
is necessary when considering assembly automation in 3D space using robots.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Sato, J. Hand-Eye Calibration Using a Tablet Computer. Math. Comput. Appl. 2023, 28, 22. [CrossRef]
2. Enebuse, I.; Foo, M.; Ibrahim, B.S.K.K.; Ahmed, H.; Supmak, F.; Eyobu, O.S. A Comparative Review of Hand-Eye Calibration

Techniques for Vision Guided Robots. IEEE Access 2021, 9, 113143–113155. [CrossRef]
3. Jiang, J.; Luo, X.; Luo, Q.; Qiao, L.; Li, M. An Overview of Hand-Eye Calibration. Int. J. Adv. Manuf. Technol. 2022, 22, 77–97.

[CrossRef]
4. Shiu, Y.C.; Ahmad, S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form

AX = XB. IEEE Trans. Robot. Autom. 1989, 5, 16–29. [CrossRef]
5. Motai, Y.; Kosaka, A. Hand-Eye Calibration Applied to Viewpoint Selection for Robotic Vision. IEEE Trans. Ind. Electron. 2008,

55, 3731–3741. [CrossRef]
6. Zhuang, H.; Roth, Z.; Sudhakar, R. Simultaneous robot/world and tool/flange calibration by solving homogeneous transforma-

tion equations of the form AX = YB. IEEE Trans. Robot. Autom. 1994, 10, 549–554. [CrossRef]
7. Tsai, R.Y.; Lenz, R.K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot.

Autom. 1989, 5, 345–358. [CrossRef]
8. Wang, C.C. Extrinsic calibration of a vision sensor mounted on a robot. IEEE Trans. Robot. Autom. 1992, 8, 161–175. [CrossRef]
9. Park, F.C.; Martin, B.J. Robot sensor calibration: Solving AX = XB on the Euclidean group. IEEE Trans. Robot. Autom. 1994,

10, 717–721. [CrossRef]
10. Ma, S.D. A self-calibration technique for active vision systems. IEEE Trans. Robot. Autom. 1996, 12, 114–120.
11. Daniilidis, K. Hand-Eye Calibration Using Dual Quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [CrossRef]
12. Horaud, R.; Dornaika, F. Hand-Eye Calibration. Int. J. Robot. Res. 1995, 14, 195–210. [CrossRef]
13. Andreff, N.; Horaud, R.; Espiau, B. Robot Hand-Eye Calibration using Structure from Motion. Int. J. Robot. Res. 2001, 20, 228–248.

[CrossRef]
14. Zhao, Z. Hand-eye calibration using convex optimization. In Proceedings of the International Conference on Robotics and

Automation, Shanghai, China, 9–13 May 2011; pp. 2947–2952.
15. Heller, J.; Havlena, M.; Pajdla, T. Globally Optimal Hand-Eye Calibration Using Branch-and-Bound. IEEE Trans. Pattern Anal.

Mach. Intell. 2016, 38, 1027–1033. [CrossRef] [PubMed]
16. Hua, J.; Zeng, L. Hand-Eye Calibration Algorithm Based on an Optimized Neural Network. Actuators 2021, 10, 85. [CrossRef]
17. Sun, W.; Liu, J.; Zhao, Y.; Zheng, G. A Novel Point Set Registration-Based Hand-Eye Calibration Method for Robot-Assisted

Surgery. Sensors 2022, 22, 8446. [CrossRef]
18. Zhi, X.; Schwertfeger, S. Simultaneous Hand-Eye Calibration and Reconstruction. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 1470–1477.

http://doi.org/10.3390/mca28010022
http://dx.doi.org/10.1109/ACCESS.2021.3104514
http://dx.doi.org/10.1007/s00170-021-08233-6
http://dx.doi.org/10.1109/70.88014
http://dx.doi.org/10.1109/TIE.2008.921255
http://dx.doi.org/10.1109/70.313105
http://dx.doi.org/10.1109/70.34770
http://dx.doi.org/10.1109/70.134271
http://dx.doi.org/10.1109/70.326576
http://dx.doi.org/10.1177/02783649922066213
http://dx.doi.org/10.1177/027836499501400301
http://dx.doi.org/10.1177/02783640122067372
http://dx.doi.org/10.1109/TPAMI.2015.2469299
http://www.ncbi.nlm.nih.gov/pubmed/26353364
http://dx.doi.org/10.3390/act10040085
http://dx.doi.org/10.3390/s22218446


Automation 2023, 4 163

19. Wang, Z.; Liu, Z.; Ma, Q.; Cheng, A.; Hui Liu, Y.; Kim, S.; Deguet, A.; Reiter, A.; Kazanzides, P.; Taylor, R.H. Vision-Based
Calibration of Dual RCM-Based Robot Arms in Human-Robot Collaborative Minimally Invasive Surgery. IEEE Robot. Autom.
Lett. 2018, 3, 672–679. [CrossRef]

20. Lin, W.; Liang, P.; Luo, G.; Zhao, Z.; Zhang, C. Research of Online Hand-Eye Calibration Method Based on ChArUco Board.
Sensors 2022, 119, 3805. [CrossRef]

21. Fu, J.; Ding, Y.; Huang, T.; Liu, X. Hand-eye calibration method with a three-dimensional-vision sensor considering the rotation
parameters of the robot pose. Int. J. Adv. Robot. Syst. 2020, 17, 1–13. [CrossRef]

22. Do, Q.T.; Chang, W.Y.; Chen, L.W. Dynamic Workpiece Modeling with Robotic Pick-Place Based on Stereo Vision Scanning Using
Fast Point-Feature Histogram Algorithm. Appl. Sci. 2021, 11, 11522. [CrossRef]

23. Su, S.; Gao, S.; Zhang, D.; Wang, W. Research on the Hand-Eye Calibration Method of Variable Height and Analysis of
Experimental Results Based on Rigid Transformation. Appl. Sci. 2022, 12, 4415. [CrossRef]

24. Dekel, A.; Häenstam-Nielsen, L.; Caccamo, S. Optimal least-squares solution to the hand-eye calibration problem. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’2020), Seattle, WA, USA, 13–19 June 2020;
pp. 13595–13603.

25. Yang, Z.; Gong, L.; Liu, C. Efficient TCP Calibration Method for Vision Guided Robots Based on Inherent Constraints of Target
Object. IEEE Access 2021, 9, 8902–8911. [CrossRef]

26. Zhang, X.; Yao, M.; Cheng, Q.; Liang, G.; Fan, F. A novel hand-eye calibration method of picking robot based on TOF camera.
Front. Plant Sci. 2023, 13, 1099033. [CrossRef] [PubMed]

27. Kalia, M.; Mathur, P.; Navab, N.; Salcudean, S.E. Marker-less real-time intra-operative camera and hand-eye calibration procedure
for surgical augmented reality. Healthc. Technol. Lett. 2019, 6, 255–260. [CrossRef] [PubMed]

28. Valassakis, E.; Drezckowski, K.; Johns, E. Learning Eye-in-Hand Camera Calibration from a Single Image. In Proceedings of the
Conference on Robot Learning (CoRL’2021), Virtual, 8–11 November 2021; pp. 1–11.

29. Lembono, T.S.; Suárez-Ruiz, F.; Pham, Q.C. SCALAR: Simultaneous Calibration of 2D Laser and Robot Kinematic Parameters
Using Planarity and Distance Constraints. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’2018), Madrid, Spain, 1–5 October 2018; pp. 5570–5575.

30. Denso Robot User Manuals. Available online: http://eidtech.dyndns-at-work.com/support/RC8_Manual/005929.html
(accessed on 1 February 2023).

31. Furukawa, H.; Sato, J.; Yamada, T.; Ito, K.; Ito, S. Grasping Position Detection Using Template Matching and Differential Evolution
for Bulk Bolts. In Proceedings of the 45th Annual Conference of the Industrial Electronics Society, Lisbon, Portugal, 14–17 October
2019; pp. 5482–5487.

32. Projection in Intel RealSense SDK 2.0. Available online: https://dev.intelrealsense.com/docs/projection-in-intel-realsense-sdk-20
(accessed on 1 February 2023).

33. OpenCV. Available online: https://opencv.org/ (accessed on 1 February 2023).
34. Nakane, T.; Xie, H.; Zhang, C. Image Deformation Estimation via Multiobjective Optimization. IEEE Access 2022, 10, 53307–53323.

[CrossRef]
35. Lee, S.; Wolberg, G.; Shin, S.Y. Scattered Data Interpolation with Multilevel B-Splines. IEEE Trans. Vis. Comput. Graph. 1997,

3, 228–244. [CrossRef]
36. Sato, J.; Yamada, T.; Ito, K.; Akashi, T. Artificial Bee Colony for Affine and Perspective Template Matching. IEEJ Trans. Electr.

Electron. Eng. 2022, 17, 566–574. [CrossRef]
37. Sato, J.; Yamada, T.; Ito, K.; Akashi, T. Performance Comparison of Population-Based Meta-Heuristic Algorithms in Affine

Template Matching. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 117–126. [CrossRef]
38. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2017.2737485
http://dx.doi.org/10.3390/s22103805
http://dx.doi.org/10.1177/1729881420977296
http://dx.doi.org/10.3390/app112311522
http://dx.doi.org/10.3390/app12094415
http://dx.doi.org/10.1109/ACCESS.2021.3049964
http://dx.doi.org/10.3389/fpls.2022.1099033
http://www.ncbi.nlm.nih.gov/pubmed/36733593
http://dx.doi.org/10.1049/htl.2019.0094
http://www.ncbi.nlm.nih.gov/pubmed/32038867
http://eidtech.dyndns-at-work.com/support/RC8_Manual/005929.html
https://dev.intelrealsense.com/docs/projection-in-intel-realsense-sdk-20
https://opencv.org/
http://dx.doi.org/10.1109/ACCESS.2022.3174360
http://dx.doi.org/10.1109/2945.620490
http://dx.doi.org/10.1002/tee.23542
http://dx.doi.org/10.1002/tee.23274

	Introduction
	Related Work
	Proposed Method
	Preparation
	Linear Regression
	Nonlinear Regression Based on B-Splines
	Optimization of Control Point Locations with ABC


	Experiment
	Results and Discussion
	Five-Fold Cross Validation (CV)
	Evaluation Using Robot


	Conclusions
	References

