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Abstract: Electrocaloric effect is the adiabatic temperature change in a dielectric material when
an electric field is applied or removed, and it can be considered as an alternative refrigeration
method. Materials with ferroelectric order exhibit large temperature variations in the vicinity of a
phase transition, while antiferroelectrics and relaxors may exhibit a negative electrocaloric effect.
In this study, the temperature variation in polarization was investigated for epitaxial ferroelectric
thin film structures based on PbZrTiO3 materials in simple or complex multilayered structures.
We propose the intriguing possibility of a giant negative electrocaloric effect (∆T = −3.7 K at room
temperature and ∆T =−5.5 K at 370 K) in a simple epitaxial Pb(ZrTi)O3 capacitor. Furthermore, it was
shown that abnormal temperature variation in polarization is dependent on the non-FE component
introduced in a multilayered structure. No significant variation in polarization with temperature was
obtained for PZT/STON multilayered structures around room temperature. However, for PZT/BST
or PZT/Nb2O5 multilayers, an abnormal temperature variation in polarization was revealed, which
was similar to a simple PZT layer. The giant and negative ∆T values were attributed to internal
fields and defects formed due to the large depolarization fields when the high polarization of the FE
component was not fully compensated either by the electrodes or by the interface with an insulator
layer. The presented results make Pb(ZrTi)O3-based structures promising for cooling applications
operating near room temperature.

Keywords: negative electrocaloric effect; epitaxial thin films; PZT; pyroelectric coefficient

1. Introduction

Solid-state refrigeration technology via electrocaloric effect (ECE) is welcomed in many
fields, such as modern electronics, communications, medical and military, etc., in order to
replace traditional refrigeration technology using Freon gas [1,2]. ECE is defined as the
change in the isothermal entropy or adiabatic temperature of dielectric materials when the
electric field is changed, and it may represent the solution of converting electrical energy
into thermal energy [3–7].

The direct methods used to characterize ECE in different materials imply calorimetric
methods to directly measure the entropy variation (∆S) or temperature sensors to measure
temperature variation (∆T) [6,8,9].

The most common methods found in the literature focusing on the ECE are based on
an indirect method, which is obtained from the Maxwell relations [8]:(

∂S
∂E

)
T,X

=

(
∂P
∂T

)
E,X

(1)
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where S represents the entropy, E represents the electric field, P is polarization, and T is the
temperature. When the electric field E is changed from E1 to E2, the entropy variation can
be deduced as:

∆S =
∫ E2

E1

(
∂P
∂T

)
E,X

dE (2)

Considering TdS = −CedT, where Ce is the specific heat capacity, and ρ is the density:

∆T = −
∫ E2

E1

T
ρCe

(
∂P
∂T

)
E,X

dE (3)

ECE can be observed in any dielectric material when the applied electric field induces
a change in electric polarization. However, the most significant results are obtained in
ferroelectric (FE) or antiferroelectric (AFE) materials, especially in the vicinity of the phase
transition [10–13].

Conventional ECE implies ∂P
∂T < 0 and is usually obtained in paraelectric phases or FE

phases when the electric field and polarization have the same direction.
Inverse or negative ECE is obtained when ∂P

∂T > 0 and is usually obtained in AFE
materials for electric fields in the range of AFE–FE transition [14–16]. Similarly, negative
ECE could be obtained in the FE phase under different conditions: when the electric field
is antiparallel with polarization and induces switching, the non-collinearity between the
electric field and polarization, or a phase transition between different FE phases, multilayers,
or defects, induces dipoles [17–22].

Pb(Zr,Ti)O3 is a well-known FE order perovskite material. Different Zr/Ti ratios give
different structural symmetries and FE properties such as dielectric constant, polarization,
or phase transition temperature. For the EC field, the most studied compositions are
of Zr between 80% and 100% for which PZT is at the phase boundary between AFE
and FE or in the AFE phase, respectively [3,23,24]. For these compositions, high levels of
adiabatic temperature changes have been obtained close to the phase transition temperature.
Additionally, doping with La on the A-site position with AFE or relaxor behavior has been
intensively investigated for the EC effect [16,25]. More recently, multilayer structures
based on PZT have been studied for large adiabatic temperature changes around room
temperature: PZT–CFO multilayers or multilayered structures based on different PZT
compositions of PZT exhibit large negative EC around RT [16,26,27].

Our study is based on the indirect evaluation of ECE in epitaxial FE thin film PbZrTiO3
(20/80) (PZT). The simple PZT thin film capacitors have high-quality structures, with
epitaxial growth and smooth interfaces. Electrical characterization reveals a rectangular
hysteresis loop with high polarization and low leakage currents, compared with the switch-
ing and displacement currents specific for FE and insulators. Temperature variation in
the 200–400 K range induces a polarization increase, which determines a negative ECE.
XRD measurements between room temperature (RT) and 100 ◦C have not revealed a struc-
tural change, which is expected for this temperature range since the phase transition is
expected to be over 680 ◦C [28]. This abnormal temperature dependence of polarization
is tested for different multilayer configurations. Additional layers of semiconducting Nb-
dopped SrTiO3 or insulators such as BaSrTiO3 or Nb2O5 are also used. For the case of a
resistive-like additional layer, the multilayer polarization does not change near RT, while
for FE/insulator multilayers, polarization increases as the temperature rises. These results
demonstrate that the inverse ECE could be strongly influenced by external circuit elements
or by changes in the electrostatic conditions induced by the non-FE components.

2. Materials and Methods

The structures were grown on SrTiO3 (001) (STO) substrates, each structure in a
single process, through pulsed laser deposition (PLD) using a workstation from Surface
GmbH and commercial targets acquired from Pi-KEM Ltd., Tamworth, UK. The system
uses a KrF excimer laser with a wavelength of 248 nm, a repetition rate of 10 Hz, and a
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maximum energy of 700 mJ. The specific conditions used for the growth of the SrRuO3
bottom electrodes and PZT layers have been published elsewhere [29,30]. Additional layers
of semiconductor or insulator were deposited at the same temperature and repetition rate
with the PZT layer, at an oxygen pressure between 0.14 and 0.2 mbar, and a fluence around
2 J/cm2. Platinum square electrodes with 0.01 mm2 were deposited ex situ via sputtering
through stencil masks for electrical characterization.

The samples were electrically characterized at different temperatures in a Lakeshore
cryostation with micro-manipulated arms, and hysteresis loops (P–V) were recorded using
a TF 2000 aixACCT Systems.

XRD measurements were performed using a Rigaku-SmartLab X-ray diffractometer
(Rigaku Corporation, Tokyo, Japan) with a conventional Cu anode X-ray tube, powered
at 40 kV and 40 mA. The symmetric XRD scans corrected for the single crystal surface
miscut, 2θ ω scans, were performed with a Ge(220) monochromator in the incident beam
and a HyPix detector in 0D mode, in the 2θ range 18–26◦ and 38–50◦. The reciprocal
space mapping (RSM) images were taken with a HyPix 3000 camera in 2D mode, around
χ = 0 (symmetric to the sample surface), within 2θ = 35–51◦, and χ = ±15◦. The XRD
measurements above room temperature were performed by using a DHS 1100 temperature
chamber (Anton Paar GmbH, Graz, Austria), in a normal atmosphere, with a temperature
ramp rate of 10 ◦C/min and 5 min stabilization time at each temperature. The XRD
measurements were performed at 30, 50, 70, and 100 ◦C, in the scan range.

TEM investigations were performed on an analytical electron microscope JEM-ARM
200 F operated at 200 kV.

3. Results

In Figure 1, the polarization–voltage measurements are shown for the 1 kHz frequency
and 5 V amplitude at different temperatures between 200 K and 370 K for a 200 nm thickness
epitaxial PZT layer deposited on the SRO bottom electrode. Ferroelectricity was present for
the entire temperature range, and all measurements showed the characteristic rectangular
shapes of the hysteresis loops with a sharp transition at the coercive voltage and very low
leakage currents at higher voltages. It can be observed that the polarization dependence,
for non-switching voltage ranges, had an atypical dependence on temperature. The polar-
ization values increased from 65 µC/cm2 to 95 µC/cm2 as the temperature increased. The
results are shown in Figure 2a for different voltages. A normal behavior implies a slow
polarization decrease with temperature or an almost constant value if the measurement
interval is much lower than the transition temperature. This normal behavior was obtained,
for example, in polycrystalline PZT 20/80 deposited through sol–gel on SRO/STO (see
Figure S2), where polarization was almost constant in the 100–300 K range for all voltages.
A polarization variation with temperature is associated with a pyroelectric effect, and the
indirect pyroelectric coefficient is deduced as dP/dT and represented in Figure 2b. The
indirect pyroelectric coefficient increased as the temperature rose, and it also depended
on the applied voltage, as it is shown in Figure S1b. Near RT, a value of 0.00175 C/m2K
was obtained for voltages around 2 V, and then it decreased to 0.00135 C/m2K for 4 V.
Using Equation (3), the adiabatic temperature change ∆T can be obtained, considering
the heat capacity Ce = 330 JK−1kg−1 and density ρ = 8.3 gcm−3. The results are shown
in Figure 2c. Due to the abnormal increase in polarization values when the temperature
increased, negative values were obtained for ∆T, representing a negative ECE. Giant values
of ∆T = −1 K and ∆T = −5.5 K were obtained at 370 K for 1 V and 3 V, respectively. At
RT, a maximum of ∆T = −3 V was obtained. These are very high values for adiabatic
temperature changes when compared with the values of |∆T| > 10 K obtained for relaxor
ferroelectrics [7,31,32], antiferroelectrics [7,14,33] or multilayers [26]. Additionally, large
∆T are characteristic for temperatures close to the phase transition, therefore a much higher
temperature for PZT-based materials.
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Figure 1. The hysteresis measurements performed between 200 K and 370 K at 1 kHz frequency and 
5 V amplitude for epitaxial thin film PZT/SRO/STO. 
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Figure 1. The hysteresis measurements performed between 200 K and 370 K at 1 kHz frequency and
5 V amplitude for epitaxial thin film PZT/SRO/STO.
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Figure 2. (a) The temperature dependence of polarization after switching for different voltages; (b) the
indirectly evaluated pyroelectric coefficient as a function of temperature and different voltages; (c)
the indirectly deduced adiabatic temperature variation as a function of temperature and voltages for
epitaxial thin film PZT/SRO/STO.

One of the reasons why, sometimes, incorrect negative ECE is obtained from the indi-
rect method (leading to a frequency and applied fields dependency [34,35]) is incomplete
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switching (when a high frequency or a lower field is applied). Increasing the temperature,
the coercive field decreased, and at the same maximum applied field, a complete switching
could be obtained at elevated temperature, giving an apparent increase in polarization
with temperature. In our case, at a lower temperature, the coercive voltage was 3.5 V, and
the maximum applied voltage was 4.5 V. For good epitaxial thin films with a polarization
perpendicular to the surface of the sample, switching was very fast. A variation from
–P to +P was revealed in less than 1 V. For bulk ceramics or organic ferroelectrics, it is
normal to perform PV measurements at lower frequencies, due to the large loading time/
large time constant systems. For epitaxial thin films such as the ones used in our study, at
lower frequencies, the leakage current was much higher than the displacement current and
resulted in many errors in the extraction of the remnant polarization.

The polarization increase with temperature is usually associated with larger conduc-
tion due to leakage currents. This measurement method is based on recording the total
current and then integrating it over the time interval to deduce the polarization. However,
in this case, the leakage current was much lower than the displacement current at this
frequency. This was also corroborated by the results of the remnant hysteresis measure-
ments, which were performed to exclude the non-switching contribution. In Figure S1a,
the remnant hysteresis loops are represented for positive voltages at different temperatures,
and it can be observed that polarization values were similar, while the polarization increase
with increasing temperature is also presented. The epitaxial ferroelectric thin films, with
high polarization as is the case of the PZT 20/80, could exhibit different domain configu-
rations, due to the large depolarization fields induced during the deposition and cooling
of the sample. The presence of a-type domains, with polarization oriented in-plane of the
surface, is often reported. This domain did not contribute to the measured polarization
along an axis perpendicular to the sample surface. A temperature increase could change the
number of domains, and by decreasing their volumes, it may induce an extrinsic increase
in polarization. For this purpose, the XRD measurements were performed for different
temperatures between 30 ◦C and 100 ◦C and the results are shown in Figure 3.

The 2θ ω scans show only the 00 l lines of PZT, the pseudocubic SRO film, and the
cubic STO substrate. As we commonly obtain for PZT/SRO/STO heterostructures, there
are two kinds of PZT structures, a major one characterized by a smaller out-of-plane lattice
constant and a minor component with a larger one. We interpret that the minor PZT
component is a thin layer close to the interface, compressively strained due to the epitaxial
accommodation to the smaller in-plane constant of SRO and STO [36]. We further named
the stressed component PZT-s, in contrast to the other component, called relaxed PZT, PZT-r.
The diffraction lines generated by the gold electrodes deposited on the heterostructure
(for electrical measurements) are also visible. As shown in Figure 3a, the 2θ ω scans were
performed around the 001 STO peak, where the layer oscillations of the SRO film are
well visible, and around the 002 STO peak, where the better angular resolution allows us
to follow the temperature-induced line displacements. It is observed that the SRO layer
oscillations retained their clarity with temperature, showing that the smoothness of the SRO
interfaces did not deteriorate with temperature in this range. The zoomed views presented
at the bottom of Figure 3a emphasize the peak displacements caused by temperature. It
is observed that the peak corresponding to PZT-r shifted toward larger angles, indicating
a decrease in the c lattice parameter of the tetragonal PZT structure as the temperature
increased. The PZT-s peak practically did not change and neither did the SRO and STO
peaks in the investigated temperature range. The Au line shifted to lower angles, indicating
the expected thermal expansion of the gold electrodes.



Electron. Mater. 2022, 3 349

Electron. Mater. 2022, 3, FOR PEER REVIEW 7 
 

 

structure as the temperature increased. The PZT-s peak practically did not change and 
neither did the SRO and STO peaks in the investigated temperature range. The Au line 
shifted to lower angles, indicating the expected thermal expansion of the gold electrodes. 

It is known that epitaxial PZT thin films relax by alternating the majority of c-type 
domains with narrow a-type domains, which grow slightly tilted from the interface (at 2–
3°), forming a typical c/a/c/a structure. Reciprocal space mapping (RSM) was performed 
in the vicinity of the 002 STO node at different temperatures in order to study the 
temperature dependence of the c/a/c/a structure. The diffraction spots recorded in (2θ, χ) 
coordinates were identified, as shown in Figure 2b. No noticeable changes were observed 
in the RSM images for this temperature range. 

 
Figure 3. XRD measurements at different temperatures: (a) 2θ ω scan; (b) reciprocal space mapping 
around 002 STO.; the spots indicated as PZT 200 originate from tilted PZT-a domains [37]. 

The evolution of polarization with temperature was further analyzed for 
multilayered structures based on epitaxial PZT 20/80 thin films. We analyzed the case of 
PZT in contact with a 10 nm thin layer of Nb-doped SrTiO3 (STON) in two different 
configurations: STON/PZT/SRO/STO or PZT/STON/SRO/STO. The STON thin film is 
known to be a semiconductor, and it is used to increase the non-FE external resistance. In 
Figure 4a,b, the hysteresis measurements at different temperatures are shown for the two 
configurations. Compared with the PZT thin film capacitor, a noticeable increase in the 
coercive voltage could be observed, due to increasing the total time constant of the circuit 
since the non-FE series resistance increased [38]. Polarization was almost constant at 
around 70–75 µC/cm2 for the measured temperature range, and it showed no dependence 
on voltage. 

Figure 3. XRD measurements at different temperatures: (a) 2θ ω scan; (b) reciprocal space mapping
around 002 STO.; the spots indicated as PZT 200 originate from tilted PZT-a domains [37].

It is known that epitaxial PZT thin films relax by alternating the majority of c-type
domains with narrow a-type domains, which grow slightly tilted from the interface (at 2–3◦),
forming a typical c/a/c/a structure. Reciprocal space mapping (RSM) was performed in
the vicinity of the 002 STO node at different temperatures in order to study the temperature
dependence of the c/a/c/a structure. The diffraction spots recorded in (2θ, χ) coordinates
were identified, as shown in Figure 2b. No noticeable changes were observed in the RSM
images for this temperature range.

The evolution of polarization with temperature was further analyzed for multilayered
structures based on epitaxial PZT 20/80 thin films. We analyzed the case of PZT in contact
with a 10 nm thin layer of Nb-doped SrTiO3 (STON) in two different configurations:
STON/PZT/SRO/STO or PZT/STON/SRO/STO. The STON thin film is known to be a
semiconductor, and it is used to increase the non-FE external resistance. In Figure 4a,b, the
hysteresis measurements at different temperatures are shown for the two configurations.
Compared with the PZT thin film capacitor, a noticeable increase in the coercive voltage
could be observed, due to increasing the total time constant of the circuit since the non-FE
series resistance increased [38]. Polarization was almost constant at around 70–75 µC/cm2

for the measured temperature range, and it showed no dependence on voltage.
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Figure 4. (a,b) The hysteresis measurements performed at different temperatures for
STON/PZT/SRO and PZT/STON/SRO/STO; (c,d) the constant dependence of polarization as
a function of temperature for STON/PZT/SRO and PZT/STON/SRO/STO.

Further multilayered structures were fabricated with two different insulator thin films
deposited on top of the PZT layer: BST/PZT/SRO/STO and Nb2O5/PZT/SRO/STO. The
presence of the insulator layer in contact with the main FE acted as a series capacitor. During
switching, the series capacitor was charged and induced an internal field in the FE in the
opposite direction to the polarization. This resulted in an induced back-switching effect at
0 V [38]. This phenomenon was revealed for both structures, as shown in Figure 5, for all
temperatures. A reduction in the maximum polarization at RT to around 30 and 40 µC/cm2

was obtained for Nb2O5/PZT/SRO/STO and BST/PZT/SRO/STO, respectively. This is
explained by the high depolarization fields appearing in these multilayered structures
during cooling after deposition at high temperatures. For these structures, the polarization
increased with the increasing temperature, and it was found to have a similar behavior as
the simple PZT layer, as can be observed in Figures 6a and 7a. The pyroelectric coefficient
evaluated indirectly was reduced by a factor of ≈2 for both cases, compared with the
simple PZT layer. A negative adiabatic temperature change was also obtained.
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All the studied samples used the ≈200 nm thick epitaxial PZT layer as the common
element, which was grown with similar conditions for all cases. The TEM investigation
presented in the Supplementary Materials showed that there were no significant differences
between the quality of the PZT layer for all five samples. The XRD performed at different
temperatures showed no structural changes, which could be attributed to a phase transition
or modification in the domain configurations. Thus, the only differences appeared from
the different electrostatic conditions in the samples, which appeared to not only have a
strong influence on the switching dynamic but also influence the variation in polarization
with temperature. An assumption can be made that the interface formed with the elec-
trodes, the polarization compensation phenomena, and the internal fields or defect dipoles
induced by alternating layers with different electrical properties plays a crucial role in the
way polarization reacts to temperature variations, which influences the pyroelectric and
electrocaloric effects.

The structures fabricated with STON layers were analyzed for larger series resistances,
and high switching times and large apparent coercive voltages at high frequencies were
obtained. The voltage increase was distributed on the high resistive elements to generate
increased charge currents to compensate for the polarization. A temperature increase led to
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a faster polarization compensation by increasing the conductivity of the STON layer, which
is related to a decrease in the coercive voltage but without any modification in polarization.

In ferroelectrics and dielectrics, ECE is related to changes in entropy corresponding
to variations in polarization as the order parameter. When the temperature increases, the
dipole-order decreases, polarization has a lower value, and the entropy increases. An
applied voltage determines a higher order of dipoles, increasing the polarization and
decreasing the entropy. During switching, a rearrangement of dipoles takes place, and
thus the system passes through a disordered state and high entropy. During switching,
a negative ECE may appear. This aspect is illustrated in Figure 8, where the Landau–
Ginzbruch–Devonshire theory was used to obtain the polarization–voltage hysteresis
curves for three different temperatures.
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thermodynamic treatment.

All our examples exhibited similar variations in polarization with the temperature
near switching, but compared with the classical perspective, immediately after switching, a
different variation in polarization with temperature may be possible, giving rise to either a
normal or abnormal ECE.

Samples with relatively high internal fields, such as a simple PZT layer or BST/BST
and Nb2O5/PZT, exhibited an abnormal negative ECE for the totally reversed state. For
the multilayer situation, the evaluation was performed only on the positive voltage, since
the polarization was almost totally back-switched when the voltage dropped to zero or
had small negative values. For these cases, the internal electric field can be written as
Eint = −P∗A

Cs
, where P is polarization, A is the area of the electrode, and CS is the series

capacitance of the insulator layer. After switching, the direction of the internal field opposes
the polarization direction and generates a destabilization of the state order, resulting in an
increase in entropy. Increasing the temperature conduction may increase the insulator layer,
decreasing the depolarization effect of the series capacitor. Thus, a decrease in the internal
electric field could justify an increased ferroelectric polar order, leading to a decrease in
entropy and a negative ECE.

A similar mechanism may occur in a simple FE layer if we consider the formation of
a Schottky barrier at the electrode interfaces. Depending on the voltage polarity, one of
these barriers is depleted and could play the role of a series capacitance. Increasing the
temperature, more charges are generated, leading to a decreasing disorder effect. A similar
explanation still stands for the scenario of the dead-layer formation at the interface of the
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FE thin films. The dead layer is considered to have zero polarization and thus could act
as a series insulator thin film, with a very high associated series capacitance. Thus, the
internal field was much smaller, compared with that of the multilayer case.

The abnormal negative ECE ∆T = −10.8 K was also obtained in HfxZr1−xO2, which
can be explained by the presence of different phases, with ferroelectric or non-ferroelectric
order [39]. In a similar way, for a critical ratio between ferroelectric and non-ferroelectric
depending on composition, a negative ECE could appear. Other examples of abnormal
negative ECE are found in PZT-based multilayered thin films or in structures where
ferroelectric material is mixed with a non-FE phase [16,40,41]. Additionally, the giant
negative ECE is obtained in PZT/CFO multilayer structures [26], with up to ∆T = −52 K.
In all these examples, we can assume that the depolarization fields are key for abnormal
polarization variation with temperature.

4. Conclusions

In this paper, the temperature dependence of ferroelectric polarization for different
epitaxial thin film structures was investigated. An abnormal polarization increase at higher
temperatures was revealed in simple PZT 20/80 thin film capacitor structures around
room temperature, which could be attributed to a negative electrocaloric effect with a
large adiabatic temperature change. Two different temperature variation behaviors of
polarization were revealed in multilayered systems. When a resistive-like layer such as
STON was deposited in contact with the FE layer, the polarization did not present a clear
variation around room temperature. Otherwise, when an insulator layer such as BST
or Nb2O5 came in contact with the FE layer, a similar negative electrocaloric effect was
found. These results show that the internal field or defects determined by electrostatic
conditions could induce large variations in polarization with the temperature for PZT-
based epitaxial thin film structures around RT even if the transition temperature was
much higher. Controlling the electrostatic conditions in FE heterostructures can overcome
the classical and theoretical limitations predicting that, at temperatures lower than the
transition temperature, the ECE is small, and the induced adiabatic temperature variation
is insignificant, which represents a challenge in designing EC heat pumps. Moreover, we
showed that, in this system, it is possible to obtain a negative ECE for the switching regime
but, more importantly, also for voltages higher than the coercive voltage. This was another
limitation for the potential applications of negative ECE during switching because, in
classical results, after decreasing the system temperature during the disordered state of
switching, usually follows a temperature increase due to the induced ordering by large
applied fields.

This study also demonstrates the importance of the non-FE elements in the variation
in polarization with temperature and can offer a better understanding of the mechanisms
of positive or negative ECE. There are many examples in the literature of experimental
ECE or negative ECE in relaxor, ferroelectric, and antiferroelectric materials [14,15,42,43]
but also examples where experimentally no EC or abnormal EC effects appear in different
materials even if theoretically they are EC materials [44].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronicmat3040028/s1, Figure S1. (a) The remnant hysteresis
for 250 K, 300 K, and 350 K for PZT/SRO/STO; (b) The dependence of the indirect evaluated pyroelec-
tric coefficient as a function of voltage for PZT/SRO/STO. Figure S2. The hysteresis measurements at
different temperatures between 100 K and 300 K for polycrystalline sol–gel-deposited PZT/SRO/STO.
Figure S3. (a) TEM image at low magnification (200 k) of the STON/PZT/SRO/STO heterostructure
(insert: SAED image); (b) TEM image at low magnification (200 k) of the BST/PZT/SRO/STO het-
erostructure (insert: SAED image); (c) TEM image at low magnification (200 k) of the PZT/SRO/STO
heterostructure (insert: SAED image).
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15. Pirc, R.; Rožič, B.; Koruza, J.; Malič, B.; Kutnjak, Z. Negative Electrocaloric Effect in Antiferroelectric PbZrO3. Eur. Lett. 2014,

107, 17002. [CrossRef]
16. Zhang, T.; Li, W.; Hou, Y.; Yu, Y.; Cao, W.; Feng, Y.; Fei, W. Positive/Negative Electrocaloric Effect Induced by Defect Dipoles in

PZT Ferroelectric Bilayer Thin Films. RSC Adv. 2016, 6, 71934–71939. [CrossRef]
17. Thacher, P.D. Electrocaloric Effects in Some Ferroelectric and Antiferroelectric Pb(Zr, Ti)O3 Compounds. J. Appl. Phys. 1968, 39,

1996–2002. [CrossRef]
18. Wang, J.; Yang, T.; Wei, K.; Yao, X. Temperature–Electric Field Hysteresis Loop of Electrocaloric Effect in Ferroelectricity—Direct

Measurement and Analysis of Electrocaloric Effect. I. Appl. Phys. Lett. 2013, 102, 152907. [CrossRef]
19. Wu, H.H.; Cohen, R.E. Polarization Rotation and the Electrocaloric Effect in Barium Titanate. J. Phys. Condens. Matter 2017,

29, 485704. [CrossRef] [PubMed]
20. Li, B.; Wang, J.B.; Zhong, X.L.; Wang, F.; Zeng, Y.K.; Zhou, Y.C. The Coexistence of the Negative and Positive Electrocaloric Effect

in Ferroelectric Thin Films for Solid-State Refrigeration. Eur. Lett. 2013, 102, 47004. [CrossRef]
21. Marathe, M.; Renggli, D.; Sanlialp, M.; Karabasov, M.O.; Shvartsman, V.V.; Lupascu, D.C.; Grünebohm, A.; Ederer, C. Electrocaloric

Effect in BaTiO3 at All Three Ferroelectric Transitions: Anisotropy and Inverse Caloric Effects. Phys. Rev. B 2017, 96, 014102.
[CrossRef]

http://doi.org/10.1063/1.4729038
http://doi.org/10.1115/1.4002896
http://doi.org/10.1126/science.1123811
http://doi.org/10.1103/PhysRev.131.2023
http://doi.org/10.1002/adfm.201202525
http://doi.org/10.1063/1.4958327
http://doi.org/10.1038/nmat3951
http://doi.org/10.1103/PhysRevB.93.054110
http://doi.org/10.1063/PT.3.3022
http://doi.org/10.1002/adem.201100178
http://doi.org/10.1002/adma.201501100
http://www.ncbi.nlm.nih.gov/pubmed/25864588
http://doi.org/10.1209/0295-5075/107/17002
http://doi.org/10.1039/C6RA14776C
http://doi.org/10.1063/1.1656478
http://doi.org/10.1063/1.4801997
http://doi.org/10.1088/1361-648X/aa94db
http://www.ncbi.nlm.nih.gov/pubmed/29052555
http://doi.org/10.1209/0295-5075/102/47004
http://doi.org/10.1103/PhysRevB.96.014102


Electron. Mater. 2022, 3 356

22. Wu, H.H.; Cohen, R.E. Electric-Field-Induced Phase Transition and Electrocaloric Effect in PMN-PT. Phys. Rev. B 2017, 96, 054116.
[CrossRef]

23. Li, B.; Wang, J.B.; Zhong, X.L.; Wang, F.; Zhou, Y.C. Room Temperature Electrocaloric Effect on PbZr0.8Ti0.2O3 Thin Film. J. Appl.
Phys. 2010, 107, 014109. [CrossRef]

24. Akcay, G.; Alpay, S.P.; Mantese, J.V.; Rossetti, G.A., Jr. Magnitude of the Intrinsic Electrocaloric Effect in Ferroelectric Perovskite
Thin Films at High Electric Fields. Appl. Phys. Lett. 2007, 90, 252909. [CrossRef]

25. Zuo, Z.; Chen, B.; Wang, B.; Yang, H.; Zhan, Q.; Liu, Y.; Wang, J.; Li, R.-W. Strain Assisted Electrocaloric Effect in PbZr0.95Ti0.05O3
Films on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Substrate. Sci. Rep. 2015, 5, 16164. [CrossRef] [PubMed]

26. Vats, G.; Kumar, A.; Ortega, N.; Bowen, C.R.; Katiyar, R.S. Giant Pyroelectric Energy Harvesting and a Negative Electrocaloric
Effect in Multilayered Nanostructures. Energy Environ. Sci. 2016, 9, 1335–1345. [CrossRef]

27. Zhang, T.; Li, W.; Yu, Y.; Wang, M.; He, J.; Fei, W. Giant Electrocaloric Effect in Compositionally Graded PZT Multilayer Thin
Films. J. Alloys Compd. 2018, 731, 489–495. [CrossRef]

28. Gariglio, S.; Stucki, N.; Triscone, J.-M.; Triscone, G. Strain Relaxation and Critical Temperature in Epitaxial Ferroelectric
Pb(Zr0.20Ti0.80)O3 Thin Films. Appl. Phys. Lett. 2007, 90, 202905. [CrossRef]

29. Pintilie, L.; Ghica, C.; Teodorescu, C.M.; Pintilie, I.; Chirila, C.; Pasuk, I.; Trupina, L.; Hrib, L.; Boni, A.G.; Georgiana Apostol, N.;
et al. Polarization Induced Self-Doping in Epitaxial Pb(Zr0.20Ti0.80)O3 Thin Films. Sci. Rep. 2015, 5, 14974. [CrossRef]

30. Chirila, C.; Boni, G.A.; Filip, L.D.; Husanu, M.; Neatu, S.; Istrate, C.M.; Le Rhun, G.; Vilquin, B.; Trupina, L.; Pasuk, I.; et al. Effect
of Strain and Stoichiometry on the Ferroelectric and Pyroelectric Properties of the Epitaxial Pb(Zr0.2Ti0.80)O3 Films Deposited on
Si Wafers. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2021, 266, 115042. [CrossRef]

31. Correia, T.M.; Young, J.S.; Whatmore, R.W.; Scott, J.F.; Mathur, N.D.; Zhang, Q. Investigation of the Electrocaloric Effect in a
PbMg2/3Nb1/3O3-PbTiO3 Relaxor Thin Film. Appl. Phys. Lett. 2009, 95, 182904. [CrossRef]
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