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Abstract: We observe that the discrete Wigner functions (DWFs) of n-partite systems with odd local
dimensions are tomographically universal, as reflected in the delta function form of the DWF for
any stabilizer. However, in the n-qubit case, this property does not hold due to the non-factorization
of the mapping kernel, the explicit form of which depends on a particular partition of the discrete
phase space. Nonetheless, it turns out that the DWF for some specific stabilizers, not included in the
set used for the construction of the Wigner map, takes on the form of a delta function. This implies
that the possibility of classical simulations of Pauli measurements in a given stabilizer state for qubit
systems is closely tied to the experimental setup.

Keywords: discrete Wigner function; quantum tomography; stabilizer formalism; mutually unbiased
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1. Introduction

The concept of quasidistribution functions, which emerged as a means to incorporate
quantum corrections into statistical mechanics within two distinct contexts [1,2], has been
successfully used to reformulate quantum mechanics in position and momentum (plane)
phase spaces [3,4]. Subsequently, these concepts were generalized to more sophisticated
geometries. In the framework of the phase space approach, operators suitable for a given
quantum system are represented as real functions obtained from an invertible and covariant
linear map ŵ(Ω):

f̂ ⇔W f (Ω) = Tr
(

f̂ ŵ(Ω)
)

,

where Ω is a point in the corresponding phase spaceM.
The most natural and widely used representation [5–7], commonly referred to as the

Wigner correspondence [1], is self-dual. This self-duality allows for the treatment of both
the states and observables in the same manner, making it particularly useful for studying
the quantum classical correspondence [8]. However, the main drawback of the Wigner
map lies in its representation of some states in the form of negative (quasi)distributions.
In fact, it is noteworthy that non-negative Wigner functions (WFs) correspond only to the
so-called Gaussian states, thereby restricting the type of positivity-preserving operations to
Gaussian ones.

A discrete analog of the Wigner map, which is applicable for describing a finite number
of particles with a local dimension that is a prime number, was introduced much later [9–12].
This discrete analog has recently found remarkable applications in the analysis of the
classicality and the (classical) simulability of n-partite quantum systems [13–20]. In this
context, the discrete phase space (DPS)M takes the form of a pn × pn grid, constituting an
affine plane [21]. By labelling it with elements from the Galois field Fpn , this DPS inherits
the same geometric properties as the ordinary plane; e.g., parallel lines (not necessarily
straight) do not intersect.
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The construction of discrete quasidistributions is closely tied to the concept of mutu-
ally unbiased bases (MUBs) [22–24], which are eigenstates of disjoint sets of pn commuting
monomials (stabilizers) formed by products of generalized Pauli operators. In power-
of-prime dimensions, one can always arrange the operational basis formed by p2n − 1
monomials (excluding the identity operator) into pn + 1 disjoint stabilizers [25]. In addi-
tion, it is possible to associate lines in the DPS with projectors onto elements of a certain
(stabilizer) basis in a way that parallel lines correspond to different components of the
same basis, while (single) intersecting lines are related to states belonging to the mutually
unbiased bases [11]. It is noteworthy that in the prime-dimensional case, only straight lines
can be related to MUBs. However, in power-of-prime dimensions, such an association
exists with more complex geometrical structures, the so-called commutative curves [26,27].
This leads to a fundamental property of the discrete Wigner function: the tomographic
condition. This condition means that summing the Wigner function over a line results in
the probability that the system is in the state associated with that particular line [11,12].

The mapping kernel from the Hilbert space into the DPS can be recast as the sum
of projectors onto elements of an appropriate complete set of MUBs. However, there are
several inequivalent ways to form pn + 1 disjoint commuting sets, which correspond to
different partitions of the DPS into non-intersecting curves. Such sets can be roughly
characterized by their factorization properties, and both unitary equivalent and (globally)
unitary inequivalent sets of stabilizers can be found. Consequently, the form of the discrete
self-dual maps fundamentally depends on the chosen complete set of stabilizers [28].
For each state of the MUBs used in the construction of the mapping kernel, the Wigner
function is represented as a delta function. The latter is equivalent to the tomographic
condition [11,12,14,15,29].

On the other hand, it is known that the Wigner map for odd and prime local dimen-
sions exhibits a property akin to the continuous position-momentum Wigner function: only
stabilizer states correspond to non-negative Wigner functions [16]. This characteristic arises
from the factorization of the self-dual mapping kernel for any partition of the DPS and
results in the tomographic universality of the DWFs, which acquire a delta function form
of any stabilizer state of any partition. This enables the use of the DWF as an indicator
of quantumness, allowing the classification of quantum states based on their suitability
for quantum computation speedup and estimations of the cost of classically simulating
quantum circuits [18–20,30,31].

However, this property breaks down in the case of qubit systems [19,20,30]. The main
reason for the loss of tomographic universality in n-qubit systems is the inequivalence
among Wigner maps based on different sets of stabilizers [28,32]. This leads to the following
question: is it possible for the DWF of an element of a stabilizer basis to take on the form
of a delta function if that basis is not used for the construction of a Wigner map? In other
words, are there states, aside from the elements of the MUBs fixing the map, that satisfy the
tomographic condition?

In this paper, we show that in the n-qubit case, when a partition of the discrete phase
space into a complete fixed set of stabilizers is given, it is possible to identify stabilizer
states whose Wigner functions take on the form of delta functions along commutative
curves belonging to other partitions. We analyze explicit results for the three-qubit case
and discuss the implications of this observed property of n-qubit DWFs.

The structure of this paper is as follows: In Section 2, we recall the basic properties
of n-qudit operations in the Hilbert space, particularly the construction of Abelian dis-
placement operators and the relation to different types of MUBs. In Section 3, we discuss
geometric structures related to MUBs in the discrete phase space which are employed for
the construction of the Wigner map. In Section 4, we focus on the tomographic universality
of n-qudit Wigner functions for odd local dimensions and on identifying the stabilizer
states with non-negative delta-like Wigner functions in the n-qubit case.
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2. The Generalized Pauli Group and Displacement Operators

Let us consider a system of n qudits, each with a local dimension that is a prime
number p. It is convenient to relabel vectors on an orthonormal basis |k1, . . . , kn〉, ki ∈ Zp
in the corresponding Hilbert spaceHpn = H⊗n

p with elements of a finite field, |κ〉, κ ∈ Fpn

according to

|k1, . . . , kn〉 ⇔ |κ〉, 〈κ′|κ〉 = δκ′ ,κ , κ =
n

∑
i=1

ki θi ∈ Fpn , (1)

where {θ1, . . . , θn} is an abstract basis in the field Fpn , considered as a linear space; the
components ki, i = 1, . . . , n are obtained through the trace operation with a dual basis,
{θ̃1, . . . , θ̃n} [i.e., tr(θi θ̃j) = δij], with tr(α) = α + α2 + . . . + αpn−1

here for α ∈ Fpn [33].
In even dimensions, there always exists a self-dual basis, i.e., a basis such that

tr(θi θj) = δij, whereas in odd dimensions, there are almost self-dual bases, such that
tr(θi θj) = qjδij, where qj is equal to 1 with one possible exception, e.g., qj = (q− 1)δjn + 1,
for some q ∈ Zp.

The generators of the Pauli group Pn can be expressed as:

Ẑα = ∑
κ

χ(ακ)|κ〉〈κ|, X̂β = ∑
κ

|κ + β〉〈κ|, (2)

Ẑ†
α = Ẑ−α, X̂†

β = X̂−β, Ẑp
α = X̂p

β = Î, (3)

where
χ(α) = ωtr(α), ω = e2πi/p,

are additive characters of the finite field,

χ(α + β) = χ(α)χ(β), ∑
κ

χ(κα) = pnδα,0.

The operators (2) satisfy the discrete counterpart of the Weyl form of the commutation
relations:

ZαXβ = χ(αβ) XβZα . (4)

In an almost self-dual basis, the character of a product of field elements is factorized:

χ(αβ) = Πn
j=1ωαj β jqj , (5)

where ai = tr(αθi) and bi = tr(βθi). This implies the factorization of Ẑα and X̂β into a
product of cyclic operators [34,35]:

Ẑ =
p−1

∑
n=0

ωn|n〉〈n|, X̂ =
p−1

∑
n=0
|n + 1〉〈n|, X̂p = Ẑp = Î, ẐX̂ = ωX̂Ẑ. (6)

according to
Ẑα = ⊗ΠjẐ

qjaj , X̂β = ⊗ΠjX̂
bj . (7)

The monomials {ẐαX̂β, α, β ∈ Fpn} form an operational basis in Op[HpN ] and can be
arranged in commuting sets of unitary displacement operators D̂(α, β) obtained by Clifford
transformations Ûα,β of the set {Ẑτ , τ ∈ Fpn}:

D̂(α(τ), β(τ)) = Φα,β(τ)Ẑα(τ)X̂β(τ) = Ûα,βẐτÛ†
α,β = D̂†(α(−τ), β(−τ)), (8)

where Φα,β(τ)Φ∗α,β(τ) = 1 is a phase factor. The operators (8) from each commuting set
λ = {α, β} form an Abelian group,

D̂(αλ(τ), βλ(τ))D̂
(
αλ(τ

′), βλ(τ
′)
)
= D̂

(
αλ(τ + τ′), βλ(τ + τ′)

)
, (9)
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as a consequence of the relation Ẑτ Ẑτ′ = Ẑτ+τ′ . This implies that the phases Φα,β(τ), where
(α, β) ∈ λ, Φα,β(0) = 1, satisfy the equation:

Φα,β(τ)Φα,β
(
τ′
)
= Φα,β

(
τ + τ′

)
χ
(
αλ(τ

′)βλ(τ)
)
= Φα,β

(
τ + τ′

)
χ
(
αλ(τ)βλ(τ

′)
)
, (10)

leading to the following condition for the labels of elements of λ:

tr
(
αλ(τ

′)βλ(τ)
)
= tr

(
αλ(τ)βλ(τ

′)
)
, τ, τ′ ∈ Fpn . (11)

The eigenstates |ψλ
κ 〉 of each commuting set {D̂(αλ(τ), βλ(τ)) ≡ D̂λ(τ), τ ∈ Fpn},

D̂λ(τ)|ψλ
κ 〉 = χ(κτ)|ψλ

κ 〉, κ ∈ Fpn , (12)

form an orthonormal basis in Hpn . The disjoint sets of displacement operators satisfy
the relation:

Tr
(

D̂λ′(τ′)D̂λ†(τ)
)
= pnδλ,λ′δτ,τ′ + pn(1− δλ,λ′)δτ,0δτ′ ,0,

and so the corresponding bases (12) are mutually unbiased,

|〈ψλ′
κ′ |ψλ

κ 〉|2 = δλ,λ′δκ,κ′ + p−n(1− δλ,λ′). (13)

Commuting sets of displacement operators {D̂λ(τ), τ ∈ Fpn}, containing pn− 1 mono-
mials (excluding the identity operator), are usually called stabilizers and the respective
eigenstates are the stabilizer states. The entire set of p2n − 1 monomials can be partitioned
into pn + 1 disjoint stabilizers in several locally inequivalent forms; i.e., they cannot be
reduced to each other through local transformations. This is related to the possibility of
constructing stabilizers with different factorization structures [36,37], which are related
to the commutation condition between blocks of single-qudit operators (7), constituting
commutative sets (λ) of direct products of n-generalized Pauli operators. Each monomial
(up to a phase),

Ẑα(τ)X̂β(τ) = ⊗Πj

(
Ẑqjaj(τ)X̂bj(τ)

)
, τ ∈ Fpn , (α(τ), β(τ)) ∈ λ,

can be divided into two parts, so that the first part contains k operators, corresponding to
the (j1, . . . , jk) qudits, and the second part contains the n− k operators of the rest of the
qudits. The stabilizer is factorized into at least two subsets if the products of the Pauli
operators from the first blocks of all monomials commute between each other (the operators
from all the second blocks satisfy the same condition). Some mutually commuting sub-
blocks may exist inside the first or second blocks, etc. Thus, one can represent any stabilizer
λ in the following form:

λ = {m1, m2, . . . , mn}, (14)

where 0 < m1 ≤ m2 ≤ . . . ≤ mn and ∑j mj = n is the number of qudits in the j-th
block that cannot be factorized into commuting sub-blocks any more. The partition
λ = {1, 1, . . . , 1}︸ ︷︷ ︸

n

corresponds to a completely factorized stabilizer and λ = {n} to a

completely non-factorized one. It is worth noting that different partitions may have the
same factorization structure.

The simplest complete set of stabilizers is labelled by linear functions:

α = τ, β = µτ, µ ∈ Fpn ; α = 0, (15)

where the commuting sets (α = τ, β = τ), (α = 0), (β = 0) are always completely factor-
ized. However, the factorization structure for the other values of µ depends on the number
of qudits and the local dimensions.
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More sophisticated dependences of pairs (αλ(τ), βλ(τ)) over the parameter τ have
the form [26,27]:

αλ(τ) =
n−1

∑
m=0

αλ
m τpm

, βλ(κ) =
n−1

∑
m=0

βλ
m τpm

, (16)

where the coefficients αm, βm ∈ Fpn should satisfy conditions derived from (11), as,
for instance,

∑
m 6=k

tr(αmβk) = 0, k = 0, ..., n.

It is worth noting that the displacement operators belonging to a given stabilizer λ
can be expanded into the projectors of the corresponding basis vectors {|ψλ

κ 〉, κ ∈ Fpn}:

D̂λ(τ) = ∑
κ

χ(κτ)|ψλ
κ 〉〈ψλ

κ |. (17)

The above equation allows us to represent any state in terms of the probabilities
p(λ)κ = 〈ψλ

κ |ρ̂|ψλ
κ 〉 of projections onto elements of MUBs, i.e.,to tomographically reconstruct

the state [11,12,14,15,22,29,38]:

ρ̂ = ∑
λ

∑
κ

p(λ)κ |ψλ
κ 〉〈ψλ

κ | − Î = ∑
λ

∑
κ

(
p(λ)κ − 1

pn + 1

)
|ψλ

κ 〉〈ψλ
κ |. (18)

3. Phase Space Construction and the Wigner Map

The discrete phase space (DPS) [11,12,14,15,29] is a pn × pn grid, where the points
(α, β), α, β ∈ Fpn label elements of monomials ẐαX̂β. This DPS is endowed with a finite
geometry [11,12,14,15,29,33] and admits a set of discrete symplectic transformations [39–43].
Similarly to the continuous case, the axes of the DPS are associated with the observables Ẑα

and X̂β.
A separation of Op[Hpn ] into disjoint stabilizers corresponds to a partition of the DPS

into non-intersecting (except at the origin), non-degenerate (containing pn different points
including the origin) commutative curves {Γ = (α(τ), β(τ)), τ ∈ Fpn} [26,27]. In other
words, the points of every commutative curve Γ label a set of mutually commutative
monomials:

{Ẑα(τ)X̂β(τ), [Ẑα(τ)X̂β(τ), Ẑα(τ′)X̂β(τ′)] = 0, (α(τ), β(τ)) ∈ Γ}, (19)

such that condition (11) is satisfied. There exist pn + 1 commutative curves Γλ in every DPS
partition, so that the index λ, labelling curves within a given partition, takes pn + 1 distinct
values. In addition, there are pn − 1 parallel curves {Γλ

κ , κ ∈ Fpn} for each curve passing
through the origin. The whole bundle of pn parallel curves (called a striation) covers the
DPS, and at every phase space point, pn + 1 curves (i.e., one curve from each striation)
intersect. It is worth stressing that only the monomials, labelled by the points of the curves
crossing the origin, commute among each other.

The set of rays (15) is the simplest example of such a partition, where the sets of
parallel lines are explicitly defined as:

β = µα + κ, µ, κ ∈ Fpn (pn sets) (20)

α = κ, κ ∈ Fpn , (a single set).

Another way to establish a connection between the discrete geometry with the alge-
braic structures is to link the commutative curves with the eigenstates (12) of the corre-
sponding stabilizers. This approach associates each basis {|ψλ

κ 〉, κ ∈ Fpn} with a striation
of curves {Γλ

κ = (αλ(τ, κ), βλ(τ, κ)), τ ∈ Fpn}, and the bases corresponding to different
striations are mutually unbiased. In the conventional association, the curves that include
the origin are put in correspondence with the states |ψλ

κ=0〉 with unit eigenvalues (later
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called the unit stabilizer states). Such curves, Γλ
κ=0 ≡ Γλ, have the form (16) and will be

called unit commutative curves.
Both n-qudit states and observables can be represented in the form of distributions in

the DPS through a one-to-one map [16,39–42]:

W f (α, β) = Tr
[

f̂ ŵ(α, β)
]
, (21)

f̂ = p−n ∑
α,β

W f (α, β)ŵ(α, β), (22)

where the Hermitian mapping kernel ŵ(α, β) = ŵ†(α, β) is covariant under action of the
discrete displacements (8), and is defined as

ŵ(α, β) = D̂(α, β)ŵ(0, 0)D̂†(α, β), (23)

ŵ(0, 0) = p−n ∑
γ,δ

D̂(γ, δ), (24)

so that
ŵ(α, β) = p−n ∑

γ,δ
χ(γβ− δα)D̂(γ, δ). (25)

The kernel (23) is normalized according to

∑
α,β

ŵ(α, β) = pn Î, (26)

and satisfies the overlap relation:

Tr
(
ŵ(α, β)ŵ(α′, β′)

)
= pnδαα′δββ′ . (27)

It is convenient to recast Equation (24) as a sum of stabilizers corresponding to a given
phase space partition,

ŵ(0, 0) = p−n ∑
λ

∑
τ

D̂λ(τ)− Î, (28)

or, equivalently, as a plane superposition of projectors onto the elements of MUBs:

ŵ(0, 0) = ∑
λ

|ψλ
0 〉〈ψλ

0 | − Î, (29)

where the index λ labels the stabilizers/projectors (12) within this partition. Geometrically,
Equations (28) and (29) represent a summation along the curves that pass through the
origin, i.e., of the form (16). In other words, each point (α, β) of the DPS is assigned a
specific phase Φα,β(τ) according to the unit commutative curve Γλ that passes through that
point and corresponding to the displacement operator D(αλ(τ), βλ(τ)). In Figure 1, we plot
all of the unit commutative curves {Γλ} and the distribution of the corresponding phases
{Φα,β, (α, β) ∈ Γλ} along each curve in the case of three qubits for two different partitions.

By shifting ŵ(0, 0) through the action of the displacement operators (23) to an arbitrary
point (α, β), one obtains

ŵ(α, β) = ∑
λ(α,β),κ(α,β)

|ψλ
κ 〉〈ψλ

κ | − Î, (30)

where the sum is performed over all the curves Γλ
κ passing through the point (α, β).
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σ4

σ5

σ6

σ7

β

1 1 1 1 1 1 1 1

1 −1 −i 1 −i i i −1

1 −i −1 i −i i 1 −1

1 1 i i i 1 1 i
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1 i i 1 1 i 1 i

1 i 1 1 i 1 i i

1 −1 −1 i −1 i i −i

µ

0

σ

σ2

σ3

σ4

σ5

σ6

σ7

∞

(a)

0 σ σ2 σ3 σ4 σ5 σ6 σ7

α

0

σ

σ2

σ3

σ4

σ5

σ6

σ7

β

1 1 1 1 1 1 1 −1

1 −1 i 1 i i i 1

1 i −1 i i i 1 1

1 1 −i i −i 1 1 −i

1 i i i −1 1 i 1

1 −i −i 1 1 i 1 −i

1 −i 1 1 −i 1 i −i

1 −1 −1 i −1 i i i

µ

0

σ

σ2

σ3

σ4

σ5

σ6

σ7

∞

(b)
Figure 1. Unit commutative curves along with the distribution of the respective phases (8) satisfying
condition (10) for the partitions: (a), (3, 0, 6) described by the rays β = µα, α = 0, µ ∈ F23 ; (b) (1, 6, 2)
described by the curves β = µα + α2 + α4, µ ∈ F23 .

4. Tomographic Universality of the Discrete Wigner Function
4.1. Tomographic Property for a Given DPS Partition

The Wigner function of any stabilizer state |ψλ
κ 〉 within a partition used for the con-

struction of ŵ(0, 0) is a convolution of characters computed at the points of the unit
commutative curve Γλ = (γλ(τ), δλ(τ)), which labels the elements of a stabilizer D̂λ(τ)
with the eigenvalues χ(κτ), κ ∈ Fpn and fixes a particular stabilizer state according to (12),

〈ψλ
κ |ŵ(α, β)|ψλ

κ 〉 = p−n ∑
τ

χ(γλ(τ)β− αδλ(τ))χ(κτ), (31)

as it immediately follows from spectral decomposition (17) and Equation (25).
On the other hand, it immediately follows from decomposition (30) and the unbiase-

ment condition (13) that

〈ψλ
κ |ŵ(α, β)|ψλ

κ 〉 = ∑
λ′(α,β),κ′(α,β)

|〈ψλ′
κ′ |ψλ

κ 〉|2 − 1 = ∑
λ′(α,β),κ′(α,β)

δλ,λ′δκ,κ′ , (32)

which is just a delta function along the curve Γλ
κ = {(αλ(τ, κ), βλ(τ, κ)), τ ∈ Fpn} associ-

ated with the state |ψλ
κ 〉:

〈ψλ
κ |ŵ(α, β)|ψλ

κ 〉 = ∑
τ

δαλ(τ,κ),βλ(τ,κ). (33)

Equation (33) represents a flip side of the tomographic condition,

p−n ∑
τ

Tr(ŵ(αλ(τ, κ), βλ(τ, κ))ρ̂) = p(λ)κ = 〈ψλ
κ |ρ̂|ψλ

κ 〉. (34)

In other words, the sum of the Wigner function of a state ρ̂ along a curve corresponding
to a stabilizer state |ψλ

κ 〉 gives the probability of detecting the state ρ̂ in |ψλ
κ 〉.

The properties (33) and (34) are automatically satisfied for the stabilizer states of the
partition employed for the construction of the Wigner map. However, for stabilizer states
from different partitions, Equations (33) and (34) do not necessarily hold. We will analyze
the validity of these tomographic relations for both odd and even local dimensions.

4.2. Odd Local Dimensions

In the case of odd local dimensions, the kernel at the origin, Equation (28), takes on a
simple form because the equation for phase (10):
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Φα,β(τ)Φα,β(−τ) = χ(αλ(−τ)βλ(τ)) = χ(−αλ(τ)βλ(τ)), (α, β) ∈ λ,

has an explicit solution for every stabilizer of any partition:

Φα,β(τ) = χ
(
−2−1αλ(τ)βλ(τ)

)
, (35)

where α(−τ) = −α(τ) and β(−τ) = −β(τ) due to (16). The primary property of phase
(35) is its factorization, as follows from (5). As a consequence, the kernel ŵ(0, 0) and thus
ŵ(α, β) are factorized in an almost self-dual basis for any partition:

ŵ(α, β) = ⊗
n

∏
j=1

ŵ
(
qjαj, β j

)
, (36)

where
ŵ(αj, β j) = p−1 ∑

k,l
ω(β jk−αj l−2−1kl)Ẑl X̂k.

This implies that the mapping kernel ŵ(α, β) does not depend on the particular
partition of the DPS in the case of odd local dimensions. Such a statement may not be
immediately obvious from the representation (29). This is because different partitions
involve stabilizer states with different factorization properties (14) [28].

As a result, the tomographic conditions (33) and (34) are satisfied for any stabilizer
state |ψλ

κ (π)〉 belonging to an arbitrary phase space partition π, even if they are unrelated
to the one employed for the construction of the Wigner map, i.e.,

〈ψλ
κ (π)|ŵ

(
α, β |π′

)
|ψλ

κ (π)〉 = ∑
τ

δαλ(τ,κ),βλ(τ,κ),

where ŵ(α, β |π′) is a Wigner kernel corresponding to some other partition π′. Actually,
the factorization of kernel (36) implies that the Wigner function of an arbitrary n-qudit state
has exactly the same form for any DPS partition in the case of odd local dimensions.

4.3. Even Local Dimensions

The situation is significantly different for even local dimensions, p = 2. In this case,
none of the solutions of Equation (10) for the phase of the displacement operators for
stabilizers labelled by points of commutative curves (16), and for n > 2, admit a factorized
form. A solution of the recurrence (10),

Φα,β
(
τ + τ′

)
= Φα,β(τ)Φα,β(τ

′)χ
(
αλ(τ

′)βλ(τ)
)
, (37)

under the condition,

Φ2
α,β(τ) = χ(αλ(τ)βλ(τ)), (αλ(τ), βλ(τ)) ∈ Γλ,

is fixed by choosing signs of the phases corresponding to the elements of the self-dual basis
{θk, k = 1, . . . , n},

Φα,β(θk) = ±
√

χ(αλ(θk)βλ(θk)), (38)

where χ(α) = (−1)tr(α). For instance, for all positive signs, we have [43]:

Φα,β

(
τ =

n

∑
k=1

tkθk

)
= χ

(
n−1

∑
m=1

αλ(tmθm)βλ

(
n

∑
k=m+1

tkθk

))
n

∏
k=1

cα,β
κ , (39)

where cα,β
κ =

√
χ(αλ(tkθk)βλ(tkθk)). The non-factorized form of the phase Φα,β implies that

the map ŵ(α, β) essentially depends on the choice of a complete set of disjoint stabilizers.
In other words, it depends on the partition of the DPS into sets of commutative curves Γλ.
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In general, the Wigner function of a stabilizer state |ψλ
κ (π)〉 from an arrangement π in

the (core) partition π0 has the form (see Appendix A):

〈ψλ
κ (π)|ŵ(α, β |π0)|ψλ

κ (π)〉 = 2−n ∑
τ

χ(γλ(τ)β + αδλ(τ))χ(κτ)Φπ0
γ,δ(τ)Φ

π∗
γ,δ(τ), (40)

where (γλ(τ), δλ(τ)) ∈ Γλ(π), Φπ
γ,δ(τ) are the phases along Γλ(π), and Φπ0

γ,δ(τ) are the
phases assigned to each point (γλ(τ), δλ(τ)) of the DPS according to the partition π0.
Therefore, Equation (40) can be reduced to the form (33) if the phases Φπ0

γ,δ(τ) and Φπ
γ,δ(τ)

are the same along the curve Γλ(π). Such curves will be referred as to Abelian curves.
Obviously, all the curves that constitute a given partition are Abelian. However, there are
Abelian curves outside of this partition, leading to a DWF of the corresponding stabilizer
states that are delta functions:

〈ψλ
κ (π)|ŵ(α, β |π0)|ψλ

κ (π)〉 = ∑
τ

δαλ(τ,κ),βλ(τ,κ), (αλ(τ, κ), βλ(τ, κ)) ∈ Γλ
κ (π), (41)

where Γλ
κ (π) is a curve associated with the state |ψλ

κ (π)〉 in the partition π. It is worth
noting that these Abelian curves may possess a factorization structure (14) not present in
the original partition.

The density matrix of a stabilizer state corresponding to an Abelian curve not belong-
ing to the core partition acquires a simple form:

|ψλ
κ (π)〉〈ψλ

κ (π)| = 2−n ∑
τ

ŵ(αλ(τ, κ), βλ(τ, κ)|π0), (αλ(τ, κ), βλ(τ, κ)) ∈ Γλ
κ (π) (42)

In other word, it is an equally weighted sum of the Wigner kernels in the core partition
π0 along the curve Γλ

κ (π) associated with the state |ψλ
κ (π)〉. However, the reconstruction

expression (18) for a stabilizer state associated with an Abelian curve does not have the
form of a convex sum of the core MUB projectors.

In general, searching for Abelian curves that do not belong to a given partition typically
requires an involved analytical or numerical procedure. In addition, there is the same
freedom (38) in the election of the phases of the displacement operators along such curves
from a partition π to those of the core partition π0. In what follows, we give examples of
Abelian curves in the case of three qubit systems.

Let us choose a partition of the DPS for the field F23 corresponding to rays (15), and fix
the phases of the stabilizers according to (39) in the same way for all slopes µ 6= 0. We
do this by choosing the all positive solutions of the recurrence relation (37) for the basis

elements, i.e., Φα,µα(θk) = +
√

χ
(
µθ2

k
)
, where it is always true that Φα,0(τ) = 1. This results

in the following distribution of phases (where σ is the field generator):

[Φ]α,β =



α\β 0 σ σ2 σ3 σ4 σ5 σ6 σ7

0 1 1 1 1 1 1 1 1
σ 1 −1 −i 1 −i i i −1
σ2 1 −i −1 i −i i 1 −1
σ3 1 1 i i i 1 1 i
σ4 1 −i −i i −1 1 i −1
σ5 1 i i 1 1 i 1 i
σ6 1 i 1 1 i 1 i i
σ7 1 −1 −1 i −1 i i −i


. (43)

The partition corresponding to the rays has the factorization structure (3, 0, 6), which
means that there are three completely factorized bases and six completely non-factorized
bases. In the three-qubit case, other admissible partitions include (1, 6, 2), (2, 3, 4) and
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(0, 9, 0) [36,37]. Apart from the rays, there are two types of commutative curves constituting
these partitions, specifically regular curves of the following form [26] (see also Appendix A):

β = f (α) = φ0α + φ2α2 + φα4, (44)

α = g(β) = ψ0β + ψ2β2 + ψβ4

These are characterized by non-degenerate values along the α or β axes and exceptional
curves which are degenerated in both directions. These curves can be represented either in
a parametric form or as relations of the type:

f (α) = g(β),

where α and β do not take all 2n values of the field, but instead run only through an
admissible set of points restricted by relations tr(ασ1) = 0 and tr(βσ2) = 0, where σ1,2 are
some fixed elements of F2n .

We have found that for the primitive polynomial σ3 + σ + 1 = 0 and the self-dual
basis {σ3, σ5, σ6}, the regular curves (44) are Abelian under the positive sign selection (38)
if the following relations between parameters φ0 and φ are fulfilled:

1. If φ = σ, σ2, σ4, then φ0 = φ, φ2, φ3, φ6;
2. If φ = σ3, σ5, σ6, then φ0 = 0, 1;
3. If φ = 1, there are no φ0 values producing Abelian curves, as can be observed in the

example in Figure 1b, where the only Abelian curve is the ray α = 0.

For instance, the bi-factorized curves in the partition (0, 9, 0) defined in Appendix B,

α = β + σ6β2 + σ3β4, (45)

β = α + σ3α2 + σ5α4, (46)

are Abelian, and the corresponding DWFs are

〈ψ(α;1,σ3)
κ (0, 9, 0)|ŵ(α, β | (3, 0, 6))|ψ(α;1,σ3)

κ (0, 9, 0)〉 = δα,β+σ6β2+σ3β4+κ , (47)

〈ψ(β;1,σ5)
κ (0, 9, 0)|ŵ(α, β | (3, 0, 6))|ψ(β;1,σ5)

κ (0, 9, 0)〉 = δβ,α+σ3α2+σ5α4+κ , (48)

where |ψ(α;1,σ3)
κ (0, 9, 0)〉 and |ψ(β;1,σ5)

κ (0, 9, 0)〉 are eigenstates of the stabilizers

{Ẑβ+σ6β2+σ3β4 X̂β, β ∈ F23}, {ẐαX̂α+σ3α2+σ5α4 , α ∈ F23}

respectively. Interestingly, both exceptional curves belonging to this partition are also Abelian.
On the other hand, the curves from the same partition (0, 9, 0),

α = σ6β + σ3β2 + σ5β4, (49)

β = σ2α + σ3α2 + σ5α4, (50)

are not Abelian; thus, the DFWs corresponding to the stabilizer states {|ψ(β;σ2,σ5)
κ (0, 9, 0)〉, κ ∈

F23} are not delta functions. In Figure 2, we plot the Wigner function for the unit stabilizer
states corresponding to curves (46) and (50), respectively. Reconstruction of the stabilizer

states |ψ(β;1,σ5)
0 (0, 9, 0)〉 and |ψ(β;σ2,σ5)

0 (0, 9, 0)〉 associated with curves (46) and (50) in the
form of an expansion of the ray-related (15) MUB projectors fixed by the phases in (43)
(and in terms of the corresponding probabilities (18)) is given in Appendix C. As it is ex-
pected, the obtained representations (A11) and (A14) are not convex sums of the projectors
(A17) and (A18).
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(b) Non-Abelian curve
Figure 2. The Wigner function for the unit stabilizer states corresponding to (a) the Abelian curve
β = α + σ3α2 + σ5α4 (46) and (b) the non-Abelian curve β = σ2α + σ3α2 + σ5α4 (50) for the partition
of the DPS according to Equations (15) and (43). Note that the first Wigner function has a delta
function form (48) corresponding to the Abelian curve, while the second function corresponding to a
non-Abelian curve takes on negative values.

The above-mentioned curves become Abelian for a different assignment of signs to the

phases (38). For instance, curve (50) is Abelian by choosing Φα,µα(θk) = −
√

χ
(
µθ2

k
)

for any
µ 6= 0. Under this assignment, the following regular curves (44) are Abelian:

1. If φ = σ, σ2, σ4, then φ0 = φ + φ2;
2. If φ = σ3, σ5, σ6, then φ0 = φ + φ2;
3. If φ = 1, φ0 = 0.

Additionally, curve (49) is Abelian under an assignment where the signs of Φα,µα(θk)
depend of the value of the slope µ.

In general, in the three-qubit case and the specific (3, 0, 6) DPS partition, certain choices
of phase signs Φα,µα(θk) can make all possible commutative curves Abelian. The inverse
statement is however not true: for a given curve, it is not always possible to establish a
choice of signs of Φα,β(θk) so that this curve becomes Abelian for fixed phases Φα,µα(τ).

5. Conclusions

The Wigner mapping kernel can be constructed as a sum of projectors onto elements
of a complete set of MUBs, which are eigenstates of disjoint stabilizers corresponding to
a given partition of the discrete phase space into non-intersecting commutative curves.
Different partitions lead to different factorization properties of MUBs, which are required for
the mapping. For qudit systems with odd local dimensions, the Wigner kernel is factorized
in the same form for all possible partitions. This results in tomographic universality,
reflected in the delta function form of Wigner functions of any stabilizer state corresponding
to any partition.

However, in the case of n-qubit systems, the mapping kernel is not factorizable, and its
form depends on the chosen discrete phase space partition [28] and on the selected set of
stabilizer states in this core partition, particularly on their phases. Consequently, the qubit
discrete Wigner function is not tomographically universal for an arbitrary election of phases
of the stabilizer states used for Wigner map construction. Nonetheless, this property is not
completely lost. It is shown that for a given partition of the DPS, there are stabilizer states
corresponding to commutative curves which do not participate in the construction of the
mapping kernel, such that their DWFs are delta functions. This means that the probability
of detecting these states by measuring in an arbitrary state is obtained by summing the
DWF along the corresponding curve. This property is directly related to the feasibility of the
classical simulation of Pauli observable measurements in such n-qubit states (see Theorem 2
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in [18]). However, since the measurement procedure is codified in the partition of the DPS,
only some specific stabilizer states, beyond those used in the measurement scheme, are
classically simulable in a given experimental setup (for a fixed DPS partition). In other
words, different experimental configurations may lead to different classical simulability
outcomes for stabilizer states. This highlights the role of experimental design and setup
in determining the classical or quantum nature of measurement outcomes. On the other
hand, it is always possible to adjust a detection scheme so that the Pauli measurements in
any particular stabilizer state can be described by a non-contextual hidden variable model.
This supports a previously discussed finding [18,30] that the stabilizer states cannot be
considered as a resource for quantum computation [13].

Although we have only analyzed a three-qubit system, the present approach is ex-
tendable to a higher number of qubits. In particular, one can expect that for any given
partition, there are sign assignments such that the DWF of an arbitrary stabilizer state
acquires a delta function form; i.e., it confirms the tomographic universality of n-qubit
DWFs under the freedom of the phase choice. This conjecture has been verified by extensive
numerical simulations and it can be justified by the same functional form of the recurrence
Equation (37) for the phase (10) of any Abelian curve.
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Appendix A

In this Appendix, we derive Equation (40) in the main text. Taking into account the
expansion inverse of (17):

|ψλ
κ 〉〈ψλ

κ | = 2−n ∑
τ

χ(κτ)D̂λ(τ) (A1)

and representation (25) of the Wigner kernel, one obtains

〈ψλ
κ (π)|ŵ(α, β |π0)|ψλ

κ (π)〉 = 2−2n ∑
τ

∑
γ,δ

χ(γβ + δα)χ(κτ)Tr
(

D(γ, δ|π0)D
(
α′λ(τ), β′λ(τ)|π

))
, (A2)

where the sum over τ denotes a sum over the points of the curve
(
α′λ(τ), β′λ(τ)

)
∈ Γλ(π).

The displacement operators D(γ, δ|π0) and D
(
α′λ(τ), β′λ(τ)|π

)
from the partitions π0 and

π, respectively, according to (8), (10) carry the corresponding phases Φπ0
γ,δ and Φπ∗

α′(τ),β′(τ)
that guarantee the Abelian property (9). Thus, one gets

〈ψλ
κ (π)|ŵ(α, β |π0)|ψλ

κ (π)〉 = 2−n ∑
τ

∑
γ,δ

χ(γβ + δα)χ(κτ)Φπ0
γ,δΦπ∗

α′(τ),β′(τ)δα′(τ),γδβ′(τ),δ,

(A3)
which after performing a sum over γ and δ, is reduced to Equation (40).

Appendix B

In this Appendix, we recall some basic properties of commutative curves in even
local dimensions. Commuting sets constituted by 2n different monomials (stabilizers)
{Ẑαλ(τ)

X̂βλ(τ)
, τ ∈ F2n} are labelled by points of a discrete grid belonging to a non-singular

curve (i.e., with no self-intersection) Γλ that passes through the origin (α(0), β(0)) =
(0, 0) ∈ Γλ and satisfies
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tr
(
αλ(τ

′)βλ(τ)
)
= tr

(
αλ(τ)βλ(τ

′)
)
, (αλ(τ), βλ(τ)) ∈ Γλ.

A general parametric form of such a curve is given by

α(τ) =
n−1

∑
k=0

αk τ2k
, β(τ) =

n−1

∑
k=0

βk τ2k
, αk, βk ∈ F2n , (A4)

where the coefficients αk and βk are such that ∑m 6=k tr(αmβk) = 0, which implies[
Ẑα(τ)X̂β(τ), Ẑα(τ′)X̂β(τ′)

]
= 0, (αλ(τ), βλ(τ)) ∈ Γλ. (A5)

It is worth noting that n appropriately chosen points of the curve, e.g., τ = {θ1, . . . , θn},
are enough to generate the entire curve. This is because the set of points of these curves
forms an Abelian group where each element is of order two, and therefore the group is
isomorphic to Zn

2 .
The regular curves, which are non-degenerate in at least one of the directions α or β

(i.e., they take on all the values of the field in such a direction), can be represented in the
explicit form [26]:

β = f (α) =
n−1

∑
k=0

φk α2k
or α = g(β) =

n−1

∑
k=0

ψk β2k
, (A6)

where the coefficients φk, ψk ∈ F2n satisfy the following commutativity restrictions:

φk = φ2k

n−k , ψk = ψ2k

n−k , k = 1, . . . ,
⌊

n− 1
2

⌋
, (A7)

where b.c denotes the integer part. In particular, for even n values, the coefficients satisfy
the additional restriction:

φn/2 = φ2n/2

n/2 , ψn/2 = ψ2n/2

n/2 . (A8)

The degenerate (or exceptional) curves are characterized by multiple appearances of
the admissible points in both directions α and β. In other words, for every point (αj, β j) of
such a curve, αj and β j take on only 2n−rβ and 2n−rα different values, respectively, where
rα and rβ are the degrees of degenerations along the corresponding axes. The admissible
points of such curves are fixed by the relations tr(σjβ) = 0 and tr(σkα) = 0, where σj, σk are
some given elements of F2n .

The partitions of the DPS constituted by 2n + 1 commutative curves are classified by
their factorization structures (14), λ = {m1, m2, . . . , mn} , where ∑k mk = 2n + 1, which
indicates the number and the lengths of the commuting sub-blocks of the stabilizers labelled
by the points of a curve. Locally equivalent stabilizers can be labelled by points of different
curves, but have the same factorization structure. On the other hand, curves with different
factorization structures are not locally equivalent.

In particular, in the partition given by Equation (15), there are three completely fac-
torized rays (β = 0, α = 0, and β = α), i.e., of the structure {1, 1, 1}, and the other six rays
have the structure {3}, so that the whole partition is (3, 0, 6).

The (0, 9, 0) partitions include only curves with the factorization {1, 2} and always
contain exceptional curves. One example of these partitions is given by the following seven
regular and two exceptional curves:
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(a) Regular curves

α = σ2β + σ3β2 + σ5β4, α = σ6β + σ3β2 + σ5β4,

β = σ2α + σ3α2 + σ5α4, β = σ6α2 + σ3α4,

α = β + σ6β2 + σ3β4, β = α + σ3α2 + σ5α4,

α = σ3β2 + σ5β4,

(A9)

(b) Exceptional curves

β2 + σ5β = σ2α2 + σ6α, tr(σ4β) = 0, tr(σ5α) = 0;

(A10)

β2 + σ2β = σ6α2 + σ5α, tr(σ6β) = 0, tr(σ2α) = 0.

Appendix C

In this Appendix, we provide the explicit expressions for the reconstruction of the

states |ψ(β;1,σ5)
0 (0, 9, 0)〉 and |ψ(β;σ2,σ5)

0 (0, 9, 0)〉 associated with the curves (46) and (50) in
terms of ray-related MUB projectors with the corresponding probabilities (18):

|ψ(β;1,σ5)
0 (0, 9, 0)〉〈ψ(β;1,σ5)

0 (0, 9, 0)| = ∑
λ,κ∈F23

(
p(λ)κ (1, σ5)− 1

9

)
|ψλ

κ 〉〈ψλ
κ |+

(
p̃κ(1, σ5)− 1

9

)
|ψ̃κ〉〈ψ̃κ |, (A11)

pλ
κ (1, σ5) = |〈ψλ

κ |ψ(β;1,σ5)
0 (0, 9, 0)〉|2 =



λ\κ 0 σ σ2 σ3 σ4 σ5 σ6 σ7

0 1
4 0 1

4 0 0 0 1
4

1
4

σ 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

σ2 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

σ3 1
4 0 0 0 1

4
1
4 0 1

4

σ4 1
4 0 0 1

4
1
4 0 1

4 0

σ5 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

σ6 1
2

1
2 0 0 0 0 0 0

σ7 1
4 0 1

4
1
4 0 1

4 0 0



, (A12)

p̃κ(1, σ5) = |〈ψ̃κ |ψ(β;1,σ5)
0 (0, 9, 0)〉|2 =

1
8

, (A13)

and

|ψ(β;σ2,σ5)
0 (0, 9, 0)〉〈ψ(β;σ2,σ5)

0 (0, 9, 0)| = ∑
λ

∑
κ

(
p(λ)κ

(
σ2, σ5

)
− 1

9

)
|ψλ

κ 〉〈ψλ
κ |+

(
p̃κ(σ

2, σ5)− 1
9

)
|ψ̃κ〉〈ψ̃κ |, (A14)
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pλ
κ

(
σ2, σ5

)
= |〈ψλ

κ |ψ(β;σ2,σ5)
0 (0, 9, 0)〉|2 =



λ\κ 0 σ σ2 σ3 σ4 σ5 σ6 σ7

0 1
2

1
2 0 0 0 0 0 0

σ 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

σ2 1
4 0 1

4
1
4 0 1

4 0 0

σ3 1
4 0 0 1

4
1
4 0 1

4 0

σ4 0 1
4

1
4

1
4 0 0 1

4 0

σ5 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

σ6 0 1
4 0 1

4
1
4

1
4 0 0

σ7 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8



, (A15)

p̃κ(σ
2, σ5) = |〈ψ̃κ |ψ(β;σ2,σ5)

0 (0, 9, 0)〉|2 =
1
8

, (A16)

where the MUBs associated with the partition of the DPS in rays (15) have the form:

|ψλ
κ 〉 = 2−3 ∑

α,γ∈F23

Φα,λα χ(α(κ + γ))|γ〉, (A17)

|ψ̃κ〉 = 2−3/2 ∑
γ∈F23

χ(κγ)|γ〉, (A18)

and the phases Φα,β are defined in (43).
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