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Abstract: We consider a toy model for the study of monitored dynamics in many-body quantum
systems. We study the stochastic Schrödinger equation resulting from continuous monitoring with a
rate Γ of a random Hermitian operator, drawn from the Gaussian unitary ensemble (GUE) at every
time t. Due to invariance by unitary transformations, the dynamics of the eigenvalues {λα}n

α=1 of
the density matrix decouples from that of the eigenvectors, and is exactly described by stochastic
equations that we derive. We consider two regimes: in the presence of an extra dephasing term,
which can be generated by imperfect quantum measurements, the density matrix has a station-
ary distribution, and we show that in the limit of large size n → ∞ it matches with the inverse-
Marchenko–Pastur distribution. In the case of perfect measurements, instead, purification eventually
occurs and we focus on finite-time dynamics. In this case, remarkably, we find an exact solution
for the joint probability distribution of λ’s at each time t and for each size n. Two relevant regimes
emerge: at short times tΓ = O(1), the spectrum is in a Coulomb gas regime, with a well-defined
continuous spectral distribution in the n → ∞ limit. In that case, all moments of the density matrix
become self-averaging and it is possible to exactly characterize the entanglement spectrum. In the
limit of large times tΓ = O(n), one enters instead a regime in which the eigenvalues are exponentially
separated log(λα/λβ) = O(Γt/n), but fluctuations ∼ O(

√
Γt/n) play an essential role. We are still

able to characterize the asymptotic behaviors of the entanglement entropy in this regime.

Keywords: random matrix theory; monitored quantum systems; measurement-induced phase transitions

1. Introduction

In recent years, the study of quantum many-body systems in the presence of continu-
ous monitoring of its local degrees of freedom has received much attention. The motivations
for this case are of various kinds: first, from a practical point of view, the combinations of
measurements and quantum gates are essential ingredients of quantum computation [1,2].
In addition to this fact, recent studies have shown that quantum measurements (both
projective and weak) can induce peculiar phase transitions, denominated measurement-
induced phase transitions (MIPTs) [3–5], which arise exclusively by looking at the statistics
of trajectories via nonlinear observables [6–9]. Prime examples are transitions in entan-
glement dynamics [3–5] or purification time [10] induced by increasing the strength of
the measurements (e.g., the probability with which each site is measured in the case of
projective measurements or the rate of measurements in the case of weak measurements).
In this case, it was found that going from weak to strong measurements, one can move
from a volume-law entangled phase [11–13] to an area-law one [14–18]. Results along these
lines were initially obtained by using random circuits [19], in which quantum evolution
occurs through unitary gates chosen from a uniform distribution (Haar) possibly within an

Quantum Rep. 2024, 6, 200–230. https://doi.org/10.3390/quantum6020016 https://www.mdpi.com/journal/quantumrep

https://doi.org/10.3390/quantum6020016
https://doi.org/10.3390/quantum6020016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0009-0008-1485-3764
https://orcid.org/0000-0002-4928-7693
https://orcid.org/0000-0003-0272-5083
https://doi.org/10.3390/quantum6020016
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/article/10.3390/quantum6020016?type=check_update&version=1


Quantum Rep. 2024, 6 201

appropriate subset of the unitary group. Then, in the limit of a large local Hilbert space
dimension, it has been shown that a phase transition is present, and the corresponding crit-
ical point lies in the directed percolation universality class. However, it has been clarified
that this simplification is not accurate in general [20]: the critical point is described by a
peculiar conformal (scale invariant) theory not exactly solvable in general [21–23]. Follow-
ing these results, much theoretical [24,25] and numerical [26–29] work has been devoted
to thoroughly characterizing MIPTs by linking them to various other phenomena, such as
quantum error correction [30], purification [31–33], state preparation, quantum communi-
cation [34], and the complexity of classical simulation of quantum systems [35,36]. Recent
results have attempted to study this phenomenology in simplified toy models [37,38]. How-
ever, in the case of noninteracting systems (e.g., free fermions), it has been shown that the
transition has a radically different nature: the volume-law phase is immediately unstable
for arbitrarily weak quantum measurements [39–45], and yet, in some cases, a subvolume
phase can survive before the onset of the area-law phase [46–50], with a universality class
more akin to problems of Anderson localization and disordered conductors, studied in
the context of nonlinear sigma models [51,52]. In the interacting case, one of the main
difficulties in studying individual trajectories of monitored systems lies in the fact that
the probability of each trajectory depends on the state itself, in accordance with Born’s
rule. This aspect produces an inevitable nonlinearity when considering statistical averages
over measurement outcomes, similar to that faced in disordered systems. In analogy to
that approach, it is possible to proceed through the replica trick, thus studying N identical
copies of the system and eventually considering the relevant N → 1 limit (in contrast with
the more common N → 0 limit relevant in disordered systems [53,54]). The fundamental
ingredient for the replica limit is the possibility of performing an analytic continuation in
N by means of an exact formula. Some studies avoid this problem by replacing the N → 1
limit with the simpler and more explicit N = 2 case, where in fact two copies are considered.
Alternatively, recent results have been obtained using mean-field models [55–58], where
analytical progress can be achieved. In particular, in [59], a discrete fully connected model
was introduced in which the dynamics in the presence of measurements can be mapped
onto a variant of branching Brownian motion and then studied in terms of the Fisher
and Kolmogorov–Petrovsky–Piskunov reaction-diffusion Equation [60–62]. However, the
nature of these results in more general problems is not completely clear. More recently, a
model of spin in the presence of noise and weak measurements has been introduced in
which it is possible to study the dynamics in the presence of measurements analytically
and in particular explicitly consider the N → 1 limit [63]: this showed that the replica limit
can be highly nontrivial, with a MIPT present for any integer N > 1, but disappearing in
the N → 1 limit.

Beyond the study of the transition, it becomes interesting to characterize the specific
behavior of the two phases. In particular, the volume-law phase is hard to simulate from
the classical point of view because of the strong presence of entanglement surviving very
long times. In this paper, we focus on the characterization of the dynamics in the pres-
ence of weak measurements far from the critical point, within the volume-law phase. To
do so, we introduce a model of the evolution of the density matrix of the system purely
based on random matrices, akin to the one considered in Ref. [64]. We choose a dynamics
based on the stochastic Schrödinger Equation [65], invariant under unitary rotations in the
n-dimensional Hilbert space, such that the dynamics of the eigenvalues of the density
matrix decouples from that of the eigenvectors, as is the case in Dyson Brownian motion
(DBM). In this way, unitary dynamics becomes inessential since it does not affect the eigen-
values. Once we have derived a stochastic equation for the evolution of the eigenvalues,
we study two relevant limits of it: in the first case, we consider dynamics induced by
“imperfect” measurements, i.e., a case in which a fraction of the measurement results is
unknown. This is effectively equivalent to introducing a dephasing term that on each
trajectory tends to bring the density matrix closer to the identity. In this case, we prove
the existence of a steady state that describes the distribution of the eigenvalues: at large
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n, the resulting ensemble is described by an inverse-Wishart matrix. Next, we explore
the dynamics for perfect measures: in this case, the steady state at long times reduces
trivially to a pure random state uniformly distributed in the steady state; however, this
happens with a characteristic transient at small and intermediate times. We present the
exact solution for the joint distribution of eigenvalues at all times and analyze its effects on
the entanglement entropy.

2. Preliminaries on Unravelings and Trajectories

The combined dynamics of a quantum system undergoing both unitary evolution
and measurements can always be modeled as a quantum channel [66], whose output
contains both the state of the quantum system and the classical encoding of the results
of the measurements. According to Choi’s theorem [67], a quantum channel Φ(ρ) can
always be expressed in terms of a set of Kraus operators {Ka}a, first discussed in Ref. [68].
Those provide an explicit operator-sum decomposition of the quantum channel as
Φ(ρ) = ∑a KaρK†

a , and describe the dynamics by means of linear maps from the sys-
tem’s Hilbert space to itself. Because of trace-norm conservation, Kraus operators satisfy
the condition ∑a K†

aKa = 1, with 1 the identity operator in the Hilbert space of the quan-
tum system. However, the specific decomposition of Φ in terms of the Kraus operators is
not unique as {K′

a}a with K′
a = ∑b Ua,bKb, for an arbitrary unitary transformation Ua,b,

define the same quantum channel Φ(ρ). Different decompositions of the same quantum
channel are referred to as unravelings. In the context of repeated measurement, the Kraus
operators are factorized Ka = Ka1 Ka2 . . . KaT where a = (a1, a2, . . . , aT) labels the collection
of all measurement outcomes performed at each time step. For MIPTs, one is interested in
the single trajectory where the initial density matrix ρ(0) evolves as

ρa = p−1
a ρ̃a, ρ̃a ≡ Kaρ(0)K†

a , (1)

where the probability of a specific trajectory has been introduced according to Born’s rule as
pa = tr[ρ̃a]. Given any functional of the state F[ρ], we define the average over trajectories as

⟨F[ρ]⟩ = ∑
a

paF[ρa], Born rule. (2)

If the results of the measurements are not known, one only has access to linear functionals of
the state, such as the quantum expectation of any observable, e.g., ⟨tr[Ôρ]⟩ = tr[ÔΦ[ρ(0)]],
which depends solely on the quantum channel Φ[ρ] and is independent on the specific
unraveling. However, this is not true for nonlinear functionals such as the Renyi’s entropies,
where one considers the functionals

Sk[ρ] :=
1

1 − k
ln tr[ρk], (3)

and in particular, the Von Neumann entropy defined as the limit k → 1, or, explicitly,

S1[ρ] := − tr[ρ log ρ] = −∑
α

λα log λα, (4)

where {λα}n
α=1 denotes the eigenvalues of ρ. Quantities like ⟨S1[ρ]⟩ can be used as order

parameters for MIPTs. By discarding the Born’s weight for trajectories, one can define a
different average

⟨F[ρ]⟩0 =
∑a F[ρa]

∑a 1
, Unbiased outcomes, (5)

where all measurement outcomes have equal weight and are statistically independent
at different times. Unbiased outcomes can be obtained via post-selection by artificially
attributing the same probability to each trajectory. In some contexts, ⟨. . .⟩0 is used as an
approximation for the more physical ⟨. . .⟩. We will see that both cases emerge naturally in
our framework.
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3. The Model

We consider a toy model for continuous monitoring in a quantum system with a
Hilbert space of dimension n. Let us explain the model by splitting the unitary evolution
and the monitoring parts. For the unitary evolution, we have the Hamiltonian increment

dH = J
n

∑
α,β=1

dhαβ(t) |α⟩ ⟨β| , (6)

where hermiticity is ensured requiring that dhαβ = dh∗βα. Otherwise, the increments
are chosen as a Hermitian Brownian motion with covariance dhαβdh∗γδ = δαγδβδ dt/n.

Equivalently, in the limit dt → 0, we can write dhαβ =
√

dt hαβ, where hαβ is an n × n
Hermitian matrix, drawn from the Gaussian unitary ensemble (GUE)

P(h) =
1
Z

e−
n
2 tr[hh† ], (7)

and the measure is over the independent entries of a Hermitian matrix (with a semi-circle
spectrum of support [−2, 2] in the large n limit). A crucial property of the GUE distribution
is its invariance under unitary conjugation, P(h) = P(uhu†) for any unitary u ∈ U(n). The
dynamics induced by such a unitary evolution is simply described by ρ + dρ = e−idHρeidH ,
where the Itô calculus conventions are implied. For measurements, let us first introduce the
standard form of the stochastic Schrödinger Equation [65,69,70] for an imperfect monitoring
of a Hermitian operator Ô. Within a small time step ∆t, the system is evolved coupling
the operator Ô with an extra spin 1/2 (ancilla) whose value along a reference direction is
projectively measured with an outcome a = ±1. As explained in the previous section, this
evolution can be encoded into the Kraus operators Ka = (1 − a

√
Γ∆tÔ + γ∆tÔ2/2)/

√
2

(see Appendix A in Ref. [63] for a summary of this derivation), where Γ is a rate quantifying
the measurement strength. In the limit ∆t → 0, the collection of measurements a can be
used to define a standard Wiener process Y(t) (dY2 = dt) and one obtains the stochastic
evolution equation

dρ = (1 + x) ΓdtDO[ρ] +
√

ΓdY{Ô − ⟨Ô⟩t, ρ} (8)

with the dephasing superoperator DO[ρ] ≡ ÔρÔ − 1
2{Ô2, ρ}. The parameter x ≥ 0

quantifies an extra source of dephasing. It can be seen as due to a fraction of mea-
surements whose outcomes are not known or more generally to a coupling with an ex-
ternal dephasing bath. The limit x = 0 corresponds to perfect measurements. In our
model, within each infinitesimal time step dt, we choose Ô(t) = ∑n

α,β=1 oαβ(t) |α⟩ ⟨β| to
be a random operator, with components oαβ drawn from the GUE distribution (7). We
can thus introduce a Hermitian Brownian motion setting doαβ = oαβ(t)dY, satisfying
doαβdo∗γδ = δαγδβδ dt/n. Using this, according to the rules of stochastic calculus, we can

rewrite the dephasing part as DO[ρ]dt = DO[ρ]dY2 = dÔρdÔ − 1
2{dÔ2, ρ} = −(ρ − 1

n )dt,
where dÔ = ∑n

α,β=1 doαβ |α⟩ ⟨β|. Note that at finite ∆t, oαβ(t)dY is the product of two Gaus-
sian distributions that is not Gaussian. However, this is irrelevant in the ∆t → 0 limit,
where only the covariance is relevant to define a Wiener process.

In the following, we will assume that the density matrix is initially prepared in the
infinite-temperature state ρ = 1/n. Thus, because both the Hamiltonian increment and the
observable Ô are always chosen from the GUE, the distribution of the density matrix at
any time is itself invariant under unitary transformation. In other words, diagonalizing
ρ = uΛu†, u will be Haar distributed in the unitary group U(n) and will completely
decouple from the dynamics of Λ = diag(λ1, . . . , λn). In the following, we will focus on
the dynamics and the distribution of the eigenvalues {λα}n

α=1. As they are unaffected by
the unitary dynamics, in the following we will ignore the latter.
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4. The n = 2 Case

Before dealing with the general n case, it is worth considering specifically the n = 2
case as an instructive warm-up. We can parameterize the density matrix in terms of a vector
r⃗ = {r1, r2, r3}, within the Bloch sphere (|⃗r| ≤ 1), as

ρ =
1
2
(1+ r⃗ · σ⃗) =

1
2
(1+ rασα), (9)

where σ⃗ = {σ1, σ2, σ3} denotes the set of Pauli matrices. The modulus r = |⃗r| coincides
with the difference |λ1 − λ2| between the two eigenvalues of ρ, whereas the normalization
of the trace, forcing λ1 + λ2 = 1, is implicit in the parameterization. It is also convenient to
similarly parameterize the measurement operator as O = o01+ o⃗ · σ⃗. We can assume Ô to be
traceless so that o0 = (o11 + o22)/2 = 0, as this contribution would be inessential in either
case. The three remaining one-indexed random variables o1 = Re(o12), o2 = −Im(o12),
o3 = (o11 − o22)/2 are real-valued and satisfy oαoβ = δαβ/4. In terms of these variables, the
infinitesimal variation drα = tr(dρσα) reads

drα = −Γdt(1 + x)rα + 2
√

Γ(doα − doβrβrα). (10)

This can be recast into a closed stochastic equation for the modulus r = |⃗r| (as required by
unitary invariance), which takes the form

dr = Γdt
(

1 − r2

r
− xr

)
+
√

ΓdY(1 − r2), (11)

dY being the standard Wiener process satisfying dY2 = dt defined before Equation (8).
In order to recast the previous equation into the standard Langevin form, let us perform
the change in variables r = tanh(ω), ω ∈ R+. In terms of ω, we indeed have dω =
−ΓV′(ω)dt +

√
ΓdY, where the potential is given by the following:

V(ω) = − x
2

cosh2(ω)− log[sinh(2ω)]. (12)

As a consequence, the evolution of the probability distribution P(ω, t) can be described
through the associated Fokker–Planck (FP) equation

∂tP(ω, t) =
Γ
2

∂ω

[(
∂ω + 2V′(ω)

)
P(ω, t)

]
. (13)

which admits a stationary probability distribution Pstat(ω) = 1
Z e−2V(ω). Coming back to

the original coordinate, one has

Pstat(r) =
1
Z

r2

(1 − r2)3 e−x(1−r2)−1
, (14)

a result already derived in [63] in the context of mean-field approximation. Since
tr(ρ2) = (1 + r2)/2, it follows that the purity has a nontrivial stationary distribution
as well for any x > 0. As x → 0, the distribution becomes more and more peaked around
r = 1, eventually collapsing to Pstat(r) = δ(r − 1) for x = 0: this is consistent with the
fact that perfect measurements eventually lead to purification. For x = 0, the finite-time
solution of Equation (13) can be explicitly worked out as follows:

P(ω, t) =
ω sinh(2ω)e−

ω2
2Γt −2Γt

√
2π(Γt)3/2

, (15)

normalized in ω ∈ R+. The origin of this form will be clarified for general n in Section 7.1.
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We can use these results to compute the Von Neumann entropy (4). In particular, on
each trajectory, it can be related to the variable r

S1 = Smax −
1
2
[(1 + r) log(1 + r) + (1 − r) log(1 − r)], (16)

with Smax = log n = log 2, the entropy of the maximally mixed state. We can compute the
behavior of ⟨S1⟩ in different regimes; in the stationary state at x > 0, one has

⟨S1⟩stat =

{
log 2 − 3

4x + O(x−2), x ≫ 1
− 1

4 x log x, x ≪ 1
. (17)

For x = 0, the system purifies, and ⟨S1⟩ → 0. For large times, we have

⟨S1⟩ =
e−2Γt

2

(
1 +

(Γt)−
1
2

√
2π

− π2 + 6
24

(Γt)−
3
2

√
2π

+ O(t−
5
2 )

)
. (18)

See Appendix B for the details of the derivation and for the higher orders.

5. Dynamics of the Spectrum
5.1. Stochastic Evolution of the Eigenvalues

In order to derive an evolution equation for the eigenvalues in the general case, we
follow the standard approach [71] and make use of second-order perturbation theory, as
follows:

dλα = dραα + ∑
β ̸=α

|dραβ|2

λα − λβ
. (19)

Now, one has to substitute the infinitesimal variations ρα as determined in Equation (8). To
further simplify the calculation, we take advantage of unitary rotational invariance, so that
ρ at time t is assumed to be diagonal in an appropriate basis ραβ = λαδαβ (no sum over α).
Thus, we have

dραα = −Γdt (1 + x)
(

λα −
1
n

)
+ 2

√
Γλα

[
doαα − ∑

β

λβdoββ

]
, (20)

whereas for the off-diagonal elements, we simply have dρα ̸=β =
√

Γdoαβ(λα + λβ). We
can consider the diagonal elements of dÔ and rescale them as dBα =

√
n doαα, so that

dBαdBβ = δαβ dt are standard Wiener increments. Then, one finally finds

dλα = γdt

[
−(1 + x)(nλα − 1) + ∑

β ̸=α

(λα + λβ)
2

λα − λβ

]
+ 2

√
γλα

(
dBα − ∑

β

λβdBβ

)
, (21)

where we rescaled γ = Γ/n. Let us notice that, as it should be, the evolution of Equation (21)
preserves the trace, as ∑α dλα = d tr(ρ) = 0. Additionally, for x = 0, the configuration
λα = 1, λβ ̸=α = 0 is a fixed point, since as expected, in the absence of any dephasing
(x = 0), measurements eventually lead to purification and the density matrix reduces to a
rank-1 projector. It is useful to further manipulate Equation (22) by rewriting λα − 1/n =
1
n ∑β ̸=α(λα − λβ), where we used ∑β λβ = 1. In such a way, we obtain

dλα = γdt ∑
β ̸=α

[
4

λαλβ

λα − λβ
+ x(λβ − λα)

]
+ 2

√
γλα

(
dBα − ∑

β

λβdBβ

)
. (22)

For x = 0, Equation (22) presents some analogy with the eigenvalue flow studied in [72],
see Equation (28) therein with (1 + mλi)dt → 0, σ2 = 4γ and β = 2. The sum over β ̸= α is
clearly a manifestation of the typical Coulombic repulsion between eigenvalues. On top
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of that, the form of the noise is non-diagonal, as a combined effect of exactly preserving
the trace and attributing Born’s probability to trajectories. Then, in order to simplify the
dynamics, we introduce a new set of unconstrained variables.

5.2. Mapping to Unconstrained Variables

As the dynamics of the eigenvalues exactly preserves the traces, it is useful to write
them as λα ≡ yα/(∑n

β=1 yβ) in terms of a new set of variables {yα}n
α=1. Of course, the

mapping between the λ’s and the y’s is not one-to-one, as a global rescaling of all the y’s
does not affect the mapping. This freedom can be used to simplify the evolution of the y’s,
in particular, by writing

dyα = 4γdt Fα (⃗y) +
√

4γ yαdBα, (23)

we can look for a force term Fα (⃗y) which is homogeneous of degree 1. From standard Itô
calculus, one can verify that

Fα (⃗y) =
x
4 ∑

β

yβ +
y2

α

∑β yβ
+ ∑

β ̸=α

yαyβ

yα − yβ
+ g(⃗y)yα, (24)

where g(⃗y) is an arbitrary homogeneous function (g(c⃗y) = g(⃗y)), which correctly re-
produces Equation (22) for the evolution of the λ’s. Equation (23) has the advantage of
involving only a diagonal noise term, which is nonetheless multiplicative. We can further
simplify its form setting wα = log yα, which leads to

dwα = 4γF̃α(w⃗)dt +
√

4γdBα, (25)

where F̃α(w⃗) = e−wα Fα(ew). Setting g(⃗y) = (n − 1)/2, one can express

F̃α = −∂αV(w⃗) +
x
4
fα(w⃗), (26)

where ∂α = ∂/∂wα , the potential V(ω⃗) is

V(ω⃗) = −1
2 ∑

α ̸=β

log sinh
|wα − wβ|

2
− log ∑

β

ewβ (27)

whereas the non-conservative force is given by fα = ∑β ewβ−wα . We will now explain how
the dynamics induced by Equation (25) can be solved in different regimes.

6. Stationary State at x > 0 and n → ∞

We now consider the dynamics induced by imperfect measurements at finite x = O(1)
in the large n limit. When the dephasing term dominates the right-hand side of Equa-
tion (22), the eigenvalue distribution is expected to be peaked around λ = 1/n. Therefore,
it is convenient to rescale the eigenvalues via

λ̃α =
2nλα

x
, (28)

with the trace condition becoming ∑α λ̃α = 2n/x. With this scaling, we can analyze the
noise term in Equation (22), which is proportional to λ̃α(dBα − x/(2n)∑β λ̃β dBβ) ∼ λ̃α dBα.
Indeed, by summing the last term in quadrature, we see it scales like n−1/2 and can thus
be neglected for n ≫ 1. This can be understood as the sum ∑α λ̃α being extensive and in
the n → ∞ limit its fluctuations are subleading with respect to its average. In this scaling,
Equation (22) becomes

dλ̃α = 4γdt

[
∑

β ̸=α

λ̃αλ̃β

λ̃α − λ̃β

+
n
2

(
1 − x

2
λ̃α

)]
+
√

4γ λ̃αdBα. (29)
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This associated stochastic dynamics is exactly solvable even at finite n. Indeed, by introduc-
ing again logarithmic variables w̃α = log λ̃α, we can reduce this to a Langevin equation,
analogous to Equation (25), as follows:

dw̃α = 4γdt(−∂αVx(⃗̃w)) +
√

4γ dBα. (30)

We stress that this equation involves a completely conservative force where the potential
Vx(⃗̃w) now reads as follows:

Vx(⃗̃w) = −1
2 ∑

α ̸=β

log sinh
|w̃α − w̃β|

2
+

n
2 ∑

α

[
e−w̃α +

(
1 +

x
2

)
w̃α

]
. (31)

It is helpful to comment between the relation of the variables w̃α introduced here and wα in
Section 5.2. We can see that they match, up to an inessential shift of the center of mass. The
initial value of the sum ∑α ewα can be chosen arbitrarily and in the limit n → ∞ it becomes
a conserved quantity. Since we implicitly chose ∑α ew̃α = ∑α λ̃α = 2n/x, we can rewrite
λα = ew̃α / ∑α ew̃α coherently with Section 5.2.

Thanks to the Langevin form of Equation (30), we can easily deduce the joint distribution

Pstat(⃗̃w) =
1
Z

e−2V(⃗̃w) =
1
Z ∏

α>β

sinh
( w̃α − w̃β

2

)2
∏

α

e−w̃αn(1+ x
2 )e−ne−w̃α , (32)

which is the stationary solution to the associated FP equation. In terms of the rescaled
eigenvalues λ̃α

Pstat (⃗λ̃) =
1
Z

∏α>β(λ̃α − λ̃β)
2

∏α λ̃
n(2+x/2)
α

e−n ∑α λ̃−1
α , (33)

which is, upon rescaling λ̃α → λ̃α/2n = λα/x, the joint distribution function for the
eigenvalues of a matrix in the inverse-Wishart ensemble, with m = n(1 + x/2). We refer to
Appendix C for a brief discussion of such an ensemble.

Let us now introduce the one-particle density function

f (λ̃) =
1
n ∑

α

δ(λ̃ − λ̃α), (34)

satisfying
∫

dλ̃ f (λ̃) = 1,
∫

dλ̃ f (λ̃)λ̃ = 2/x. For matrices in the inverse-Wishart ensemble,
the eigenvalue density takes the inverse-Marchenko–Pastur (IMP) expression reported in
Equation (A12) of Appendix C. It is thus immediate to verify that the distribution for the
rescaled eigenvalues defined above reads

f (λ̃, x) ≡ fIMP(λ̃, x) =
x

4πλ̃2

√
(λ̃ − λ̃−)(λ̃+ − λ̃), (35)

and it is shown in Figure 1. The endpoints λ̃± are given by

λ̃± =
4
x2

(√
1 +

x
2
± 1
)2

. (36)

The distribution in Equation (35) is valid in the n → ∞ limit which is also needed for
Equation (29) to become a valid approximation of the original Equation (22). The behavior
of fIMP(λ̃, x) as x is varied and defines a sharply peaked distribution around 2/x for x ≫ 1,

as the interval λ̃+ − λ̃− = 16
x2

√
1 + x

2 collapses to a point. Conversely, in the limit of nearly
perfect measurements x ≪ 1, the rescaled eigenvalues spread on the positive semi-axis
between λ̃− → 1/4 and λ̃+ → ∞, whereas f (λ̃) remains peaked around λ̃ = 1/3. As
this corresponds to λ → 0, this signals the purification dynamics induced by perfect
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measurements. For any finite n, it is important to notice, however, that even in this regime,
one has to assume x ≫ n−1 for our approximation to be valid, so that the limits x → 0,
n → ∞ do not commute.
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Figure 1. Inverse-Marchenko–Pastur distribution. The spectral density f (λ̃) for the rescaled eigenval-
ues λ̃ defined in Equation (28) is shown. In the large n limit, it takes the inverse-Marchenko–Pastur
form given in Equation (35). In both plots, the orange line displays the theoretical curve, whereas the
blue histogram bars are computed after a numerical simulation (with n = 50) of the weak measure-
ment protocol. (a) The spectral density at x = 0.2 in the range [0, 4/x]. At small x, most eigenvalues
are located in vicinity of λ̃− → 1/4, as an effect of purification. (b) The spectral density at x = 5.0 in
its domain [λ̃−, λ̃+]. For larger values of x, the rescaled eigenvalues take finite values around their
average ⟨λ̃⟩ = 2/x.

The Von Neumann entropy, defined in Equation (4), can be computed in the stationary
state, in terms of the inverse-Marchenko–Pastur eigenvalue distribution above, as follows:

⟨S1⟩stat = Smax − log
x
2
− x

2

∫
dλ̃ fIMP(λ̃) λ̃ log λ̃, (37)

with Smax = log n the entropy of the maximally mixed state. The last integral on the
right-hand side can be evaluated by means of contour integration

− x
2

x
4π

∫ λ̃+

λ̃−
dλ̃

log λ̃

λ̃

√
(λ̃ − λ̃−)(λ̃+ − λ̃) = 1 +

(
2 +

x
2

)
log

x
2
−
(

1 +
x
2

)
log
(

1 +
x
2

)
, (38)

so that one has the remarkably simple exact formula, as follows:

⟨S1⟩stat − Smax = 1 −
(

1 +
x
2

)
log
(

1 +
2
x

)
. (39)

In particular, this allows us to evaluate its asymptotic behavior in the opposite regimes
x ≫ 1 and n−1 ≪ x ≪ 1, as follows:

⟨S1⟩stat − Smax =

{
− 1

x + O(x−2), x ≫ 1
− log(x) + O(1), x ≪ 1

. (40)

6.1. Finite Time Dynamics

The finite time evolution of the set of unconstrained {w̃α}n
α=1 used in this section has

been studied in detail by one of the authors in Ref. [72]. Our Langevin Equation (30) indeed
reduces to Equation (42) of Ref. [72] upon the identification t → Γxt, m = −1, σ =

√
4/xn,

β = 2. Consistent with our result in Equation (35), a stationary inverse-Wishart distribution
was also obtained there. Here, we briefly summarize the procedure and the results with
our notation and parameters. The associated FP equation can be mapped to an imaginary
time quantum problem via the transformation

P(⃗̃w, t) = [Pstat(⃗̃w)]1/2 Ψ(⃗̃w, t), (41)
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with Pstat(⃗̃w) given in Equation (32) (we better discuss the quantum mapping from FP to
Schrödinger in Section 7.1). The ensuing Schrödinger equation reads

∂tΨ = −2γ[H− E0]Ψ, (42)

with the Hermitian Hamiltonian

H = ∑
α

[
− ∂2

∂w̃2
α
+ U(w̃α)

]
, (43)

and the finite energy shift E0, which is the n-particle ground state of H. As the trajectories
of the n particles are non-crossing, the problem is mapped onto fermions. The one-particle
potential U(w̃α) is of Morse type:

U(w̃α) =
(xn)2

4

[
e−2w̃α

4
−
(

2
x
+

1
2

)
e−w̃α

]
. (44)

The single-particle spectrum of the Morse potential features a finite number of bound
states ψk(w̃) at eigenenergy Ek = −[k + 1/2 − n(1 + x/4)]2, with k ∈ N, k < kmax,
kmax < ⌊n(1 + x/4)− 1/2⌋, and a continuum of scattering states ϕp(w̃), such that Ep = p2,
with p ∈ R. Let us notice that the number of bound states is always greater than the number
of particles, i.e., ⌊n(1 + x/4) + 1/2⌋ > n ∀x > 0, and the scattering states are empty. The
n-fermion ground state is thus E0 = ∑k Ek. Consequently, the n-fermion energy states of
the original FP operator are simply given by

ε(n) =
2

xn
[E(n)− E0], (45)

so that the lowest eigenvalue is ε0(n) = 0. The single-particle finite time evolution from an
initial w0 to a final w coordinate is determined by the Euclidean propagator GM using the
spectral decomposition over the bound and the scattering states

GM

(
w̃, w̃0, τ

)
:=

kmax

∑
k=0

ψk(w̃)ψk(w̃0)e−Ekτ +
∫
R

dp
2π

ϕp(w̃)ϕp(w̃0)e−p2τ . (46)

Then, the n-fermion propagator is obtained in terms of the Karlin–McGregor determinant
formula [73] for the probability evolution of n non-intersecting particles from ⃗̃w0 to ⃗̃w. From
the quantum Euclidean propagator, one can write the solution to the original FP problem
using Equation (41) as

P
(
⃗̃w, t; ⃗̃w0, t = 0

)
= eE0Γxt P1/2

stat (⃗̃w)

P1/2
stat (⃗̃w0)

det
1≤α,β≤n

GM(w̃α, w̃0
β, Γxt), (47)

given the initial condition P(⃗̃w, t = 0) = ∏α δ(w̃α − w̃0
α).

7. The Perfect Measurement Dynamics

In this section, we present the full solution of the joint eigenvalue distribution for the
measurement problem at arbitrary n and time t, setting x = 0.

7.1. Exact Solution at Finite Time

The stochastic Equation (25) takes the Langevin form

dwα = 4γdt(−∂αV) +
√

4γdBα, (48)

with the potential in Equation (27). The joint distribution P(w⃗, t) for the variables w’s
satisfies the FP equation
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∂tP(w⃗, t) = 2γ ∑
α

∂α[(∂α + 2∂αV)P(w⃗, t)]. (49)

Formally, one can obtain a stationary solution to the FP equation, taking Pstat = e−2V . Of
course, this is not normalizable, consistent with the fact that at t → ∞ the density matrix
simply purifies. Nonetheless, it can once again be used to convert the FP into a quantum
problem, similarly to what was conducted in Section 6.1 with Equation (41). One has

P = ΨP1/2
stat ⇒ ∂tΨ = −2γHΨ , (50)

which does satisfy a Schrödinger evolution with Hamiltonian operator

H = ∑
α

[
− ∂2

α + (∂αV)2 − ∂2
αV
]
. (51)

Remarkably, after using some algebra (see Appendix A and also [74,75]), one can show that

En ≡ (∂αV)2 − ∂2
αV =

1
12

(
n3 + 11n

)
, (52)

implying that the Schrödinger evolution in Equation (50) amounts to free diffusion
with the additional non-crossing constraint when two w’s collide, which maps on free
fermions, as the external Morse potential Equation (44) present in [72], see Equation (47),
is absent here. The propagator for such dynamics can be obtained using the Karlin–
McGregor determinant formula [73], also used in Equation (47). For a given initial condition
P(w⃗, t = 0) = ∏α δ(wα − w0

α), we can obtain the solution

P
(

w⃗, t; w⃗0, t = 0
)
=

P1/2
stat (w⃗)

P1/2
stat (w⃗0)

(e−2γHt)w⃗,w⃗0 , (53)

which leads to

P
(

w⃗, t; w⃗0, t = 0
)
= e−2γEnt ∑α ewα

∑α ew0
α

∏
α<β

sinh
|wα−wβ |

2

sinh
|w0

α−w0
β |

2

det
1≤α,β≤n

G0(wα, w0
β, 2γt). (54)

In this expression, we introduced the free diffusion propagator, namely G0(w, w′, τ) =

exp[− (w−w′)2

4τ ]/
√

4πτ. In the following, we focus on the case of the infinite-temperature
initial state, where all the initial conditions coincide w⃗0 → 0 (the specific value is inessential).
In that limit, Equation (54) further simplifies as P(w⃗, t) → 1

Zt
P0(w⃗, t)(∑α ewα), where

P0(w⃗, t) =
1

Z0
t

∏
α<β

sinh
|wα − wβ|

2 ∏
α<β

|wα − wβ| e−∑α
w2

α
8γt , (55)

and the time dependent constants Z0
t , Zt are both determined by enforcing the normaliza-

tion of P0(w⃗, t) and P(w⃗, t), respectively.

7.2. Relation between the Two Averages

The distribution P0(w⃗, t) has appeared in [75,76] in studying the dynamics of the
so-called isotropic Brownian motion in the context of May-Wigner instability. In contrast,
the expression for P(w⃗, t) has the extra factor ∑α ewα , whose origin can be traced back to
Born’s rule, expressing (up to an irrelevant normalization) the probability in Equation (1)
as pa ∝ ∑α ewα . It is useful to identify the

spectrum[ρ̃] = {ewα}n
α=1, (56)
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where ρ̃ is the unnormalized density matrix introduced in Equation (1). In analogy with
other problems of a multiplicative process involving random matrices [77–80], we will
refer to the variables wα as the Lyapunov exponents. In the following, consistent with the
definition in Equation (5), we will add a subscript 0 to the averages computed with P0, with
the general relation

⟨F(w⃗)⟩ = ⟨F(w⃗)(∑α ewα)⟩0

⟨∑α ewα⟩0
(57)

for an arbitrary function F(w⃗). For instance, for the Renyi’s entropies we can write
the following:

⟨Sk⟩ =
⟨tr ρ̃⟩−1

0
1 − k

〈
log

[
tr ρ̃k

(tr ρ̃)k

]
tr ρ̃

〉
0

, (58)

⟨S1⟩ = −⟨tr ρ̃⟩−1
0

〈[
ρ̃

tr ρ̃
log

ρ̃

tr ρ̃

]
tr ρ̃

〉
0
. (59)

Then, using Equation (56), we can rewrite the Von Neumann entropy as

⟨S1⟩ =

〈
∑α ewα ln ∑β ewβ

〉
0

⟨∑α ewα⟩0
− ⟨∑α ewα wα⟩0

⟨∑α ewα⟩0
. (60)

In particular, introducing the moments of the eigenvalues and of the trace as

M(m) :=

〈
∑
α

emwα

〉
0

, (61)

Ω(m) :=

〈(
∑
α

ewα

)m
〉

0

, (62)

we can express Equation (60) as

⟨S1⟩ =
1

M(1)
∂m (Ω(m)− M(m))|m=1 = ∂m log

Ω(m)

M(m)

∣∣∣∣
m=1

. (63)

Thus, below we will study these moments with the measure P0. We observe that in
Equation (55), one can recognize two Vandermonde determinants, since

∆(w⃗) ≡ ∏
α<β

(wα − wβ) = det(wk−1
α )n

k,α=1, (64)

∏
α<β

[2 sinh(
wα − wβ

2
)] = det(eδkwα)n

k,α=1, (65)

where we set δk = (n + 1)/2 − k. This implies that P0 describes a determinantal point
process, which allows us to obtain several exact results, as discussed below.

8. Exact Results for the Unbiased Ensemble
8.1. Average of Schur’s Polynomials

The calculation of several quantities, including Renyi’s entropies (3), requires the
expressions of correlation functions of the Lyapunov exponents w’s. Here, we explain how
they can be expressed systematically. First, because of the symmetry under exchange in the
w’s, we can restrict to symmetric functions. Then, because of the determinantal structure in
Equation (63), following [81] a complete and useful basis of symmetric functions is given by
Schur’s polynomials and each correlation function can be expressed once the expectation
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of Schur’s polynomials is known. To a partition κ = (κ1, . . . , κn) of the integer m = ∑j κj,
with κ1 ≥ κ2 ≥ . . . ≥ κn ≥ 0, one associates the corresponding Schur polynomial via [82]

sκ(y) =
det(y

κj+n−j
α )n

j,α=1

det(yk−1
α )n

k,α=1

. (66)

Setting yα = ewα and denoting hj = κj + n − j, we can now express the average

⟨sκ(y)⟩0 = CAm
t

∫
dw⃗ ∆(w⃗)det(ehjwα) e−∑α

w2
α

8γt , (67)

where C is the normalization and the constant At raised to the power m accounts for the
shift of the center of mass and will be fixed below. We can use Andreief identity [83] to
express it in terms of a single determinant

⟨sκ(y)⟩0 = CAm
t det(Ik,hj

)n
k,j=1, (68)

where we defined

Ik,h =
∫ ∞

−∞

dw√
8πtγ

wk−1ehw− w2
8γt = ∂k−1

µ

[
e2tγµ2

]∣∣∣
µ=h

. (69)

We can thus express the coefficients Ik,h in terms of the Hermite polynomials Hn(x) =

(−1)nex2
∂n

x [e−x2
] as

Ik,h = e2h2γtHk−1

(
i
√

2tγh
)

. (70)

where again we absorbed some extra constants by redefining C. The fact that at large x,
Hℓ(x) = 2ℓxℓ + O(xℓ−1) can be used to express the determinant

det[Ik,κj+j]
n
k,j=1 ∝ exp

[
2γt ∑

j
h2

j

]
det[hk−1

j ]. (71)

This last determinant is once again a Vandermonde one which can be expressed via (64).
We can now plug this back into Equation (67) and fix the constant C using sκ=0(y) = 1,
where hj → n − j. We finally obtain

⟨sκ(y)⟩0 = Am
t e2γt ∑n

j=1(h
2
j −(j−1)2)sκ(1), (72)

where we recognized the equality

∏
1≤j<j′≤n

hj − hj′

j′ − j
= sκ(y1 = 1, . . . , yn = 1), (73)

which expresses the number of semistandard Young diagram of shape κ and n entries [82].
We can now use ∑n

j=1 h2
j − (j − 1)2 = (2n − 1)m + 2ν(κ) [82], with

ν(κ) = ∑
j

(
κj
2

)
−
(

κ′j
2

)
, (74)

where κ′ = (κ′1, κ′2, . . .) denotes the partition dual to κ, with κ′i = #{κj|κj ≥ i}. The above
average can then be expressed as follows:

⟨sκ(y)⟩0 = Am
t e2γtm(2n−1)e4γtν(κ)sκ(yα = 1). (75)
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8.2. Power-Law Symmetric Polynomials

For later convenience, we also introduce the power-law symmetric polynomials

pj(y) = ∑
α

yj
α, (76)

and additionally, for any integer partition µ = (µ1, . . . , µn), we can set

pµ(y) = ∏
j

pµj(y), (77)

which form a complete linear basis for symmetric polynomials. For instance, we can express

p1m(y) =

(
∑
α

yα

)m

. (78)

Since Schur’s polynomials are also a complete basis, one can find a change in basis between
the two. It is given as (see Equation (3.10) in [81,84])

pµ(y) = ∑
κ⊢m

χκ
µsκ(y), (79)

where χκ
µ represents a character of the symmetric group Sm, with m = ∑α κα, on the

irreducible representation and the conjugacy class labeled, respectively, by the integer
partitions κ and µ.

8.3. Calculation of the Moments

Thanks to the relation between power-law symmetric polynomials and Schur’s ones,
given in Equation (79), we can use the previous result to express the moments of eigenval-
ues, c.f. Equation (61) with yα = ewα :

M(m) =
m−1

∑
r=0

(−1)r⟨s(m−r,1r)(y)⟩0, (80)

which corresponds to Equation (79) in the case µ = (m), i.e., a single cycle of length m. In
this case, the only non-vanishing characters χκ

(m)
are those related to L-shaped partitions

κ = (m − r, 1r) = (κ1 = m − r, κ2 = 1, . . . , κr+1 = 1), with r = 0, . . . , m − 1. In particular, one
has χ

(m−r,1r)
(m)

= (−1)r. Therefore, from Equation (74), we obtain 2ν(κ) = m(m − 2r − 1), and

s(m−r,1r)(1) =
Γ(m + n − r)

mΓ(r + 1)Γ(m − r)Γ(n − r)
. (81)

The sum in Equation (80) thus becomes

M(m) = e2γtm(m+n)
m−1

∑
r=0

(−1)rs(m−r,1r)(1) e−2γtm(2r+1), (82)

which can be expressed for integer n in terms of the hypergeometric function 2F1(a, b; c; z) [85],
obtaining the following:

M(m) =

(
m + n − 1

n − 1

)
e2γtm(m+n−1)

2F1(1 − m, 1 − n; 1 − m − n; z). (83)

In both expressions, we have fixed the value of At = e−2γt(n−1) using ∂mM(0) = ⟨∑α wα⟩0 = 0
in our conventions. Note that M(0) = n as required, and that the lowest moments have
simple expressions, e.g., one has M(1) = ⟨∑α ewα⟩0 = ne2nγt.
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Moreover, it is also possible to compute the moments of the trace defined in Equation (62),
with yα = ewα , by making use of the same relation. We can express

Ω(m) = ∑
κ⊢m

χκ
1m⟨sκ(y)⟩0 = e2tγn ∑

κ⊢m
e4γtν(κ)χκ

1m sκ(1), (84)

where the sum is over the partition κ of the integer m.

8.4. Equivalent Formulations

Equation (55) can appear in different contexts that provide interesting interpretations.
Following [86–88], and using (64) and (65), at a fixed time t, one can identify the Lyapunov
exponents w’s with the spectrum of the matrix

W =
√

4γtnH + (4γt)D, (85)

where H is drawn from the GUE distribution (7) and D = diag( n−1
2 , n−3

2 , . . . ,− n−1
2 ) =

diag(δ1, . . . , δn), see also [89]. The scaled distribution of the largest eigenvalue of W was
computed at large n in [90], see Section III there, and found to be GUE Tracy-Widom, since
no localization transition takes place when the elements of D are equispaced; see also [91].
Besides, Equation (85) is particularly effective for numerical sampling from the distribution
Equation (55).

Equivalently, the w’s can be seen as performing a DBM with β = 2 in inverse time
∼ 1/t. For time inversion of the DBM we refer to, e.g., Appendix B in [90] with equally
spaced initial condition. Indeed, one can rewrite (85) as

W = 4γtnX , X = diag
(

δi
n

)
+
√

sH, (86)

with s = 1/(4γtn), and the eigenvalues x⃗(s) of X have the same joint law as a DBM at time
s with initial condition x⃗(0) = δ⃗/n. This correspondence is given in Appendix D. Note that
the x⃗(s) form a determinantal point process [88], whose kernel is given in Appendix E. The
interpretation of Equation (85) already indicates a qualitative behavior for the spectrum
of the w’s: at initial times, the first term dominates and the distribution will resemble
the one of a GUE in with eigenvalues in the support [−4

√
tΓ, 4

√
tΓ]. At larger times, the

second term becomes more important and the distribution becomes uniformly spread in
[−2tΓ, 2tΓ]. It is also useful to write the distribution P0 ∼ e−n2Et( f ) as a functional of the
single particle density

f (w) =
1
n ∑

α

δ(w − wα), (87)

with the functional

Et( f ) =
1

8Γt

∫
dw w2 f (w)− 1

2

∫
dwdw′ f (w) f (w′)

(
log sinh

|w − w′|
2

+ log |w − w′|
)

. (88)

One can interpret this as the energy of gas particles in the presence of an external harmonic
trap that repel each other. When Γt = O(1), the different terms are of the same order: at
large n, the particles will have a separation ∝ tγ/n and a continuous description emerges.
We will analyze this regime in the next section. We will then discuss the long-time regime
which emerges when t ∼ n/Γ = 1/γ.

8.5. Coulomb Gas Regime Γt ∼ O(1)

To quantitatively analyze the crossover between the semicircle and the uniform distri-
bution predicted by the form Equation (85), we rescale the time in the following way

t =
τ

4γn
=

τ

4Γ
, (89)
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and consider the limit n → ∞ at fixed τ. The above correspondence in (86) shows that
s = 1/τ, and W = τX. The interpretation as a DBM in inverse time allows us to compute
the limiting resolvent

g(z, τ) := lim
n→+∞

t=τ/(4γn)→0

1
n ∑

i

1
z − wi(t)

, (90)

using the complex Burgers equation (see details in Appendix D). One finds that g = g(z, τ)
satisfies the parametric equation

z = τg +
τ

2
coth(

τg
2
). (91)

We can set z = w − i0+ and g = gr + iπ f , where f is the spectral density. Eliminating
the real part gr = Re(g) one finds (see Appendix D) that the density f = fτ(w) is the
solution of

w = ±
[

log+

(
bτ( f ) +

√
bτ( f )2 − 1

)
+

πτ f
sin(πτ f )

√
bτ( f )2 − 1

]
, (92)

bτ( f ) = cos πτ f +
sin πτ f

2π f
. (93)

Its support is an interval with edges at w = ±we = ±
[
arccosh(1 + τ

2 ) +
√
(1 + τ

2 )
2 − 1

]
.

As anticipated from the qualitative analysis of Equation (85), the density interpolates (see
Figure 2) between a semi-circle at small τ, with we ≃ 2

√
τ + τ3/2

12 , and a square distribution
at large τ with we =

τ
2 + log(eτ) + 1

τ + O(1/τ2). At all times τ > 0 the density vanishes
at the edges as a square root f (w) ∼ Bτ |we − w|1/2, with Bτ =

√
2/[πτ3/4(4 + τ)1/4], and

Wigner–Dyson gap statistics near the edges.

Figure 2. Short time behavior. The density fτ(w) in the short time t = τ/4Γ ∼ 1/Γ regime, with τ

finite. fτ(w) features a crossover between a semi-circle at small τ and a square distribution at larger
τ. (a) The small-τ semi-circle distribution is displayed for τ = 5 and increasing n from n = 10 to
n = 100. The red solid line shows the theoretical n → ∞ curve. (b) The large-τ square distribution
is shown for τ = 50 and increasing n, with the red solid line showing the n → ∞ curve. (c) The
crossover from semi-circle towards square distribution is shown for increasing τ from τ = 5 to τ = 50.
All solid lines represent the theoretical density wew · fτ(w) on the rescaled w/we axis, where we is
the edge coordinate for fτ(w) in the n → ∞ limit.

Although the density is known in parametric form, one can also use Equation (82) to
extract the exponential moments. After some manipulation on the hypergeometric function,
we find

µ(m) = lim
n→∞
t=τ/n

M(m)

n
=

emτ/2L(1)
m−1(−mτ)

m
, (94)

where L(α)
m (x) denotes the generalized Laguerre polynomial, with limm→0 µ(m) = 1. A

numerical check confirms that the density implicitly defined in Equation (92) satisfies

µ(m) =
∫ we

−we
dw f (w)emw. (95)
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The fact that the variables become dense and described by a continuous distribution ensures
that Ω(1)/n → µ(1) in Equation (62) is self-averaging and thus

lim
n→∞

n−mΩ(m) = µ(1)m = eτm/2. (96)

8.6. Universal Regime Γt = O(n)
8.6.1. Scaling of the Edge

Now, we consider the situation where time is scaled as t = O(n/Γ). Using the rescaled
rate γ, we can equivalently say that γt = O(1) whereas n → ∞. In this regime the
repulsion due to the log sinh term in becomes more relevant. As a result, the Lyapunov
exponents w are well separated one from the other. More precisely, assuming the ordering
w1 < w2 < . . . < wn, one expects that the separation between two consecutive variables
wα+1 − wα = O(γt), so that the position of the edge w̄e = ⟨wn⟩0 = O(tγn). However,
each variable wα will have fluctuations of O(

√
γt) so that the interactions are relevant and

complicate the analysis. A similar lattice structure was already demonstrated in a related
model involving a log sinh-potential [92]. Here, the Coulombic repulsion log |w − w′|
is an additional ingredient that modifies that short-distance behavior. We can obtain a
preliminary understanding of this regime by taking the n → ∞ limit from the general
formula of moments (83). In this limit, the moments are dominated by the largest wα ∼ w̄e
near the edge. We can determine their value expanding Γ(n + m − r)/Γ(n − r) ≃ nm in
Equations (81) and (82) and performing the sum, obtaining

M(m) := lim
n→∞

e−mw̄e M(m) =
2m−1 sinh(2mγt)m−1

m!
, (97)

where we also fixed w̄e = 2nγt + log n. This formula suggests the existence of non-trivial
statistics governing the fluctuations of the Lyapunov exponents w’s at the edge. However,
we note that it does not define a normalized distribution since M(m → 0) = ∞. This is due
to a crossover at small m between a regime dominated by the bulk with M(m → 0) = n

and one dominated by the edge M(m)
n≫1
= O(w̄m

e ). An identical formula can be obtained
in the analogous long-time limit considering the product of Wishart random matrices (see
Equation (3.41) in [93]). This is a manifestation of universality expected at large times in
monitored systems and more generally in products of random matrices [94].

The calculation of the moments of the trace in this regime is much more involved,
but it can be expressed as in Equation (84). Indeed, in the limit of large n, we can replace
sκ(1) → nmχκ

1m /m! [82]. One can understand this using sκ(y1 = 1, . . . , yn = 1) counts
the number of semistandard Young tableau of shape κ and involving n entries, whereas
χκ

1m counts the number of standard Young tableau with entries 1, . . . , m. At large n, the
difference between semistandard and standard Young tableau becomes irrelevant and
sκ(1)/χκ

1m ∼ (n
m) ∼ nm/m!. We thus obtain

O(m) := lim
n→∞

e−mw̄e Ω(m) =
1

m! ∑
κ⊢m

e4γtν(κ)(χκ
1m)2 (98)

which was obtained in [94] in a different model as an additional manifestation of the
universality.

8.6.2. Asymptotics at Large γt

When γt ≫ 1, the separations are |wα −wβ| ≫ 1 ∀α, β. Additionally, their fluctuations
are much smaller than their separation. In this regime, we can approximate in the potential

log sinh |
wα − wβ

2
| ∼ |

wα − wβ

2
|, (99)

which is the 1-dimensional Coulombic repulsion. This kind of potential was recently
studied in [95] in the context of ranked diffusion. This potential induces a force
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fα = 1
2 ∑β ̸=α sign(wα −wβ), which simply counts the number of slower particles in the back

of wα, minus the faster ones in its front. Assuming a given ordering w1 ≪ w2 ≪ . . . ≪ wn,
we obtain the simple dynamics

dwα ∼ 4γvαdt +
√

4γdBα. (100)

where the drift velocity vα := 1
2 (2α − n − 1). This equation is an example of ranked

diffusion (RD), namely, a diffusion process in one dimension where the n particles undergo
a drift term proportional to their respective rank [95,96]. In the RD problem, however, the
particles can cross freely, whereas here they cannot cross, which leads to different types of
fluctuations at finite t. Nevertheless, in both models in the regime γt ≫ 1, the equations
decouple and can be solved separately, namely

wα(t) ∼ 4γvαt +
√

4γBα(t), (101)

where we recall that the Bα(t)’s are n independent standard Brownian motions, each of
variance t at time t. Equation (101) gives some characterization of the joint probability
distribution of the Lyapunov exponents w in this large time γt ≫ 1 regime. It is not
complete however, as there are O(1) contributions of the joint cumulants of the wα which
persist at infinite time. These were computed in Section III-D of Ref. [95] by a saddle point
method, and that calculation is easily extended to the present model in Appendix F. As a
result, Equation (101) must be treated with care when computing exponential moments.

9. Entanglement Entropies for Continuous Monitoring

Now, we make use of the results obtained in the previous section for the unbiased
ensemble ⟨. . .⟩0 to characterize the behavior of the entanglement entropies.

9.1. Short Time Regime

First of all, let us consider the Coulomb gas regime. In this case, we can use the fact

that the moments are self-averaging, i.e., n−1 tr ρ̃k in law→ µ(k). Thus, from Equation (58),
we obtain

⟨Sk⟩ = Smax +
1

1 − k
log
[ µ(k)

µ(1)k

]
= log n +

1
1 − k

log

 L(1)
k−1(−kτ)

k

, (102)

where the Von Neumann entropy can be recovered in the limit k → 1. Using L(1)
k−1(−kτ)/

k = 1 + k(k − 1)τ/2 + O(τ2) for τ ≪ 1, and L(1)
k−1(−kτ)/k = kk−2τk−1/(k − 1)! + O(τk−2)

for τ ≫ 1, we also obtain the asymptotic expansions

⟨Sk⟩ =
{

Smax − kτ
2 + O(τ2), τ ≪ 1

log n
τ +

log k!
k−1 − log(k), τ ≫ 1

(103)

from which we can extract the k → 1 limit

⟨S1⟩ =
{

Smax − τ
2 + O(τ2), τ ≪ 1

log n
τ − γE + 1, τ ≫ 1

, (104)

where γE is the Euler–Mascheroni constant (not to be confused with the rescaled rate γ).
Note that in this regime, the Born rule (2) and unbiased outcomes (5) give the same result,
since the weight of each trajectory factorizes from the rest.

9.2. Universal Regime

As we discussed in Section 8.6, this regime is much harder to address as the w’s
are strongly correlated but the moments M(m) and Ω(m) are not independent: they are
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dominated by the behavior around the edge (see Equations (97) and (98)). However, we
can still access the Von Neumann entropy by making use of Equation (63). Equation (97)
admits a simple analytic continuation for m → 1 and we obtain

M′(1) = log(2 sinh(2γt)) + γ − 1. (105)

Unfortunately, the dependence on m in Equation (98) is much less transparent. A way to
perform the analytic continuation was developed in [94]. Here, we analyze the asymptotic
behavior. At small γt’s, because of the symmetry ν(κ′) = ν(−κ), where κ′ is the integer
partition dual to κ, it is clear that Ω(m) is an even function of time for every m . Thus, at
small γt ≪ 1, we can conclude that Ω(m) = O(γt)2. Up to this order, the dynamics of Von
Neumann entanglement is fully captured by Equation (105). Thus, we have

⟨S1⟩ = −M′(1) + O(tγ)2 = − log(4γt)− γE + 1 + O(tγ)2 (106)

which connects nicely with the behavior for τ ≫ 1 obtained in Equation (104), recalling
that τ = 4γnt.

Although the regime of intermediate times is hard to access, we can still estimate the
asymptotic expansion γt ≫ 1. As discussed in Section 8.6.2, the Lyapunov exponents
separate linearly in time because of the drift Equation (101). Returning to the eigenvalues
λα = ewα / ∑β ewβ , it is evident that if wn ≫ wβ ̸=n, then λα ∼ ewα−wn ∼ δα,n, and the first
n − 1 eigenvalues are suppressed by purification. In particular, using Equation (101), we
also have that

⟨λα ̸=n(t)⟩ =
⟨ewα⟩0

⟨∑β ewβ⟩0
∼ ⟨e4γtvα+

√
4γBα(t)⟩B

⟨e4γtvn+
√

4γBn(t))⟩B
∼ e(α−n)4γt, (107)

where vα are the drift velocities in Equation (100) and ⟨. . . ⟩B denotes the average over the
independent Brownians. The sum of the first n − 1 averages gives ∑α<n ⟨λα(t)⟩ ∼ e−4γt,
yielding

1 − ⟨λn(t)⟩ ∼ e−4γt. (108)

Moreover, the ratio between any two eigenvalues ⟨λα ̸=n(t)⟩, ⟨λβ ̸=n(t)⟩

⟨λα(t)⟩
⟨λβ(t)⟩

∼ e(α−β)4γt, (109)

which is independent of number n of diffusing particles, and indicates that the first n − 1
eigenvalues are logarithmically equispaced, as we show in Figure 3.

0.0 0.1 0.2 0.3 0.4
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Figure 3. Long-time ranked diffusion. Long-time dynamics of the averaged eigenvalues λ(t) for x = 0,
γ = 1, n = 10, whereas the maximum eigenvalue tends to one as ⟨λ10(t)⟩ ∼ 1− e−4t as time increases,
the first n − 1 eigenvalues are equispaced in logarithmic scale, i.e., ⟨λα(t)⟩ / ⟨λβ(t)⟩ = e4(α−β)t.
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Because of the exponential separation of the eigenvalues, from Equation (108), we
obtain the estimate for the Von Neumann entropy

⟨S1⟩ ∼ −⟨ewn log(ewn / ∑ ewα)⟩0

⟨ewn⟩0
=

⟨ewn log(1 + ∑α<n ewα−wn)⟩0

⟨ewn⟩0
≈

≈ ⟨ewn−1⟩0

⟨ewn⟩0
= O(e−4γt),

(110)

which is in agreement with the n = 2 result of Equation (18) if one replaces Γ = 2γ. A more
detailed discussion of this approximation is given in Appendix F.

Although this suggests that for any n only the two largest eigenvalues matter for the
calculations, the prefactor of the asymptotic expression of ⟨S1⟩ does not reduce to the one
from the n = 2 model. Indeed, a more careful calculation (see Appendix G) shows that the
saddle-point evaluation of the numerator of ⟨S1⟩ is shifted with respect to the one of the
normalization, so that the two prefactors do not cancel out. In particular, we have

⟨S1⟩ =
n − 1

n
e−4γt

(
1 +

1√
4πγt

+ O(t−1)

)
, (111)

which once again agrees with the result of the n = 2 case, whereas the prefactor (n − 1)/n
tends to 1 in the n → ∞ limit.

10. Conclusions

In this work, we studied the purification dynamics induced by weak measurement,
where the measurement operators are random matrices drawn from the GUE. The ensuing
is written in terms of a stochastic Schrödinger equation, invariant under unitary trans-
formation. Because of rotational invariance, we were able to determine the evolution of
the density matrix eigenvalues {λα}n

α=1, both for imperfect and perfect monitoring. In
both cases, no MIPT takes place, as the system is far away from the critical point and is
characterized by volume-law scaling of the entanglement entropy.

In the former case of imperfect measurements x > 0, we were able to thoroughly
characterize the stationary distribution of the density matrix in the limit n → ∞. There, the
stationary joint probability distribution of the eigenvalues of the density matrix takes the
typical expression of matrices from the inverse-Wishart ensemble, and the spectral density
attains the corresponding inverse-Marchenko–Pastur form. Anyway, we showed that a
solution for the finite-time stochastic dynamics also exists via a mapping to a quantum
problem in imaginary time. In this context, the eigenvalue evolution at x > 0 and for finite
n is still unknown. The relevant n = 2 case seems to suggest that the stationary state does
not belong to the inverse-Wishart ensemble, and that a more sophisticated stratagem must
be sought in order to treat the non-conservative forces due to additional dephasing.

In the case of perfect measurements x = 0, we were able to fully determine the joint
distribution function for the eigenvalues, at both finite time and finite n. Again, this can
be conducted by mapping the stochastic dynamics onto fermions in imaginary time. Sur-
prisingly, those undergo free diffusion as the external potential due to weak measurement
disappears. Moreover, this allows us to factorize the joint probability distribution with
respect to the tr ρ = 1 constraint, thus making the computation of average quantities acces-
sible. We identify two different regimes. The first is a short-time one, where a Coulomb
gas distribution appears with a time-dependent continuous density characterizing the
spectrum of Lyapunov exponents. The density exhibits a characteristic crossover between
the GUE semicircle and the uniform distribution. At later times, the Lyapunov exponents
separate further and a continuous description is not possible anymore. Our calculations
are perfectly consistent with the prediction of [94] and provide a new example supporting
the universality of this regime. Subsequently, the Lyapunov exponents separate linearly
over time, and the interactions between them become less important. In this regime, the
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dynamics resemble that of a ranked diffusion. We use this information to characterize the
dynamics of entanglement in the various time regimes.

Some comments are important. It would certainly be intriguing to characterize the
crossover at x → 0 small and large times. Furthermore, from a technical point of view, it
would be interesting to tie the regime emerging at long times with the spectral distribution
of Lyapunov exponents near the edge.

Finally, interesting questions endure, characterizing the differences induced by studying
the problem within other random matrix models, such as the Gaussian orthogonal ensemble.
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Appendix A. Identities

To perform the calculation in the text we use the following two identities:

∑
α

∑
β ̸=α

coth
(wα − wβ

2

)
∑

γ ̸=α,β
coth

(wβ − wγ

2

)
=

n(n − 1)(n − 2)
3

, (A1)

and

∑
α

∑
γ ̸=α

coth
(

wα − wγ

2

)
ewα

∑β ewβ
= n − 1. (A2)

The first one is well known from Calogero’s papers (see references and generalizations in,
e.g., Appendix A of [74]) and the second is specific to the present case.

Appendix B. Finite-Time Von Neumann Entropy for the n = 2 Case

We will now derive an expression for ⟨S1⟩ (t) assuming n = 2. In this case, the
finite-time probability density is given by Equation (15), whereas we have

⟨S1⟩ = ⟨ ωe−ω

cosh ω
⟩+ ⟨ln(1 + e−2ω)⟩ = ⟨ ωe−ω

cosh ω
⟩ −

∞

∑
p=1

(−1)p

p
⟨e−2pω⟩. (A3)

Replacing the explicit form of P(ω, t) we obtain (setting Γ = 1 for simplicity)

⟨S1⟩ =
e−2t

2

(
1 +

√
8t
π

)
− 1 + 4t

2
erf(

√
2t)+

−
√

2t
2

∞

∑
p=1

(−1)pe2p2t
[
e4pt
(

1 +
1
p

)
erf(p + 1)− e−4pt

(
1 − 1

p

)
erf(p − 1)

]
.

(A4)
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Expanding for large times, and considering erf(x) = e−x2
/
√

2πx
(
1 − x−2/2 + O(x−4)

)
,

we have

⟨S1⟩ =
e−2t

2
[
1 − t−

3
2

2
√

2π
+

t−
1
2

√
2π

− t−
3
2

16
√

2π
− t−

3
2

√
2π

∞

∑
n=2

(−1)n

(n2 − 1)2 + O(t−
5
2 )
]

, (A5)

hence making use of the identity

∞

∑
n=2

(−1)n

(n2 − 1)2 =
1
4

ζ(2)− 5
16

=
π2

24
− 5

16
(A6)

we find the result (18) present in the main text.

Appendix C. Inverse-Wishart Ensemble

The unitary (β = 2) Wishart ensemble is defined by the distribution

P(A) = (det A)m−ne−1/2 tr A, (A7)

for any squared n × n matrix A, with integer m ≥ n [98,99]. A Wishart-distributed matrix
A can be written as A = HH†, with H a rectangular n × m matrix with complex Gaussian
entries. Equation (A7) leads to the following joint distribution for the eigenvalues {ai}n

i=1,
as follows:

P(⃗a) = ∏
i>j

(ai − aj)
2 ∏

j
am−n

j e−1/2 ∑j aj . (A8)

The marginal distribution of the eigenvalues, i.e., the spectral density, can be obtained from
the previous equation. In the limit of infinitely large matrices n → ∞, a standard result is
the Marchenko–Pastur distribution

fMP(ã) =
1

2πa

√
(ã − ã−)(ã+ − ã), (A9)

with the rescaled eigenvalues ã = a/2n. The endpoints of fMP are defined by
ã± = (1 ±

√
m/n)2.

It is then possible to derive the inverse-Wishart ensemble of matrices B = A−1. In
terms of the eigenvalues bi = a−1

i , one simply has to find the distribution as follows:

P(⃗b) = ∏
j

daj

dbj
P(⃗a) = ∏

j
b−m−n

j e−
1
2 ∑j b−1

j ∏
i>j

(bi − bj)
2, (A10)

or, in matrix terms
P(B) = (det B)−m−ne−1/2 tr B−1

. (A11)

So it is easy to see that for n = 2, we have m = 1 which does not fulfill the condition m ≥ n.
The inverse-Marchenko–Pastur distribution for the eigenvalues of an inverse-Wishart
matrix simply reads, following from Equation (A9):

fIMP(b̃) =
dã
db̃

fMP(ã) =
m/n − 1

2πb̃2

√
(b̃ − b̃−)(b̃+ − b̃), (A12)

with the inverse rescaled eigenvalues b̃ = ã−1 = 2nb. The new endpoints are b̃± = 1/ã∓.
Clearly, the spectral density in Equation (A12) is not well defined in the limit m = n.

Appendix D. Equivalent Dyson Brownian Motion

Consider the DBM x⃗(s) for β = 2

dxi(s) =
1
n ∑

j ̸=i

1
xi − xj

ds +
1√
n

dbi(s), (A13)
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where the dbi(s) are independent standard Brownian motions, with dbi(s)dbj(s) = δijds,
and we choose a fixed ordered initial condition x0

1 > x0
2 > · · · > x0

N . At fixed time s,
x⃗(s) has the same law as the spectrum of the random matrix X = diag(x0

i ) +
√

sH. Its
propagator takes the form

PDBM(x⃗, s|⃗x0, 0) =
∆(x⃗)
∆(x⃗0)

det G0

(
xi, x0

j ,
s
n

)
. (A14)

Until now, the initial condition is arbitrary. We now choose x0
j = δj/n, regularly spaced. In

this case, det G0(xi, x0
j , s/n) can be explicitly evaluated and one finds for x1 > x2 > · · · > xN

as follows:

PDBM(x⃗, s|⃗δ, 0)
1

ZDBM
s

∆(x⃗) ∏
j>i

sinh(
xi − xj

2s
) e−

n
2s ∑i x2

i . (A15)

To make the connection with the distribution P0(w⃗, t) of the main text, we set s = 1/(4γtn)
and xj = wj/(4γtn). Then, one recovers P0; namely, one has

1
(4γtn)n PDBM

( w⃗
4γtn

,
1

4γtn

∣∣∣∣ δ⃗

n
, 0
)
= P0(w⃗, t). (A16)

This is in agreement with (86) in the main text. The above correspondence is exact and
valid for any n. We now consider the large n limit. In the text, we scaled time as t = τ

4γn
and considered the limit n → ∞ at fixed τ. As mentioned in the text around (86), we can
focus on the DBM x⃗(s) in inverse time s = 1/τ. Let us denote µs(x) as its density, and
h(z, s) = 1

N ∑i
1

z−xi(s)
its resolvent. We will now compute both quantities, and from them

we will deduce
ρτ(w) =

1
τ

µ1/τ(
w
τ
), g(z, τ) =

1
τ

h(
z
τ

,
1
τ
), (A17)

which are displayed in the text. The DBM density µs(x) interpolates between being uniform
in [−1/2, 1/2] at small s, and a semi-circle of support

√
s[−2, 2] at large s. To compute

it at all times, we recall that its resolvent h(z, s) satisfies in the large n limit the complex
Burgers equation

∂sh = −1
2

∂zh2. (A18)

The general solution is
h(z, s) = h0(u), z = u + sh0(u). (A19)

Here, we have a uniform initial density

h0(u) =
∫ 1/2

−1/2

dx
u − x

= log
u + 1

2

u − 1
2

, u =
1
2

coth(
h0

2
). (A20)

Hence, one finds the parametric solution

z = sh +
1
2

coth(
h
2
). (A21)

Upon rescaling (A17) one obtains (91) in the text. To compute the DBM eigenvalue density
µs(x), one sets z = x − i0+ and h = hr + iπµ. Taking the imaginary part of (A21) gives

cosh hr = as(µ) := cos πµ +
sin πµ

2sπµ
. (A22)

Inserting hr within the real part of (A21), one finds
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x = ±s +
[

πµ

sin(πµ)

√
as(µ)2 − 1 + log

(
as(µ) +

√
as(µ)2 − 1

)]
, (A23)

where the two branches correspond to hr > 0 and hr < 0. Equation (A23) determines µs(x)
for a given s. Upon the rescaling (A17), one obtains (92) in the text. Note that an analogous
calculation was performed in [76] in a different context.

Appendix E. Kernel

From the relation to the DBM described in the previous Appendix, and from Ref. [88],
one knows that the w⃗ form a determinantal point process. This means that both their joint
PDF and their correlation functions (obtained by integrating over some of the wα) are equal
to determinants involving a kernel. Here, we obtain a convenient form for this kernel using
bi-orthogonal polynomials. We follow the method of Ref. [93], c.f. Equations (3.11)–(3.13)
therein. To simplify the expressions, in this section we fix γ = 1/4. Equivalently, one can
recover the general form by replacing t → 4γt. One defines the two sets of polynomials

Qn(w; t) :=
n

∑
l=0

(−1)n−l exp
(
− l2t

2 − lw
)

Γ(l + 1)Γ(−l + n + 1)
, (A24)

Pn(w; t) :=
n

∑
i=0

(
−1√

2t

)i
S(i)

n Hi

(
w√
2t

)
, (A25)

where S(i)
n is the Stirling number of the first kind. These polynomials are not monic, but

they are normalized to have unit integral. Indeed, they satisfy the orthogonality relation∫ dw√
2πt

e−
w2
2t Pn(w; t)Qn′(w; t) = δn,n′ . (A26)

From these polynomials, one defines a first kernel as

K̃n(w, w′; t) =
n−1

∑
ℓ=0

Pn(w; t)Qn(w′; t)
e−

w2+w′2
4t

√
2πt

. (A27)

To obtain a centered process, however, one defines the shifted kernel

Kn(w, w′; t) = K̃n(w − t
n − 1

2
, w′ − t

n − 1
2

; t). (A28)

Both kernels are self-reproducing, i.e., one has K2
n = Kn. The density of the w⃗ for any n and

any time t is then given by

fn(w, t) =
1
n

Kn(w, w; t), (A29)

and it is normalized to unity. One can check that one has indeed

P0(w⃗, t) =
1
n!

det
1≤i,j≤n

Kn(wi, wj; t). (A30)

We can also use a similarity transformation to re-write the Kernel as

K̃n(w, w′) = Jn(w′, w)e
w′2−w2

4t , (A31)

with

Jn(w, w′) =
n

∑
k=1

e−t(w/t−yk)
2/2

∫
iR

dz
2iπ

et (z−w′/t)2
2

n

∏
j ̸=k=1

z − yj

yk − yj
, (A32)
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with yk = 1 − k. This last form is analogous to Proposition 2.3 and Equation (2.18) in [88].
We can further expand the last term, using

n

∏
j ̸=k=1

z − yj

yk − yj
=

1
z − (1 − k)

Γ(n + z)
Γ(z)

(−1)k−1

(k − 1)!(n − k)!
. (A33)

One can check that the exact expression for the moments M(m) in (83) are recovered from
M(m) = e−m(n−1)t/2

∫
dwJn(w, w)ewm (since the quadratic term in w cancels with the one

in w′, the integration over w leads to a delta function), where the prefactor is related to the
shift with respect to the edge position.

This form can be used to derive the limit of the kernel when n → ∞, focusing on the
neighborhood of the edge. We set

J∞(ω, ω′) = lim
n→∞

e
ω−ω′

t ) log n Jn(ω + log n, ω′ + log n), (A34)

which is defined so that the largest Lyapunov is moved at ω = 0. From the explicit limit,
we obtain the expression

J∞(ω, ω′) =
∞

∑
k=1

(−1)k−1

(k − 1)!

∫
iR

dz
2iπ

e−
(ω−(1−k)t)2

2t + (ω′−tz)2
2t

1
(z − (1 − k))Γ(z)

. (A35)

Exponentiating the denominator with an integral, we can also express

J∞(ω, ω′) = e
ω′2−ω2

2t

∫
R+

drA(ω + r)B(ω′ + r), (A36)

with

A(ω) =
∞

∑
k=1

(−1)k−1

(k − 1)!
e−t (1−k)2

2 +ω(1−k), B(ω′) =
∫

iR

dz
2iπ

et z2
2 −zω′ 1

Γ(z)
. (A37)

This is the kernel describing the Lyapunov exponents in the universal regime Γt = O(n). A
similar kernel was obtained in formula (1.15) in [100] and in formula VI.22 in [101] in the
context of the universal edge statistics of products of Ginibre matrices. The connection to
the Dyson Brownian motion was also discussed in [101].

Appendix F. Large Time Moments from a Saddle Point

We perform here a calculation analogous to the one in Section III-D of Ref. [95]. It is
valid for any n. Let us denote O the ordered sector w1 < · · · < wn. For w⃗ ∈ Ω, one can
rewrite exactly (not keeping track of time-dependent normalizing constants) P0(w⃗, t) ∼ e−S,
with S = S0 + Sint as follows:

S0 = ∑
α

(wα − 4γtvα)2

8γt
, Sint = − ∑

α<β

[
log |wβ − wα|+ log

(
1 − e−(wβ−wα)

)]
, (A38)

recalling that vα = α − n+1
2 . Let us compute G[m⃗] = ⟨e∑α mαwα⟩0. Changing variables to

wα = 4γtzα, one finds

G[m⃗] ∼
∫

z⃗∈Ω
e−4γtS̃e−Sint , S̃ = ∑

α

1
2
(zα − vα)

2 − ∑
α

mαzα (A39)

For γt ≫ 1 the term e−4γtS̃ has a saddle point for

zα = z∗α = vα + mα. (A40)
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The saddle point remains in the ordered sector Ω, providing mα − mα−1 + 1 > 0 for all α.
That case corresponds to the particle crossing being irrelevant. The interaction term takes
the form (up to a time-dependent constant)

Sint = − ∑
α<β

[
log |zβ − zα|+ log

(
1 − e−4γt(zβ−zα)

)]
. (A41)

For γt ≫ 1, the last term is irrelevant compared to the first (provided the particle crossings
are irrelevant). The saddle-point method then leads to

G[m⃗] ≃ e4γt ∑α(mαvα+
1
2 m2

α) ∏
α<β

β − α + mβ − mα

β − α
. (A42)

Taking derivatives of log G[m⃗] gives all the O(1) joint cumulants of the variables wα in the
large time limit. This estimate is valid as long as the saddle point is in the O sector.

Specializing mα = δα,n, i.e., the largest of the w’s, gives

⟨emwn⟩0 ≃
(

m + n − 1
n − 1

)
e2γtm(m+n−1). (A43)

Since ∑α emwα is dominated by the term α = n, this result agrees with the formula (83) for
M(m) at large time (from which we see that corrections are O(e−4γt)). For a general α, one
obtains instead

⟨emwα⟩0 ≃ e2γtm(m+2α−n−1) sin(πm)Γ(m + α)Γ(−m + n − α + 1)
πmΓ(α)Γ(n − α + 1)

. (A44)

In these results, we see that the prefactor includes the interactions with all the particles (not
just the neighbor). Furthermore, we see from the condition that the saddle point remains
in the Ω sector that (i) Equation (A43) is valid for all m > −1 (in agreement with (83)) (ii)
Equation (A44) for α < n is valid only for −1 < m < 1. Indeed, for m > 0, the rightmost
particle is pulled out of the gas, and hence particle crossings are irrelevant. An “internal"
particle, however, cannot be pulled too strongly without crossing its neighbors.

Finally, note that evaluating Ω(m) = ⟨(∑α ewα)m⟩0 by the same method leads to an
additional term −mzn in S̃, plus another term − log(1 + ∑α<n e−4γt(zα−zn)), irrelevant at
large times. Hence, we find Ω(m) ≃ M(m) by this saddle-point method in the γt ≫ 1 limit.

Appendix G. Long-Time Entanglement Entropy

Here, we derive the long-time asymptotic expression for the entanglement entropy, for
arbitrary value of n. We start from the expression of the entanglement entropy as computed
in Equation (63), namely

⟨S1⟩ = ∂m log
Ω(m)

M(m)

∣∣∣∣
m=1

, (A45)

where M(m) and Ω(m) are defined in Equations (61) and (62), respectively, and the average
⟨·⟩0 is taken on the probability distribution in Equation (63). Let us set 4γt = t for the rest
of the section, and let us define wα = uαt, so that we have

M(m) ∝
∫
<

dnu e−t ∑α
u2

α
2

(
∑
α

emuαt

)
∏
α>β

sinh
t(uα − uβ)

2
(uα − uβ), (A46)

Ω(m) ∝
∫
<

dnu e−t ∑α
u2

α
2

(
∑
α

euαt

)m

∏
α>β

sinh
t(uα − uβ)

2
(uα − uβ), (A47)

with the notation
∫
< ≡

∫
u1<u2<···<un

. We exploited therein the permutation symmetry of
the original integrals to order the new variables uα. For large t
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ln sinh
t(uα − uβ)

2
=

t
2
(uα − uβ)− ln 2 + et(uβ−uα) (A48)

ln ∑
α

emuαt = mtun + emt(un−1−un) (A49)

ln
(
∑
α

euαt)m
= mtun + met(un−1−un) (A50)

up to exponentially small corrections in t, so that we have

M(m) ∝
∫
<

dnu ∆(u) e−t(I(u)−mun)

(
1 + e−m(un−un−1)t − ∑

α>β

e−t(uα−uβ)

)
, (A51)

Ω(m) ∝
∫
<

dnu ∆(u) e−t(I(u)−mun)

(
1 + me−(un−un−1)t − ∑

α>β

e−t(uα−uβ)

)
, (A52)

where ∆(u) ≡ ∏α>β(uα − uβ) is the Vandermonde determinant and

I(u) = ∑
α

u2
α

2
− 1

2 ∑
α>β

(uα − uβ). (A53)

Finally, the expression of the entanglement entropy becomes

⟨S1⟩ =
∫
< dnu∆(u) e−t(I(u)−un−1)[1 + t(un − un−1)]∫

< dnu ∆(u) e−t(I(u)−un)
, (A54)

which is exact up to exponentially small corrections. Because of the different exponential
factors, the numerator and the denominator will have different saddle points. Let us now
perform the calculations separately.

Numerator: imposing ∂uα(I(u)− un−1)|vα = 0, one finds the solutions

vα =
1
2
(2α − 1 − n + 2δα,n−1). (A55)

Let us notice that vn = vn−1 > vn−2 > · · · > v1. It is now convenient to introduce new
variables uα = vα + ξα/

√
t. The integration domain is now

ξα−1 − ξα <
√

t(vα − vα−1), (A56)

so that in the limit t → ∞, we only have the constraint ξn−1 < ξn, up to exponentially small
corrections. Let us now consider the Vandermonde determinant. The pair (n − 1, n) yields
a factor t−1/2(ξn − ξn−1). Instead, the other terms give the following:

∆(u) = ∆̃(v)

1 + t−1/2 ∑
α>β

(α,β) ̸=(n,n−1)

ξα − ξβ

vα − vβ

, (A57)

up to O(t−1) terms, where we denoted with the symbol ∑∗
α>β the sum over couples such

that α > β and (α, β) ̸= (n, n − 1), and with ∆̃(u) the Vandermonde determinant restricted
to all pairs but the (n, n − 1) one. Let us notice that, by parity, the O(t−1/2) terms vanish
once integrated on the Gaussian measure. Finally, we have that, up to O(t−1) terms, the
numerator becomes
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t−n/2e−t(I(v)−vn−1)∆̃(v)
∫
<

dnξe−∑α ξ2
α/2
[
(ξn − ξn−1)

2 + t−1/2(ξn − ξn−1)
]
=

= (2π)n/2−1t−n/2e−t(I(v)−vn−1)∆̃(v)·

·
∫

ξn−1<ξn
dξndξn−1 e−(ξ2

n+ξ2
n−1)/2

(
(ξn − ξn−1)

2 + t−1/2(ξn − ξn−1)
)

.

(A58)

Introducing the rotated variables ξ± = (ξn ± ξn−1)/
√

2 the last integral becomes trivial, so
we have the following for the numerator:

(2π)n/2t−n/2e−t(I(v)−vn−1)∆̃(v)(1 + (πt)−1/2). (A59)

Denominator: imposing again the condition ∂uα(I(u)− un)|v∗α = 0, one finds the solutions

v∗α =
1
2
(2α − 1 − n + 2δα,n), (A60)

with instead v∗n > v∗n−1 > · · · > v∗1 . In terms of the new variables uα = v∗α + ξα/
√

t the
integration domain is now

ξα−1 − ξα <
√

t(v∗α − v∗α−1), (A61)

so that in the limit t → ∞ the integral will run on the whole Rn up to exponentially small
correction. In this case, the (n, n − 1) pair in the Vandermonde determinant should not be
singled out. Analogously to the numerator case, moreover, the O(t−1/2) corrections coming
from the Vandermonde determinant vanish once integrated. Finally, for the denominator
we have the following:

(2π)n/2t−n/2e−t(I(v∗)−v∗n)∆(v∗), (A62)

up to O(t−1) corrections.

Entanglement Entropy: replacing the results (A59) and (A62) in the expression (A54), we find

⟨S1⟩ =
∆̃(v)
∆(v∗)

e−t(I(v)−I(v∗)−vn−1+v∗n)
(

1 + (πt)−1/2
)

. (A63)

Taking into account the explicit form of vα and v∗α, we have

I(v)− I(v∗)− vn−1 + v∗n = 1, (A64)

whereas the prefactor reads as follows:

∆̃(v)
∆(v∗)

=
∏n−2

α=1(n − α)∏n−2
α=1(n − α)

(v∗n − v∗n−1)∏n−2
α=1(n + 1 − α)∏n−2

α=1(n − 1 − α)
=

n − 1
n

. (A65)

Restoring t = 4γt, we reach the result of Equation (111) of the main text.
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