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Abstract: Binaural beats are a low-frequency form of acoustic stimulation that may be heard between
200 and 900 Hz and can help reduce anxiety as well as alter other psychological situations and states
by affecting mood and cognitive function. However, prior research has only looked at the impact of
binaural beats on state and trait anxiety using the STA-I scale; the level of anxiety has not yet been
evaluated, and for the removal of artifacts the improper selection of wavelet parameters reduced the
original signal energy. Hence, in this research, the level of anxiety when hearing binaural beats has
been analyzed using a novel optimized wavelet transform in which optimized wavelet parameters are
extracted from the EEG signal using the flower pollination algorithm, whereby artifacts are removed
effectively from the EEG signal. Thus, EEG signals have five types of brainwaves in the existing
models, which have not been analyzed optimally for brainwaves other than delta waves nor has the
level of anxiety yet been analyzed using binaural beats. To overcome this, deep convolutional neural
network (CNN)-based signal processing has been proposed. In this, deep features are extracted from
optimized EEG signal parameters, which are precisely selected and adjusted to their most efficient
values using the flower pollination algorithm, ensuring minimal signal energy reduction and artifact
removal to maintain the integrity of the original EEG signal during analysis. These features provide
the accurate classification of various levels of anxiety, which provides more accurate results for the
effects of binaural beats on anxiety from brainwaves. Finally, the proposed model is implemented
in the Python platform, and the obtained results demonstrate its efficacy. The proposed optimized
wavelet transform using deep CNN-based signal processing outperforms existing techniques such
as KNN, SVM, LDA, and Narrow-ANN, with a high accuracy of 0.99%, precision of 0.99%, recall of
0.99%, F1-score of 0.99%, specificity of 0.999%, and error rate of 0.01%. Thus, the optimized wavelet
transform with a deep CNN can perform an effective decomposition of EEG data and extract deep
features related to anxiety to analyze the effect of binaural beats on anxiety levels.

Keywords: binaural beats; EEG signals; wavelet transform; flower pollination optimization algorithm;
deep convolutional neural network

1. Introduction

Anxiety has progressively grown in incidence over the last 24 years, particularly
among adolescents and young adults [1]. Individuals in the United States were three times
more likely to screen positive for anxiety disorders in April/May 2020 than in April/May
2019, due to the COVID-19 pandemic lockdowns [2]. Brainwave entrainment, also known
as brainwave synchronization [3,4], is a technique for reducing anxiety and stress. It is
said to improve moods, aid in deep sleep, boost the immune system (delta frequency:
1–4 Hz) [5], improve memory, aid in deep relaxation, and meditation (theta frequency:
4–8 Hz), improve positive thinking (alpha frequency: 8–13 Hz), and improved alertness
(beta frequency: 14–24 Hz).
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A binaural beat is a form of acoustic stimulation that has been shown to help with
anxiety reduction and the attenuation or augmentation of various psychological conditions
and states [6,7]. The binaural beat is the brain impression of a low-frequency sound that
occurs when a person is exposed to two slightly distinct wave frequencies, both between
200 and 900 Hz [8,9]. Recent studies seem to back up the idea that binaural beats can
change the operational connectivity between brain regions [10–12] and cortical network
connectivity [13–15].

Several experiments have concentrated on the measurement of the effect of binaural
beats on anxiety reduction. However, researchers only focused on state anxiety and trait
anxiety using the state-trait anxiety inventory (STA-I) [16–18]. Moreover, anxiety has
been classified into four categories, minimal anxiety, mild anxiety, moderate anxiety, and
severe anxiety, which have not yet been analyzed with binaural beats. To do this, the Beck
Anxiety Inventory (BAI) can be utilized, which has a score of 0–63, where BAI scores < 7
represent minimal anxiety, 8–15 represent mild anxiety, 16–25 represent moderate anxiety,
and 26–63 represent severe anxiety. Similar to the self-reported analysis through anxiety
inventories, the effect of binaural beats is analyzed using electroencephalography (EEG)
signals [19].

In the processing of EEG signals, artifact removal is one of the most important stages
due to their contamination with other signals. Unwanted signals, called artifacts, are
caused by noise in the environment, experimental errors, and physiological abnormalities.
Extrinsic artifacts include environmental artifacts and experiment errors, which are caused
by external causes, whereas intrinsic artifacts include physiological artifacts caused by the
body itself (e.g., eye blink, muscle activity, heartbeat) [20,21]. Significant artifacts in EEG
recordings are caused by ocular artifacts, recorded as electrooculogram (EOG) signals [22].
Eye movement and blinks cause ocular aberrations, which can spread over the scalp and
be detected as EEG activity. The contamination of EEG data by muscle activity is a well-
known and difficult challenge since it manifests as electromyogram (EMG) signals from
various muscle groups [23,24]. When electrodes are put on or near a blood vessel [25],
cardiac artifacts such as electrocardiogram (ECG) signals can be created, causing the heart
to expand and contract. Thus, the objective of this work is to examine the effect of binaural
beats on four levels of anxiety and their signal processing. However, the improper selection
of the mother wavelet parameter will result in it performing poorlyin artifact removal in
EEG signals, which can reduce the original energy of the EEG signal. For feature extraction
and classification, MLP was not optimal for brainwaves other than delta waves, which led
to a reduction in the accuracy analysis of the binaural beats’ effects. However, there is a
need to improve this for effective and promising results for the effect of binaural beats on
the level of anxiety experienced. The major contributions provided by this paper are as
follows:

• In EEG signals, the improper selection of the wavelet parameter reduces the original
signal energy, hence an optimized wavelet transform has been introduced using the
flower pollination optimization algorithm to remove artifacts from the EEG signal.

• Consequently, the impact of the binaural beats on brainwaves is analyzed via deep-
based signal processing which has the capability of extracting all the deep features
belonging to anxiety from EEG signals while classifying various anxiety levels.

This paper is presented as follows: some articles related to binaural beats’ effect on
EEG signals are surveyed in Section 2. The mathematical derivations and the experimental
analysis of the optimized wavelet transform with deep CNN-based signal processing are
stated in Sections 3 and 4. Lastly, the conclusion to this paper is given in Section 5.

2. Literature Review

Yusim, et al. [26] found that a binaural beat meditation technique reduced self-reported
anxiety measurements in psychiatric outpatients and non-patients. Gkolias, et al. [27] found
that binaural beats at 5 Hz reduced pain intensity, anxiety, and analgesic usage in chronic
pain sufferers compared to sham stimulation. Sekirin et al. [28] found that binaural beating
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techniques reduced reactive and personal anxiety in individuals scheduled to have hip joint
endoprosthesis. Menziletoglu et al. [29] found that both binaural beats and music reduced
preoperative dental anxiety, but did not assess which treatment was more successful. Mallik
et al. [30] found that a combination of quiet music and theta auditory beat stimulation
reduced anxiety measurements in people prescribed anxiolytics. Da Silva Junior et al. [31]
found significant changes in high alpha and beta, as well as theta, brainwaves in participants
who listened to a 5 Hz binaural beat for 20 min. Amarasinghe et al. [32] used self-organizing
maps (SOM) to detect thinking patterns and identify two patterns in five users. El Houda
et al. [33] investigated the effects of marijuana binaural beats on EEG signals but found no
significant results. Pluck et al. [34] conducted a double-blind study and found no effect
of theta-frequency binaural beats on cognitive fluency but found a significant induction
of dread in the binaural beat condition compared to control. Lee et al. [35] proposed a
combination of 6 Hz binaural beats and ASMR triggers to promote theta brainwaves and
psychological stability for sleep induction.

Da Silva Junior et al. [31] examined the effects of binaural beats on brainwaves and
found significant changes in higher alpha, high beta, and theta brainwaves using multi-layer
perceptron (MLP) and LORETA methods. Chouhan et al. [31,36] used an entropy-based
approach to assess a person’s degree of attentiveness using EEG signals recorded from
an Emotiv EPOC headset. Lee et al. [35] investigated the effects of different binaural beat
frequencies on EEG signals and found that a combination of binaural beats and ASMR
triggers induced sleep. Jayasinghe et al. [37,38] presented software that uses feedback
from the Apple Health Kit and Google Fit to identify and minimize stress using machine
learning classifiers, including k-nearest neighbors and Naive Bayes. Amarasinghe et al. [32]
proposed an approach based on self-organizing maps (SOM) for detecting thinking patterns
using EEG signals and a feed-forward ANN. That et al. [39,40] investigated the use of an
ANN classifier to classify EEG data from stressed and non-stressed females women using
energy spectral density (ESD) characteristics. Advanced et al. [41] presented a CRNN for
simultaneous sound event detection. Cheah et al. [42] found that a CNN can categorize EEG
signals without the need for manual features. Andrian et al. [43] used brainwave stimulators
to enhance alpha brainwaves and alleviate stress, while El Houda et al. [33] examined the
impact of marijuana binaural beats on the brain. Zaini et al. [44,45] monitored EEG data
and evaluated the correlations between binaural beats’ characteristics and mental states
using a Bayesian Networks Processor. Jirakittayakorn et al. [46] investigated the impact of
a 3 Hz binaural beat on snooze phases using EEG data and event-related potential analysis.

In addition, Loong et al. [47] conducted a prospective, randomized controlled study
to examine the analgesic and anxiolytic benefits of binaural beat audio in cataract surgery
patients. Abu-Taieh et al. [48] used an expanded TAM model to investigate the effect of
parents’ anxiety and depression on children’s anxiety and depression when SNs were
used. Lee et al. [49] investigated the brainwave entrainment impact of binaural beats as an
adjunct treatment for insomnia symptoms. Yi et al. [50] studied the effects of audible and
inaudible binaural beat stimuli on alpha brainwave elicitation, whereas Ignatius et al. [51]
investigated the use of audiometric EEGs for identifying certain binaural hearing properties.
These studies add to our understanding of the numerous applications and consequences of
binaural beats in different neurological situations.

However, some studies did not consider artifacts due to eye blinking and muscle
movements, while others used techniques that could reduce the original energy of the EEG
signal. Thus, there is a need to improve the performance of these studies to provide an
accurate analysis of binaural beats.

3. Optimized Wavelet Transform with Deep CNN-Based EEG Signal Processing

Binaural beats are produced when sine waves are transmitted to each ear separately
and are near one another, which reduces anxiety by affecting mood and cognitive functions.
The binaural beat is the brain perception of a low-frequency sound that occurs when a
person is exposed to two wave frequencies that are very slightly different from one another



AI 2024, 5 118

(by a maximum of 30 Hz), both of which have frequencies between 200 and 900 Hz. To
investigate the possible impacts of binaural beats on EEG signals, various transformation
techniques have been used previously, but the selection of an incorrect mother wavelet
reduces the system’s accuracy and overlaps with the original signal, which can lower
the EEG signal’s initial energy. Hence, a novel resource-constrained model named the
optimized wavelet transform has been proposed, in which optimized wavelet parameters
are extracted from the EEG signal by integrating the flower pollination optimization
algorithm with the wavelet transform for the selection of wavelet parameters. Thus, the
proper wavelet parameters are selected to lessenthe reduction of the original signal’s
energy. Thus, an optimization that is based on the multi-objective function of a lower mean
square error (MSE) and higher signal-to-noise ratio (SNR) removes the artifacts from the
EEG signal to keep the valuable information, thus removing the artifact from the EEG is
important to secure the quality of the EEG signal.

EEG signals have five types of brainwaves, which are delta, theta, alpha, beta, and
gamma, but the existing models for binaural beats are not optimal for brainwaves other
than delta waves. Furthermore, in this study, the level of anxiety has been categorized
into minimal, mild, moderate, and severe anxiety, which has not yet been analyzed about
binaural beats. Hence, novel, deep CNN-based signal processing has been integrated into
EEG signal processing to analyze the effect of binaural beats on anxiety. The deep CNN
model extracts all the deep features related to anxiety from EEG signals, which leads to
more precise results for binaural beats’ impacts on anxiety in terms of brainwaves, thereby
achieving an effective and feasible result for the effect of binaural beats on minimal, mild,
moderate, and severe of anxiety and accuracy for the analysis of binaural beats’ effects.

Figure 1 shows a block diagram for proposed EEG signal processing based on a deep
CNN with optimized wavelet transform, in which a raw EEG signal is transformed into a
wavelet parameter and is analyzed in time–frequency space. Then, by integrating the flower
pollination algorithm, the optimized wavelet parameters are obtained without artifacts in
EEG signals, and the deep CNN is then used to extract features and classify the various
levels of anxiety in the extracted signal.

3.1. BAI with Alpha Binaural Beats

The level of anxiety was determined by examining the effect of binaural beatsusing
the Beck Anxiety Inventory (BAI), which meant in terms of determining the severity of the
physical and cognitive symptoms of anxiety throughout the previous week, a four-point
scale was considered that included more self-reported items. To accomplish this, some
physically healthier subjects were selected and they filled in the BAI inventory. Based on
their BAI scores, the subjects were divided into five groups, the minimal, mild, moderate,
and severe anxiety groups, as well as a control group. The typical cut-offs are as follows:
0–9, minimal depression; 10–18, mild depression; 19–29, moderate depression; 30–63, severe
depression. Multiple statements with the same score were noticed for some BAI items. For
these statements, the four groups of subjects were listening to alpha binaural beats for a
particular period, with ranges in a frequency of 7–13 Hz which may encourage relaxation.
Although not quite meditation, alpha waves are connected to profound physical and mental
calm. The consequences of stress are countered by the slight euphoria/excitement and
tranquility brought on by alpha waves, which also lower cortisol levels and improve the
immune system. Melatonin production is also increased by alpha waves, which significantly
enhances the quality of sleep. The control group subjects, however, were not subjected to
any music therapy. After the stimulation, all the subjects filled out the BAI inventory as a
self-reported analysis of the effect of binaural beats on anxiety.

3.2. Optimized Wavelet Transform

The EEG signals acquired from all the subjects before and after stimulation are pro-
cessed to technically analyze the effects of the binaural beats. Optimized wavelet transform
(OWT) is applied to obtain information from non-stationary signals like EEGs in both the
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temporal and frequency domains. The contributions of the OWT towards extracting features
from the source signal rely on the precise choice of wavelet parameters. Despite this, there
is not a clear cutoff formula for choosing a wavelet basis function to effectively use this
optimized wavelet, transform, in which artifacts are removed from the EEG signal using the
concept of flower pollination optimization, which is integrated with the wavelet transform
for the optimal selection of wavelet parameters to select the optimal parameter. A lower
mean square error (MSE) and higher signal-to-noise ratio (SNR) are considered objective
functions for solving optimization problems. The efficiency of noise reduction and unique
feature extraction relies on the selection of optimized wavelet parameters. The optimized
wavelet denoising process has two phases: first, the wavelet parameters are selected based
on the decomposition level of the EEG signal, and second, the selection of appreciating
parameters based on the flower pollination algorithm produces the denoised EEG signal.
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Figure 1. The architecture of the proposed EEG signal processing is based on a deep CNN with
optimized wavelet transform.

The original (mother) wavelet hm,k(t) is often the source of the set of wavelet functions
in the EEG signal. It is dilated by a value of a = 2m, translated by the constant b = k 2m, and
normalized so that it is given by Equation (1), as follows:

hm,k(t) = 1
√

ah( t− b a ) = 1
√

2mh(2−m t− k) (1)

According to the given integer values of m, k, and the initial wavelet, which is either
determined analytically or by solving a dilation equation which is given in Equation (2) below.
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x(n) = a0 + ∑s−1
m=0 ∑2s−m−1

k=0 a2s−m−1+k − h
(
2−mn− k

)
(2)

The x(n), the dilation equation, is transformed to xt+1
i due to the wavelet parameter

initialization of the constant value, which is the global pollination operator, to determine
the best suitable wavelet parameter. Thus, the modified form of the dilation equation is
given by Equation (3).

xt+1
i = xt

i + L
(
Xt

i − g∗
)

(3)

The levy distribution (L) is given in Equation (4), as follows:

L ∼ λΓ (λ) sin(πλ/2)
π

1
s1+λ

(s ≫ s0 > 0) (4)

where λ is the wavelength parameter and s is the step vector, which is in the threshold limit of
the transformed EEG signal for the distribution. Similarly, for local pollination, Equation (5) is
used to update the xi with the local parameter, k, of the decision factor, and ε is the switching
probability. The local pollination operator xk+1

i in the updation of the wavelet parameter is
given by,

xk+1
i = xk

i + ε
(

xk
i − xk

t

)
(5)

The proposed optimized wavelet transforms, via the flower pollination optimization
algorithm, have two objective functions: min (MSE) and max (SNR) which are given in
Equation (6), as thus the fitness function of the proposed system is given in Equation (6):

f = Min(Max(1− SSIM(X N)) (6)

The two objective functions, which are the mean squared error (MSE) and signal-to-
noise ratio (SNR), are formulated in Equation (6). The fitness formulation makes use of the
(1-SSIM), also known as the dissimilarity index, which is generated for each picture in the
iteration and tends to further minimize its maximum value. Thus, the fitness function of
the system is given by the minimum mean square error and the maximum signal-to-noise
ratio in the optimized wave transform. The process takes place in an optimized wavelet
transform using the flower pollination algorithm.

Figure 2 illustrates the conceptual diagram of an optimized wavelet transform using
the flower pollination algorithm, in which the contaminated EEG signal is expanded using
an optimized wavelet transform to obtain optimized wavelet coefficients, and then the
wavelet transform is integrated with the flower pollination optimization algorithm to select
the best wavelet parameters that remove the most artifacts from the EEG signal.
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The Algorithm 1 for the flower pollination optimization of the optimized wavelet
parameter has been explained as follows:

Algorithm 1: Flower pollination optimization of the optimized wavelet parameter

Input: Wavelet parameter
Output: Best wavelet parameter without noise
Initialize: n parameters with random solution
Define a switch probability p ∈ [0, 1]
Calculate all f for n solutions
t = 0
while (i ≥ N) do

for i = 1, . . . , N do
if rnd ≤ p then

Draw a (d-dimensional) step vector in the L which obeys a Levy distribution
Perform xt+1

i = xt
i + L

(
Xt

i − g∗
)

else if

Perform xk+1
i = xk

i + ε
(

xk
i − xk

t

)
Select xt+1

i (t)← 1;
Else

Draw from a uniform distribution ∈ [0,1]
Select xk+1

i ← 0;
end if
Calculate f ′(x)/* f ′ is the fitness function calculated at random distribution */
if f ′(x∗) ≤ f (x) then x∗ = x
end if

end for
Find the current best solution g * among all xk

i
t = t + 1

end while

The flower pollination algorithm with optimized wavelet parameters shows the ini-
tialization of the n parameters with a random solution. The input is the wavelet transform
parameter and the output obtained from the optimized wavelet parameter with the flower
pollination algorithm is given as the best wavelet parameter with the solution to the input,
thus, the uniform distribution of the parameters is taken into account to obtain the best
solution g among all xk

i of the probability switching function of the wavelet transform. The
switching function determines the difference due to the high probability of the wavelet
transform being in the best wavelet selection. It also generates a random function for
the flower pollination optimization algorithm and the wavelet transform to obtain the
step vector s from the levy distribution that provides the performance of global and local
pollination, thus, the best solution is obtained by calculating the decision factors xk

i of the
current solution via the top solution discovered globally in a global pollination operator xt

i .
The improvement loop must be exchanged either locally or globally by the switch operator
i, therefore, up until a point of stagnation, this procedure is repeated.

Figure 3 depicts the flow diagram of an optimal wavelet transform, which begins with
the signal’s initialization pattern for data collection. The input signal data is read first,
then an efficient wavelet transform is performed for each signal to choose the best wavelet
parameters. A greater signal-to-noise ratio (SNR) and a lower mean square error (MSE) are
considered to be the objective functions for addressing optimization problems that remove
artifacts from the EEG signal.
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3.3. Deep CNN-Based Signal Processing

Deep CNN-based signal processing extracts features and combines various classifi-
cation elements, it also offers a good path for the precise detection of various brain states.
Thus, several features were recovered from the denoised EEG signal to extract features such
as the alpha, beta, theta, delta, and gamma brainwaves and both their time and frequency
domains, including the mean, standard deviation, entropy, and energy, four widely used
measurements of the signal. The electroencephalogram, with its mean value, provided
the iteration varies from 1 to L, has a standard deviation with a different set of signal
processing, thus, the energy of the system is given by the delta frequency domain, thus, the
entropy of the electroencephalogram is also given by the DCNN-based signal processing.
Therefore, to extract usable features from the EEG signal of each participant, the DCNN
is trained individually. Each participant’s number of channels that recorded high-quality
data varied during the pre-processing stage, it was discovered. The EEG signal of each
participant was left with a variable number of channels and some channels were eliminated
based on the signal-to-noise ratio and low mean square error, therefore classification was
accomplished via DCNN to extract useful features such as delta, theta, alpha, betta, and
gamma brainwaves from the optimized wavelet coefficients. The DCNN predicts the
associated class to which an independent variable belongs using a variety of independent
variable values’ features as input. For instance, for a specific feature x of a class y, the
classifier is a function f that predicts the class y = f (x). The DCNN’s architecture has
interconnected nodes that store and process data through connections formed between its
nodes as a result of a learning process that recognizes patterns in the training data.

The input layer function based on time-frequency analysis is formalized as Equation (7):

It = φ(gi ∗ .(ht−1, xt+1
i )+xi (7)

The hidden layer function based on time-frequency analysis is formalized as Equation (8):

ht = φ(g f ∗ . (ht−1, xt+1
i )+x f (8)



AI 2024, 5 123

The output layer function based on time-frequency analysis is formalized as Equation (9):

Ot = φ(go ∗ . (ht−1, xt+1
i )+xo (9)

The output with the activation function of the deep CNN is formalized as Equation (10):

a = φ[∑j g ∗ xk+1
i + x] (10)

where xk+1
i are the unit inputs, b is the bias, φ is the nonlinear activation function, and

a is the activation unit. As a result, a separate set of cases is used to test the classifier’s
performance, which gives the accurate classification of the anxiety level as mild, moderate,
minimal, or severe. Thus the g∗ is the output from the optimized wave parameters. Here,
xi is the unit of the input layer of the DCNN, x f is the unit of the hidden layer function
of the DCNN, and xo is the unit of the output activation function of the DCNN. Thus, the
activation unit of the deep convolution neural network is given by the summation of the
EEG signal with the product of the best solution obtained from the wavelet parameter,
thus, the activation unit stimulates the deep convolution neural network to classify the
performance as a different level of anxiety. The architecture of the deep CNN-based signal
processing’s feature extraction and classification is shown in Figure 4.
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Figure 4. The architecture of deep CNN-based signal processing’s feature extraction and classification.

Figure 4 shows the deep CNN-based signal processing’s feature extraction and classi-
fication, in which five features were extracted from the artifacts-free EEG signal, which was
the alpha, beta, theta, delta, and gamma time and frequency domains in brainwaves. There-
fore, this model predicts the anxiety level of each feature by using a non-linear activation
function in its classification.

Overall, the optimized wavelet transform removes artifacts from the EEG signal using
the concept of flower pollination optimization, which is integrated with the wavelet trans-
form for the optimal selection of wavelet parameters. Deep CNN-based signal processing
has been integrated into the EEG signal’s processing to analyze the effect of binaural beats
on anxiety by extracting all the features belonging to anxiety from the EEG signal, providing
more accurate results for the binaural beats’ effects on anxiety in terms of brainwaves. The
next section explains the results obtained from the proposed model in detail.
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4. Results and Discussion

This section provides a detailed description of the implementation results as well
as the performance of the proposed system and a comparison section to ensure that the
proposed system works effectively.

4.1. Simulation Setup

This work has been implemented in the working platform of Python with the following
system specifications, and its simulation results are discussed below.

• Platform: Python;
• OS: Windows;
• Processor: 64-bit Intel;
• RAM: 8 GB.

4.2. Dataset Description

The dataset used in this research was the EEG Brainwave Dataset: Feeling Emotions,
in which data were gathered from two individuals, namely a man and a woman, for
three minutes in each of the three states, namely positive, neutral, and negative. It also
usedMuse EEG headgear to capture the EEG locations at TP9, AF7, AF8, and TP10 using
dry electrodes. The stimuli used to create the emotions were collected for six minutes
along with the neutral data. The parameters used in the flower pollination algorithm are
described in Table 1.

Table 1. Parameters of flower pollination algorithm.

Parameters Value

Maximum generation 1000

Switch probability 0.8

Population size 25

Upper boundary −10

Lower boundary 10

Model order 3

Number of parameters 6

4.3. Simulated Output of Proposed System

The simulated output of the proposed system in the analyses of anxiety levels after
hearing alpha binaural beats is explained in this subsection.

Figure 5 shows the channel frequency by varying the time before the applying wavelet
transform. The channel frequency ranges from −2000 to 2000 in the time range of 0.1 to
80,000 ns. From these channel frequencies, it is difficult to obtain the important parameters
of the signal. Hence the wavelet transform has been applied to extract the signal parameters.

Figure 6 shows the channel frequency obtained by varying the time after applying the
wavelet transform. The channel frequency ranges from −2000 to 2000 in the time range
of 0.1 to 90,000 ns. The channel frequencies are optimized by selecting the best wavelet
parameters by incorporating the flower pollination algorithm, and the level of anxiety is
then analyzed via the DCNN based on the frequency range of the signal.

Figure 7 shows the classification results of the proposed system for the level of anxiety.
The classification results show a mild level of anxiety in 20 cases, moderate anxiety in
30, minimal anxiety in40, and severe anxiety in 10, based on the EEG signal processing
of brainwaves.
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4.4. Performance Metrics of the Proposed System

The performance of the proposed approach and the achieved outcomes are explained
in detail in this section.

Figure 8 shows the accuracy of the proposed system with varying numbers of epochs.
The accuracy attains a minimum value of 0.65 at the initial stage and attains a maximum
value of 0.98 at 27 epochs. Thus, it was noticed that the accuracy increased with the
increase in epochs. The accuracy of the proposed system was increased using deep CNN-



AI 2024, 5 126

based signal processing, which extracted all the features associated with anxiety from the
brainwaves in the EEG signals.
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Figure 8. Accuracy of the proposed system with varying epochs.

Figure 9 shows the loss of the proposed system with varying numbers of epochs. The
loss has a minimum value of 0.5 at one epoch. The loss of the proposed system has a
maximum value of 2.5 at the initial stage. The loss of the proposed system is decreased
byusing deep CNN-based signal processing to extract all the characteristics linked to the
anxiety of brainwaves in an EEG signal-optimized wavelet transform, in which artifacts are
removed from the EEG signal, which does not reduce the original energy of the EEG signal.
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Figure 10 shows the precision of the proposed system with varying numbers of epochs.
The precision has a minimum value of 20 at one epoch and attains a maximum value of 100
at five epochs. The precision of the proposed system is increased using deep CNN-based
signal processing, which extracts all the features belonging to anxiety from brainwaves in
EEG signal, and classification is conducted after extracting all these features.

Figure 11 shows the recall of the proposed system with varying the numbers of epochs.
The recall has a minimum value of 19.5 at one epoch and a maximum value of 99 at five
epochs. The recall of the proposed system is increased using deep CNN-based signal
processing, which extracts all features associated with anxiety from the brainwaves in an
EEG signal.



AI 2024, 5 127
AI 2024, 5, FOR PEER REVIEW 14 
 

 

Figure 10. Precision of proposed system with varying epochs. 

 

Figure 11. Recall the proposed system with varying epochs. 

Figure 12 shows the F1-score of the proposed system with varying numbers of 

epochs. The F1 score has a minimum value of 17.5 at one epoch and a maximum value of 

99.5 at five epochs. The F1-score of the proposed system is increased using deep CNN-

based signal processing, which removes artifacts and extracts all the deep features belong-

ing to anxiety from the brainwaves in the EEG signal.  

Figure 13 shows the sensitivity of the proposed system with varying numbers of 

epochs. The sensitivity has a minimum value of 80 in epoch 25 and a maximum value of 

99.8 in epoch 200. The sensitivity of the proposed system is increased using the optimized 

wavelet transform, which provides the process for artifact removal and examines the sen-

sitivity of the brainwave EEG signal. 

Figure 10. Precision of proposed system with varying epochs.

AI 2024, 5, FOR PEER REVIEW 14 
 

 

Figure 10. Precision of proposed system with varying epochs. 

 

Figure 11. Recall the proposed system with varying epochs. 

Figure 12 shows the F1-score of the proposed system with varying numbers of 

epochs. The F1 score has a minimum value of 17.5 at one epoch and a maximum value of 

99.5 at five epochs. The F1-score of the proposed system is increased using deep CNN-

based signal processing, which removes artifacts and extracts all the deep features belong-

ing to anxiety from the brainwaves in the EEG signal.  

Figure 13 shows the sensitivity of the proposed system with varying numbers of 

epochs. The sensitivity has a minimum value of 80 in epoch 25 and a maximum value of 

99.8 in epoch 200. The sensitivity of the proposed system is increased using the optimized 

wavelet transform, which provides the process for artifact removal and examines the sen-

sitivity of the brainwave EEG signal. 

Figure 11. Recall the proposed system with varying epochs.

Figure 12 shows the F1-score of the proposed system with varying numbers of epochs.
The F1 score has a minimum value of 17.5 at one epoch and a maximum value of 99.5 at five
epochs. The F1-score of the proposed system is increased using deep CNN-based signal
processing, which removes artifacts and extracts all the deep features belonging to anxiety
from the brainwaves in the EEG signal.

Figure 13 shows the sensitivity of the proposed system with varying numbers of
epochs. The sensitivity has a minimum value of 80 in epoch 25 and a maximum value of
99.8 in epoch 200. The sensitivity of the proposed system is increased using the optimized
wavelet transform, which provides the process for artifact removal and examines the
sensitivity of the brainwave EEG signal.

Figure 14 depicts the specificity of the proposed system with varying numbers of
epochs. The specificity has a minimum value of about 85 in epoch 23 and a maximum value
of about 98 at the specificity of about 200 epochs. The specificity of the proposed system is
determined using the flower pollination optimization algorithm.

Figure 15 shows the sensitivity of the proposed system by varying the numbers of
data counts. The sensitivity has a minimum value of about 94% with a data count of about
1000 and a maximum value of 98% in the realm of 6000 data counts. Thus, the sensitivity
of the proposed system is increased using the optimized wavelet transform, in which the
artifacts are removed and thus the sensitivity of the proposed system increases with the
increasing data count.
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Figure 16 shows the specificity of the proposed system with varying data counts. The
specificity has a minimum value of about 96.75% at 2000 data counts and a maximum
value of 99% at 6000 data counts. The specificity of the proposed system initially decreases
suddenly with the increasing number of data counts and then it starts increasing with
further increases in the number of data counts. Thus the specificity of the proposed system
isat a maximum at the highest data counts due to the use the optimized wavelet transform.
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Figure 17 shows the accuracy of the proposed system with varying data counts. The
accuracy has a minimum value of 96.3% at 1000 data counts and a maximum value of
98.0% at 6000 data counts. The accuracy of the proposed system is increased using the
optimized wavelet transform of the EEG signal to remove artifacts via the concept of flower
pollination optimization, which is integrated with the wavelet transform for choosing the
best wavelet parameters to then choose the optimal parameter.
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Figure 18 shows the recall of the proposed system with varying data counts. The
recall has a minimum value of 93.1% at 1000 data counts and a maximum value of 95.0% at
6000 data counts. The recall of the proposed system is increased via the optimized wavelet
transform of the EEG signal, which removes artifacts using the flower pollination algorithm
for choosing the best wavelet parameters to then choose the optimal parameter.
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Figure 19 shows the F1-score of the proposed system with varying data counts. The
F1-score has a minimum value of 94.2% at 1000 data counts and a maximum value of 95%
at 6000 data counts. The recall of the proposed system is increased using the optimized
wavelet transform of the EEG signal, in which the main objective of this WT approach is to
identify an effective decomposition of the input EEG data that produces distinctive features
from each sub-band using the flower pollination optimization algorithm, which is used to
select optimal wavelet parameters to remove artifacts from EEG signals.
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Figure 20 shows the precision of the proposed system with varying data counts. The
precision has a minimum value of 92.14% at 1000 data counts and a maximum value of
95% at 6000 data counts. The precision of the proposed system is increased by selecting
the optimum wavelet parameters using the optimized wavelet transform of an EEG signal
with a flower pollination algorithm.
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4.5. Comparison of the Results of the Proposed Method

This section highlights the proposed system performance by comparing it to the
outcomes of existing approaches and showing their results based on various metrics.

Below, Table 2 shows the comparison of the proposed model with the existing models
such as KNN, SVM, LDA, and Narrow-ANN [38–42]. Compared with the existing models,
the proposed deep CNN achieves a high accuracy of 0.99%, a precision value of 0.99%,
and a specificity of 0.999%. The F1-score and recall of the proposed system have the
maximum values of 0.99% and 0.99%, whereas the existing models KNN, SVM, LDA, and
Narrow-ANN, have F1-scores of 0.90%, 0.98%, 0.921%, and 0.983%, respectively, and recalls
of 0.90%, 0.98%, 0.92%, and 0.985%, respectively. Also, the proposed model attains a low
error of 0.01. This shows that the proposed model achieved a better performance than the
existing models.

Table 2. Comparison table.

Specification KNN SVM LDA Narrow-ANN Proposed

Accuracy (%) 0.90 0.98 0.92 0.985 0.99

Recall (%) 0.90 0.98 0.92 0.985 0.99

Precision (%) 0.90 0.98 0.93 0.985 0.99

F1-Score (%) 0.90 0.98 0.921 0.983 0.99

Specificity (%) 0.975 0.995 0.980 0.9951 0.999

Error (%) 0.01 0.02 0.08 0.01 0.01

Table 3 depicts the cumulative survey on binaural beats processing and, from this
table, it is understood that the accuracy can be further improved. The existing research
that uses machine learning techniques such as KNN, MLP, and SVM, has accuracy values
in the range of 60 to 75%, whereas the existing techniques that use some advanced deep
learning techniques such as CNNs and ANNs have accuracy values in the range of 80
to 97%. However, these existing techniques have error and generalization issues while
achieving high accuracy. Hence, the proposed model used an optimization algorithm along
with a deep learning model to achieve a high accuracy of 99% without any error.
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Table 3. Cumulative survey on binaural beats processing.

Ref. Technique Used Benefits Limitations Result Obtained

[31] e-LORETA Visual depiction of the impact of
binaural beats

MLP shows better
performance only on delta

waves
Accuracy: 64.77%

[36] Modified sample
entropy feature

The interface system takes only 3 sec
to determine the effect of stimuli

Attention-related
movements can reduce

accuracy

Takes only 3 seconds to
determine the effect of

audio and visual
stimuli.

[35] ASMR
Can lessen the annoyance of

binaural beats while improving
brainwave entrainment

N/A
CS could cause 6 Hz
activity for inducing
NREM sleep stage 1

[38] Artificial neural
network

Can identify and eliminate stress
based on user preferences and

treatment records

K-nearest neighbor shows
better performance on
some brainwaves only

Accuracy: 90%

[32] DFT-SOM-ANN Mental pattern recognition with
high accuracy

Artifacts introduced in
older adults cannot be

removed via DFT
Accuracy: 98.68%

[40] ESD-ANN
Excellent accuracy in

identifyingwoman with and without
stress, using the entire brain

Optimal channel selection
difficult with ANN Accuracy: 89.19%

[41] C3RNN
Better performance than baseline

CRNN with the same weights and
high training speed

The error can be generated
due to backpropagation Accuracy: 84.1%

[42] CNN

Accurately distinguishes EEGs of
individuals listening to music from
those of subjects without auditory

input

May not consider the
generalization issue Accuracy: 97.68%

[43] Brainwave
stimulator

Promotes the production of alpha
brainwaves to decrease stress

Artifacts due to eye
blinking and muscle
movements are not

considered

A significant increase
in the number of alpha

brainwave PSD
observed

[33] Bi-spectral analysis
Extracts features providing

information about the distribution
and dispersion of signals

The usage of discrete
Fourier transform for

filtering could reduce the
original energy of the EEG

signal

The degree of
synchronization ranged

from 52.1% to 83.4%

[45]
Semantic-based

Bayesian network
engine

Records and analyzes correlations
between binaural beats, EEG, and

perceived mental states

Implementation outcomes
are not provided in a

detailed manner
Performance: 72.25%

[46] Fast Fourier
transform

Shows entrainments after the
perception of binaural beats based

on an associated EEG rhythm

The technique should be
time-fixed for assessing the

brain’s reaction to quick
shifts in auditory intensity

Absolute power value
ranges between 5 and

15 µV2

Proposed
model

Deep CNN-based
signal processing

Extraction of deep features from
EEG signals, enabling precise

identification of the impacts of
binaural beats on various types of

brainwaves and anxiety levels. This
provides more accurate and detailed
insights into the effects of binaural
beats on different levels of anxiety,

leading to a more effective and
feasible outcome.

N/A Accuracy: 99%
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Overall, the optimized wavelet transform using deep CNN-based signal processing
outperforms existing techniques such as KNN, SVM, LDA, and Narrow-ANN (andvarious
forms of ANNs with a high accuracy of 0.99%, precision of 0.99%, recall of 0.99%, F1-
score of 0.99%, specificity of 0.999%, and error rate of 0.01% in identifying an effective
decomposition of the input EEG data and extracting all deep features belonging to anxiety
and analyzing the effect of binaural beats on the level of anxiety.

5. Conclusions

An optimized wavelet transform with the flower pollination optimization algorithm
has been proposed to remove artifacts from EEG signals without reducing the original
signal’s energy, in which the flower pollination optimization algorithm is integrated with
the wavelet transform for the optimal selection of wavelet parameters, the result of which
are that the artifacts are removed from the EEG signal with aminimum loss value of 0.4 and
a high accuracy of 99%. Then, EEG signals have five types of brainwaves, delta, theta, beta,
alpha, and gamma, which are optimally analyzed via deep CNN-based signal processing
that is integrated into EEG signal processing and helps with analyzing the effect of binaural
beats on the four levels of anxiety (minimal, mild, moderate, and severe). This model can
extract all the deep features belonging to anxiety from EEG signals, which provide more
accurate results for establishing binaural beats’ effects on anxiety via brainwaves. Thus, the
results obtained from the proposed method outperform existing techniques with a high
accuracy of 99%, precision of 96%, recall of 97%, and F1-score of 96%. As a result, the
novel methodology provides effective and promising results for determining the effect of
binaural beats on four levels of anxiety.

While the deep CNN model extracts deep features from EEG signals, the complexity
of interpreting brainwave patterns, especially in the context of anxiety, can pose challenges.
There may be inherent difficulties in accurately quantifying the relationship between
binaural beats and specific brainwave activities related to anxiety. Future studies might
concentrate on developing real-time monitoring systems that use the proposed methodolo-
gies to offer instant feedback on the efficacy of binaural beats in controlling anxiety levels,
allowing for immediate treatment.

Author Contributions: Conceptualization, B.S.A. and D.R.; methodology, D.R.; software, D.R.;
validation, B.S.A. and B.A.; formal analysis, B.S.A. and D.R.; investigation, B.A. and A.V.J.; resources,
B.A.; data curation, A.V.J.; writing—original draft preparation, D.R. and B.S.A.; writing—review and
editing, B.A. and B.S.A.; visualization, B.A. and A.V.J.; supervision, B.A.; funding acquisition, B.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Phillips, S.P.; Yu, J. Is anxiety/depression increasing among 5–25 year-olds? A cross-sectional prevalence study in Ontario,

Canada, 1997–2017. J. Affect. Disord. 2021, 282, 141–146. [CrossRef] [PubMed]
2. Twenge, J.M.; Joiner, T.E. U.S. Census Bureau-assessed prevalence of anxiety and depressive symptoms in 2019 and during the

2020 COVID-19 pandemic. Depress. Anxiety 2020, 37, 954–956. [CrossRef] [PubMed]
3. Goodin, P.; Ciorciari, J.; Baker, K.; Carrey, A.M.; Harper, M.; Kaufman, J. A high-density EEG investigation into steady state

binaural beat stimulation. PLoS ONE 2012, 7, e34789. [CrossRef]
4. Ossebaard, H.C. Stress reduction by technology? An experimental study into the effects of brainmachines on burnout and state

anxiety. Appl. Psychophysiol. Biofeedback 2000, 25, 93–101. [CrossRef] [PubMed]
5. Huang, T.L.; Charyton, C. A comprehensive review of the psychological effects of brainwave entrainment. Database of Abstracts

of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. Altern. Ther. Health Med. 2008, 14, 38–50.

https://doi.org/10.1016/j.jad.2020.12.178
https://www.ncbi.nlm.nih.gov/pubmed/33418360
https://doi.org/10.1002/da.23077
https://www.ncbi.nlm.nih.gov/pubmed/32667081
https://doi.org/10.1371/annotation/89b655ea-6877-411d-abee-e1f4806f5f78
https://doi.org/10.1023/A:1009514824951
https://www.ncbi.nlm.nih.gov/pubmed/10932334


AI 2024, 5 134

6. Padmanabhan, R.; Hildreth, A.J.; Laws, D. A prospective, randomised, controlled study examining binaural beat audio and
pre-operative anxiety in patients undergoing general anaesthesia for day case surgery. Anaesthesia 2005, 60, 874–877. [CrossRef]

7. Au, T.Y.; Assavarittirong, C. The overview of utilizing complementary therapy to relieve stress or anxiety in emergency
department patients: Animal-assisted therapy, art therapy, and music therapy. MHGC Proceeding 2021, 4, 2. [CrossRef]

8. Wahbeh, H.; Calabrese, C.; Zwickey, H. Binaural beat technology in humans: A pilot study to assess psychologic and physiologic
effects. J. Altern. Complement. Med. 2007, 13, 25–32. [CrossRef]

9. Chaieb, L.; Wilpert, E.C.; Reber, T.P.; Fell, J. Auditory beat stimulation and its effects on cognition and mood states. Front.
Psychiatry 2015, 6, 70. [CrossRef]

10. Gao, X.; Cao, H.; Ming, D.; Qi, H.; Wang, X.; Wang, X.; Chen, R.; Zhou, P. Analysis of EEG activity in response to binaural beats
with different frequencies. Int. J. Psychophysiol. 2014, 94, 399–406. [CrossRef]

11. Karino, S.; Yumoto, M.; Itoh, K.; Uno, A.; Yamakawa, K.; Sekimoto, S.; Kaga, K. Neuromagnetic responses to binaural beat in
human cerebral cortex. J. Neurophysiol. 2006, 96, 1927–1938. [CrossRef] [PubMed]

12. Karino, S.; Yumoto, M.; Itoh, K.; Uno, A.; Matsuda, M.; Yamakawa, K.; Sekimoto, S.; Kaneko, Y.; Kaga, K. Magnetoencephalo-
graphic study of human auditory steady-state responses to binaural beat. Int. Congr. Ser. 2004, 1270, 169–172. [CrossRef]

13. Beauchene, C.; Abaid, N.; Moran, R.; Diana, R.A.; Leonessa, A. The effect of binaural beats on visuospatial working memory and
cortical connectivity. PLoS ONE 2016, 11, e0166630. [CrossRef] [PubMed]

14. Beauchene, C.; Abaid, N.; Moran, R.; A Diana, R.; Leonessa, A. The effect of binaural beats on verbal working memory and
cortical connectivity. J. Neural Eng. 2017, 14, 026014. [CrossRef] [PubMed]

15. Ioannou, C.I.; Pereda, E.; Lindsen, J.P.; Bhattacharya, J. Electrical brain responses to an auditory illusion and the impact of musical
expertise. PLoS ONE 2015, 10, e0129486. [CrossRef] [PubMed]

16. Weiland, T.J.; A Jelinek, G.; E Macarow, K.; Samartzis, P.; Brown, D.M.; Grierson, E.M.; Winter, C. Original sound compositions
reduce anxiety in emergency department patients: A randomised controlled trial. Med. J. Aust. 2011, 195, 694–698. [CrossRef]
[PubMed]

17. Siminenco, A. The perspective of using binaural beat auditory stimulation in the treatment of pain. In MedEspera: The 6th
International Medical Congress for Students and Young Doctors: Abstract Book; MedEspera: Chisinau, Moldova, 2016.

18. Alipoor, A.; Oraki, M.; Sabet, M.Y. Efficiency of brainwave entrainment by binaural beats in reducing anxiety. J. Kermanshah Univ.
Med. Sci. 2014, 18, e74271.

19. Fougère, M.; Greco-Vuilloud, J.; Arnous, C.; Lowe, C. Sensory stimulations potentializing digital therapeutics pain control. Front.
Pain Res. 2023, 4, 1168377. [CrossRef]

20. Urigüen, J.A.; Garcia-Zapirain, B. EEG artifact removal—State-of-the-art and guidelines. J. Neural Eng. 2015, 12, 031001. [CrossRef]
21. Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared

spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [CrossRef]
22. Islam, K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol. Clin. 2016,

46, 287–305. [CrossRef] [PubMed]
23. Wallstrom, G.L.; Kass, R.E.; Miller, A.; Cohn, J.F.; Fox, N. Automatic correction of ocular artifacts in the EEG: A comparison of

regression-based and component-based methods. Int. J. Psychophysiol. 2004, 53, 105–119. [CrossRef]
24. Hamal, A.Q.; Rehman, A.W.b.A. Artifact processing of epileptic EEG signals: An overview of different types of artifacts. In

Proceedings of the 2013 International Conference on Advanced Computer Science Applications and Technologies, Kuching,
Malaysia, 23–24 December 2013; IEEE: New York, NY, USA, 2013.

25. Goncharova, I.; McFarland, D.; Vaughan, T.; Wolpaw, J. EMG contamination of EEG: Spectral and topographical characteristics.
Clin. Neurophysiol. 2003, 114, 1580–1593. [CrossRef] [PubMed]

26. Yusim, A.; Grigaitis, J. Efficacy of Binaural Beat Meditation Technology for Treating Anxiety Symptoms: A Pilot Study. J. Nerv.
Ment. Dis. 2020, 208, 155–160. [CrossRef] [PubMed]

27. Gkolias, V.; Amaniti, A.; Triantafyllou, A.; Papakonstantinou, P.; Kartsidis, P.; Paraskevopoulos, E.; Bamidis, P.D.; Hadjileontiadis,
L.; Kouvelas, D. Reduced pain and analgesic use after acoustic binaural beats therapy in chronic pain-A double-blind randomized
control cross-over trial. Eur. J. Pain 2020, 24, 1716–1729. [CrossRef] [PubMed]

28. Sekirin, A.B.; Prikuls, V.F.; Maybrodskaya, A.E. Assessment of clinical efficacy of the acoustic binaural beating method in the
complex preparation of patients for hip replacement. N. N. Priorov J. Traumatol. Orthop. 2020, 27, 60–65. [CrossRef]

29. Menziletoglu, D.; Guler, A.; Cayır, T.; Isik, B. Binaural beats or 432 Hz music? Which method is more effective for reducing
preoperative dental anxiety? Med. Oral Patol. Oral Y Cirugía Bucal 2021, 26, e97–e101. [CrossRef]

30. Mallik, A.; Russo, F.A. The Effect of Music & Auditory Beat Stimulation on Anxiety. PLoS ONE 2021, 17, e0259312.
31. da Silva Junior, M.; de Freitas, R.C.; dos Santos, W.P.; da Silva, W.W.A.; Rodrigues, M.C.A.; Conde, E.F.Q. Exploratory study of the

effect of binaural beat stimulation on the EEG activity pattern in resting state using artificial neural networks. Cogn. Syst. Res.
2019, 54, 1–20. [CrossRef]

32. Amarasinghe, K.; Wijayasekara, D.; Manic, M. EEG based brain activity monitoring using Artificial Neural Networks. In
Proceedings of the 2014 7th International Conference on Human System Interactions (HSI), Costa da Caparica, Portugal, 16–18
June 2014; IEEE: New York, NY, USA, 2014.

33. El Houda, B.Y.N.; El Amine, D.S.M. Effect of the Marijuana Binaural Beats on the Brain. Ann. Clin. Cases 2020, 1, 1022.

https://doi.org/10.1111/j.1365-2044.2005.04287.x
https://doi.org/10.32437/mhgcj.v4i2.125
https://doi.org/10.1089/acm.2006.6196
https://doi.org/10.3389/fpsyt.2015.00070
https://doi.org/10.1016/j.ijpsycho.2014.10.010
https://doi.org/10.1152/jn.00859.2005
https://www.ncbi.nlm.nih.gov/pubmed/16790592
https://doi.org/10.1016/j.ics.2004.05.072
https://doi.org/10.1371/journal.pone.0166630
https://www.ncbi.nlm.nih.gov/pubmed/27893766
https://doi.org/10.1088/1741-2552/aa5d67
https://www.ncbi.nlm.nih.gov/pubmed/28145275
https://doi.org/10.1371/journal.pone.0129486
https://www.ncbi.nlm.nih.gov/pubmed/26065708
https://doi.org/10.5694/mja10.10662
https://www.ncbi.nlm.nih.gov/pubmed/22171868
https://doi.org/10.3389/fpain.2023.1168377
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1364/AO.48.00D280
https://doi.org/10.1016/j.neucli.2016.07.002
https://www.ncbi.nlm.nih.gov/pubmed/27751622
https://doi.org/10.1016/j.ijpsycho.2004.03.007
https://doi.org/10.1016/S1388-2457(03)00093-2
https://www.ncbi.nlm.nih.gov/pubmed/12948787
https://doi.org/10.1097/NMD.0000000000001070
https://www.ncbi.nlm.nih.gov/pubmed/31977827
https://doi.org/10.1002/ejp.1615
https://www.ncbi.nlm.nih.gov/pubmed/32564499
https://doi.org/10.17816/vto202027260-65
https://doi.org/10.4317/medoral.24051
https://doi.org/10.1016/j.cogsys.2018.11.002


AI 2024, 5 135

34. Pluck, G.; López-Águila, M.A. Induction of fear but no effects on cognitive fluency by theta frequency auditory binaural beat
stimulation. Psychol. Neurosci. 2019, 12, 53–64. [CrossRef]

35. Lee, M.; Song, C.-B.; Shin, G.-H.; Lee, S.-W. Possible effect of binaural beat combined with autonomous sensory meridian response
for inducing sleep. Front. Hum. Neurosci. 2019, 13, 425. [CrossRef] [PubMed]

36. Chouhan, T.; Panse, A.; Smitha, K.; Vinod, A. A comparative study on the effect of audio and visual stimuli for enhancing
attention and memory in brain computer interface system. In Proceedings of the 2015 IEEE International Conference on Systems,
Man, and Cybernetics, Hong Kong, China, 9–10 October 2015; IEEE: New York, NY, USA, 2015.

37. Sakurai, N.; Nagasaka, K.; Takahashi, S.; Kasai, S.; Onishi, H.; Kodama, N. Brain function effects of autonomous sensory meridian
response (ASMR) video viewing. Front. Neurosci. 2023, 17, 1025745. [CrossRef] [PubMed]

38. Jayasinghe, T. Element Mindfulness Approach from Binaural Beats Using Mobile Application. Ph.D. Thesis, Informatics Institute
of Technology, Colombo, Sri Lanka, 2019.

39. Rui, Z.; Gu, Z. A review of EEG and fMRI measuring aesthetic processing in visual user experience research. Comput. Intell.
Neurosci. 2021, 2021, 2070209. [CrossRef] [PubMed]

40. Thafa’i, N.A.; Ghani, S.A.; Zaini, N. Classification of Normal and Stress Groups Among Females Based on Electroencephalography
Signals Using Artificial Neural Network. Adv. Sci. Lett. 2017, 23, 5277–5281. [CrossRef]

41. Adavanne, S.; Politis, A.; Virtanen, T. Multichannel sound event detection using 3D convolutional neural networks for learning
inter-channel features. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro,
Brazil, 8–13 July 2018; IEEE: New York, NY, USA, 2018.

42. Cheah, K.H.; Nisar, H.; Yap, V.V.; Lee, C.-Y. Convolutional neural networks for classification of music-listening EEG: Comparing
1D convolutional kernels with 2D kernels and cerebral laterality of musical influence. Neural Comput. Appl. 2020, 32, 8867–8891.
[CrossRef]

43. Andrian, Y.F.; Widiyanti, P.; Arisgraha, F.C.S. Alpha brainwave stimulator using light and binaural beats stimulation. AIP Conf.
Proc. 2020, 2314, 1.

44. El Houda Baakek, Y.N.; El Amine Debbal, S.M. Digital drugs (binaural beats): How can it affect the brain/their impact on the
brain. J. Med. Eng. Technol. 2021, 45, 546–551. [CrossRef]

45. Zaini, N.; Omar, H.L.; Latip, M.F.A. Semantic-based Bayesian Network to determine correlation between binaural-beats features
and entrainment effects. In Proceedings of the 2011 IEEE International Conference on Computer Applications and Industrial
Electronics (ICCAIE), Penang, Malaysia, 4–7 December 2011; IEEE: New York, NY, USA, 2011.

46. Jirakittayakorn, N.; Wongsawat, Y. A novel insight of effects of a 3-Hz binaural beat on sleep stages during sleep. Front. Hum.
Neurosci. 2018, 12, 387. [CrossRef]

47. Loong, L.J.; Ling, K.K.; Tai, E.L.M.; Kueh, Y.C.; Kuan, G.; Hussein, A. The effect of binaural beat audio on operative pain and
anxiety in cataract surgery under topical anaesthesia: A randomized controlled trial. Int. J. Environ. Res. Public Health 2022, 19,
10194. [CrossRef]

48. Abu-Taieh, E.M.; AlHadid, I.; Masa’deh, R.; Alkhawaldeh, R.S.; Khwaldeh, S.; Alrowwad, A. Factors affecting the use of social
networks and its effect on anxiety and depression among parents and their children: Predictors using ml, sem and extended
TAM. Int. J. Environ. Res. Public Health 2022, 19, 13764. [CrossRef] [PubMed]

49. Lee, E.; Bang, Y.; Yoon, I.-Y.; Choi, H.-Y. Entrapment of binaural auditory beats in subjects with symptoms of insomnia. Brain Sci.
2022, 12, 339. [CrossRef] [PubMed]

50. Yi, J.-H.; Kim, K.-B.; Kim, Y.-J.; Kim, J.-S.; Kim, H.-S.; Choi, M.-H.; Chung, S.-C. A Comparison of the Effects of Binaural Beats of
Audible and Inaudible Frequencies on Brainwaves. Appl. Sci. 2022, 12, 13004. [CrossRef]

51. Ignatious, E.; Azam, S.; Jonkman, M.; De Boer, F. Frequency and time domain analysis of EEG based auditory evoked potentials
to detect binaural hearing in noise. J. Clin. Med. 2023, 12, 4487. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1037/pne0000166
https://doi.org/10.3389/fnhum.2019.00425
https://www.ncbi.nlm.nih.gov/pubmed/31849629
https://doi.org/10.3389/fnins.2023.1025745
https://www.ncbi.nlm.nih.gov/pubmed/36777643
https://doi.org/10.1155/2021/2070209
https://www.ncbi.nlm.nih.gov/pubmed/34956344
https://doi.org/10.1166/asl.2017.7358
https://doi.org/10.1007/s00521-019-04367-7
https://doi.org/10.1080/03091902.2021.1936236
https://doi.org/10.3389/fnhum.2018.00387
https://doi.org/10.3390/ijerph191610194
https://doi.org/10.3390/ijerph192113764
https://www.ncbi.nlm.nih.gov/pubmed/36360644
https://doi.org/10.3390/brainsci12030339
https://www.ncbi.nlm.nih.gov/pubmed/35326295
https://doi.org/10.3390/app122413004
https://doi.org/10.3390/jcm12134487

	Introduction 
	Literature Review 
	Optimized Wavelet Transform with Deep CNN-Based EEG Signal Processing 
	BAI with Alpha Binaural Beats 
	Optimized Wavelet Transform 
	Deep CNN-Based Signal Processing 

	Results and Discussion 
	Simulation Setup 
	Dataset Description 
	Simulated Output of Proposed System 
	Performance Metrics of the Proposed System 
	Comparison of the Results of the Proposed Method 

	Conclusions 
	References

