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Abstract: Infant electrocardiograms (ECGs) and heart rates (HRs) are very useful biosignals for
psychological research and clinical work, but can be hard to analyse properly, particularly longform
(≥5 min) recordings taken in naturalistic environments. Infant HRs are typically much faster than
adult HRs, and so some of the underlying frequency assumptions made about adult ECGs may
not hold for infants. However, the bulk of publicly available ECG approaches focus on adult data.
Here, existing open source ECG approaches are tested on infant datasets. The best-performing
open source method is then modified to maximise its performance on infant data (e.g., including
a 15 Hz high-pass filter, adding local peak correction). The HR signal is then subsequently analysed,
developing an approach for cleaning data with separate sets of parameters for the analysis of cleaner
and noisier HRs. A Signal Quality Index (SQI) for HR is also developed, providing insights into where
a signal is recoverable and where it is not, allowing for more confidence in the analysis performed
on naturalistic recordings. The tools developed and reported in this paper provide a base for the
future analysis of infant ECGs and related biophysical characteristics. Of particular importance, the
proposed solutions outlined here can be efficiently applied to real-world, large datasets.

Keywords: ECG; infant ECG; R-peaks; heart rate; longform; naturalistic; open source

1. Introduction

Although heart rate (HR) has been used for studying infant cognitive and emotional
developments for several decades, there are currently few evaluations of complete open
access pipelines, especially focussing on infant data recorded in naturalistic environments
while infants are free to move. Measures of the cardiovascular system provide a clear win-
dow into the activity of the autonomic nervous system (ANS), reflecting innervations from
both the sympathetic and parasympathetic branches [1]. Variations in heart period and
heart rate variabilities have been linked to important cognitive functions, such as attention,
memory, and information processing, as well as changes in arousal and regulatory abili-
ties [2–5]. ANS activity measurement has been fruitful for understanding both typical and
atypical developments, with atypical ANSs shown in manifestations of autism spectrum
disorders [6–8], attention deficit and hyperactivity disorders [9], conduct disorders [10], as
well as the emergence of other neuropsychiatric conditions [11]. Cardiovascular measures
are particularly useful for the study of cognitive and emotional developments beginning
with the first days of life since both the cardiovascular and autonomic systems are well
developed at birth [12], and electrocardiography (ECG) recordings can be obtained in
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a non-invasive fashion. In the context of infants’ limited behavioural repertoire, reduced
motor development, and lack of verbal communication abilities, non-invasive methods that
can provide insights into cognitive and emotion functions are essential for understanding
how these develop within the critical first 1000 days of life. With advances in wearable
sensing technology, ECG recordings can be more easily obtained outside the laboratory as
well, allowing dense recordings over hours and days [13,14]. The main motivation of this
paper is to develop an innovative novel framework for studying this development in the
natural environment, allowing researchers to understand the complexity of factors that can
contribute to typical and atypical outcomes [15].

Children, and in particular infants, have a much higher HR than adults [16], and
so algorithms tailored to process adult heart signals might not be the optimal choice for
processing the signals recorded from an infant heart [17,18]. In addition to the higher heart
rate, there are many other factors (e.g., differing ECG complex shapes that occur) that
should be considered when using ECGs from infants and children [19]. Free movement
during typical activities and lengthy recordings can produce more motion-induced noise,
such as baseline wander and motion artefacts [20,21], which can be particularly problematic
when cardiac activity is recorded for infants in naturalistic settings (e.g., their everyday
home environment). This is in addition to other forms of ECG noise, such as power-
line interference, and signal processing artefacts [22,23] that must be accounted for in
ECG processing [24]. Recent early-development research has focussed on foetal heart
rates and ECGs [25–27], rather than the specific issues surrounding infants. Building on
and extending our previous work [13], the motivation of the current study is to propose
a complete open source processing pipeline for longform infant ECG recordings (≥5 min)
and validate them under a range of conditions (including naturalistic conditions) against
open source state-of-the-art approaches. Compared to our previous work, we increase
dataset sizes, include ECG data recordings from a range of devices recorded at a range of
sampling rates, and present a more thorough validation of the different steps of the pipeline.

During typical functioning, the depolarisation of the heart ventricles produces a short
and characteristic spike of electric signals, often referred to as the QRS complex, with
the peak of the QRS complex referred to as the R-peak (Figure 1). When detected, the
times between consecutive R-peaks (∆R-R) can be used to calculate the instantaneous HR in
beats per minute (see Equation (1)). This provides a precise beat-by-beat HR measurement
derived from the ECG.

HR = 60/(∆R-R) (1)

Figure 1. A visualisation of the different complexes with an ECG. ∆R-R represents the time between
R-peaks, as depicted in Equation (1).

There are many pre-established open source methods designed to preprocess ECG
data and then extract the R-peaks [28–36]. While some comparative analyses have been
previously carried out [23,28], no analysis exists evaluating the effectiveness of these
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methodologies on the ECGS of infants and young children. Many of these methods also
investigate other ECG complexes, such as T-waves and P-waves, as well as the QRS complex
as a whole (Figure 1). In the present paper, only the R-peak detection is analysed.

For the ECG preprocessing step, usually a decision must be made as to whether the
signal is of sufficient quality for further processing and analysis. Noise can be reduced
by frequency-filtering approaches, with low-pass filters (LPFs) for removing aspects such
as white noise, high-pass filtering (HPF) used for aspects such as baseline drift, bandpass
filtering (BPF) to remove low-frequency and high-frequency noises, and notch filtering for
mains interference. Alternatively, other approaches, such as wavelets and empirical mode
decomposition, have also been used [37–39].

Typical ECG pipelines only encompass the preprocessing of the ECG signal and then
the R-peak detection. Given the inherent noise level in infant and young children ECGs,
and particularly ECG recordings in the natural environment, this paper aims to encapsulate
the ECG to HR process as a complete open access pipeline, also accounting for any HR
cleaning and HR signal quality measurements (Figure 2). First, pre-existing open access
ECG pipelines from the literature were evaluated. The best-performing method was then
chosen as the basis to develop our new open source pipeline for the infant ECGs and
subsequent infant HR signals. A range of additional preprocessing options were evaluated,
along with some ECG post-processing steps. The data and code that will be made available
upon request is listed in Appendix A.

Figure 2. The proposed new pipeline for processing an infant ECG into a usable heart rate. The ECG
pipeline (top row, blue boxes) uses a raw ECG and applies preprocessing. The preprocessed ECG
is then passed into the peak-detection step, and then the novel steps of local peak correction and
square wave correction (where required by the device). The HR pipeline (bottom row, red boxes)
extracts a raw heart rate from the detected ECG peaks and corrects for any obvious mislabelling, while
carrying out an SQI calculation to determine the quality of the signal. Adapted from Geangu et al. [13]
to represent an infant-specific pipeline.

In brief, the key innovations in the proposed pipeline are as follows. The ECG pre-
processing is improved by specifically tailoring the frequency filtering to infant ECGs.
A local peak correction is added to allow for heavy filtering without affecting the underly-
ing heart rate. A mathematically outlined approach is described for cleaning the HR signal
in instances of minor mislabelling. A new HR signal quality index (SQI) is developed to
help automatically reject areas of unrecoverable signals, which will help to account for
the high levels of noise in infant ECG. Finally, a focus on computational efficiency was
followed throughout to allow for the application to large amounts of data.

2. Materials and Results

In this section, existing ECG pipelines were applied to datasets containing infants and
toddlers. Then, we proposed an adapted ECG pipeline (including two novel preprocessing
approaches). Finally, we proposed a HR pipeline designed specifically to deal with long-
form and noisy recordings. All coding was done in Python (HeartPy-1.2.6, MatPlotLib-3.7.1
(purely for plotting), Neurokit2-0.2.3, Numpy-1.24.3, PyEMD-1.1.1, Scipy-1.10.1, Seaborn-
0.12.2 (purely for plotting)) (Python Software Foundation, Wilmington, DE, USA).
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2.1. Datasets

Three infant ECG datasets (Table 1) were used to develop the pipeline and test the
existing approaches. Datasets A, B, and C were all captured using different devices with
different sampling rates in different environments. Datasets A and B were characterised by
relatively low levels of noise and were used to evaluate the ECG pipeline and initial HR
processing. Some of the recordings in Dataset A had gaps in the recording due to Bluetooth
dropout from the Biosignalsplux device (PLUX Biosignals, Lisbon, Portugal) (a subset of
the recordings in Dataset A were the object of analyses in our previous work [13]). Dataset
C contained the noisiest ECG (including areas of non-signal) and were used for HR quality
analysis. Further details on these datasets can be found in Appendix B. The distribution of
recording times and ages for each dataset is illustrated in Figure 3.

Table 1. The infant dataset information for the three datasets used in this paper. Age column shows
the range and mean ± standard deviation. A breakdown of durations by age cohort provided given
along with the overall total (shown in bold).

Dataset Device Sampling
Rate (Hz) Environment Age

(Months) n Total
Duration

Mean
Duration

A

Biosignalsplux
(PLUX

Biosignals,
Lisbon,

Portugal)

500
Research lab,

Free play in infant
play area

2.9–7.9
Mage = 5.8 ± 1.2 25 11 h,

41 min
28 min,

1 s

8–10.9
Mage = 9.3 ± 0.6 15 8 h,

35 min
34 min,

20 s

11–19.9
Mage = 13.4 ± 2.3 23 10 h,

41 min
27 min,

52 s

20–42.3
Mage = 30.8 ± 6.2 34 21 h,

14 min
37 min,

45 s

2.9–42.3
Mage = 16.9 ± 11.2 97 52 h,

20 min
32 min,

22 s

B
Geodesic EEG
System (GES)
400 (Magstim

EGI, USA)

1000

Research lab,
Experimental

testing (sitting on
caregiver’s lap)

5.6–8.9
Mage = 7.1 ± 1.1 15 2 h,

13 min
8 min,
52 s

9–13.0
Mage = 10.7 ± 1.3 10 1 h,

22 min
8 min,
12 s

5.6–13.0
Mage = 8.5 ± 2.1 25 3 h,

34 min
8 min,

36 s

C
EgoActive

sensor
(University of

York, UK)

250

Home
environment,

Free spontaneous
behaviours

5.3–7.9
Mage = 5.8 ± 0.3 7 10 h,

27 min
89 min,

37 s

8–10.4
Mage = 9.5 ± 0.7 5 7 h,

34 min
90 min,

51 s

5.3–10.4
Mage = 7.3 ± 1.9 12 18 h,

2 min
90 min,

8 s

A consistent issue across datasets was the range of ECG morphologies detected, such
as double R-peaks and distorted T-waves. As infants are much smaller and less compliant
than adults, ECG devices were often placed in a range of angles, and occasionally upside-
down; therefore, the ECGs had to be evaluated individually to determine if the signal was
inverted. The devices used often had very narrow electrodes, which made a traditional
ECG notation (e.g., 12-lead analysis) difficult to apply.

All datasets were recorded from subjects recruited from urban areas in the North-
East of England. Families received remunerations commensurate with the specific study
they were involved in, as well as an age-appropriate book as a token of participation.
The research procedures were approved by the Ethics Committee of the Department of
Psychology at the University of York. Participants’ caregivers signed an informed consent
form prior to the beginning of the research procedure.
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Figure 3. Age of participant vs. length of recording. (a) Dataset A: the recordings are roughly grouped
into cohorts of 2.9–7.9 months (n = 25, Mage = 5.8 months), 8–10.9 months (n = 15, Mage = 9.3 months),
11–19.9 months (n = 23, Mage = 13.4 months), and 20–42.3 months (n = 34, Mage = 30.8 months).
(b) Dataset B: the recordings are grouped into cohorts of 5.6–8.9 months (n = 15, Mage = 7.1 months)
and 9–13.0 months (n = 10, Mage = 10.7 months). (c) Dataset C: the recordings are grouped into
cohorts of 5.3–7.9 months (n = 7, Mage = 5.8 months) and 8–10.4 months (n = 5, Mage = 9.5 months).
All y-axes and x-axes have different scales. A consistent colour-scale for age is used in all subplots,
with each colour representing a specific age.

2.2. The ECG Pipeline

The main focus of the ECG pipelines analysed here was to accurately extract a set
of R-peak locations from an ECG signal, identifying the peak within each QRS complex
(known as peak detection). Some pipelines can also search for other ECG complexes, which
are not analysed here. A pipeline typically starts with preprocessing, a mathematical
manipulation of the ECG signal to allow the QRS complex to be more easily identifiable.

Once the signal has undergone preprocessing, the resulting preprocessed ECG contains
R-peak locations that differ slightly from the raw ECG, due to the mathematical operations
that occur during preprocessing. In order to readjust the peaks back to the original location
on the raw ECG (i.e., the R-peak location on the raw ECG, rather than the R-peak location
on the preprocessed ECG), we introduce a “local peak-correction” operation. Additionally,
we introduce a square wave specific filter for those devices where it is appropriate.

2.2.1. Existing ECG Approaches

Firstly, 12 open source pre-existing ECG methods (Table 2) were applied to Datasets
A and B. These approaches represented the available open source methods for R-peak
extraction. Based on an investigation of open source approaches, three separate Python
packages that contained all or a subset of these methods were initially considered—HeartPy,
Neurokit2, and py-ecg detectors. However, all ECG methods in py-ecg detectors were
found to contain matching implementations in Neurokit2, without the flexibility to im-
plement preprocessing and the peak detection of a method separately. This reduced the
selection of ECG methods to those found in the HeartPy and Neurokit2 packages—the
default HeartPy method and 11 other approaches from the Neurokit2 package (includ-
ing the default Neurokit2 approach). The open source nature of Neurokit2 meant that
some methods may match more closely than others to the authors’ original intentions.
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Almost all methods within the Neurokit2 package were tested, but some were excluded.
A sum-slope approach [40] was initially tested but then excluded due to very poor per-
formance (to the point that including it in the analysis made it hard to visualise the other
results). An approach by Koka and Muma [41] relied on visibility graphs, but was much
slower than other methods, requiring an additional package to work. Two methods did
not successfully run when tested within the Neurokit2 framework: an approach by Gam-
boa [34] and a Probabilistic Methods Agreement via Convolution (ProMAC) approach,
which combined the results of other peak-detection methods. The ProMAC method, which
relies on other approaches, likely failed because the Gamboa method also failed. Aside
from these exclusions, which were made for reasons of performance, our analysis captured
all open source approaches to R-peak labelling in ECGs within common Python packages.
It is acknowledged that proprietary measures for measuring infant ECGs may well exist as
part of commercial innovations and research.

Table 2. A guide to the pre-existing ECG pipelines tested in this study.

ECG Method Method Description

HeartPy [36,42,43]

Designed for noisy data. Preprocessing uses baseline wander
removal, a 0.05 Hz notch filter, and a 0.003–20 Hz bandpass filter.

Peak detection uses an adaptive threshold, then outlier detection and
rejection. HeartPy user-customisation is used to raise the maximum

allowed HR to 220 bpm.

Neurokit2 [44]
Preprocessing uses only a 0.5 Hz HPF and a 50 Hz notch filter.
Gradients are used to detect QRS complexes, then an R-peak is

detected within each QRS.

Pan-Tompkins [45]
Preprocessing uses a 5–15 Hz BPF before taking a derivative,

squaring, and integrating with a moving window to isolate the
R-Peak, which is detected via a series of thresholds.

Hamilton [33]
Adaptation of the Pan–Tompkins method that uses an 8–16 Hz BPF

rectification instead of squaring, and also a smaller
integration window.

Christov [29]
Uses two self-adjusting algorithms to detect the current beat and the

interval between beats, self-adjusting for different sampling
frequencies. It is particularly designed for multi-lead analysis.

Engelse & Zeelenberg [46,47]
(EngZee)

Uses a 48–52 Hz notch filter differentiates the signal, passes it through
an adaptive LPF, and then uses Christov-inspired adaptive threshold

analysis to detect the peak.

Kalidas [35]

Resamples the signal to 80 Hz; uses Daubechies 3 wavelets for
stationary wavelet transforms. The signal is squared and a moving
window average enhances the R-peaks, which are detected using

threshold-based peak detection.

Nabian [32] R-peak detection derived from Pan–Tompkins. A sliding window is
used to detect a liberal initial R-peak list before culling the list.

Martinez [37,48] Aims to identify multiple ECG complexes. Uses a quadratic spline
wavelet transform to identify the QRS peak.

Elgendi [28] Uses an 8–20 Hz BPF along with moving window integration and
thresholding to detect the R-peaks.

Zong [31]
Uses a 16 Hz LPF, a non-linear scaling factor to enhance the QRS

complex and reduce low-frequency noise, and then adaptive
thresholds to determine the onset and duration of the QRS complex.

Rodrigues [30]

Uses a double derivative, square, and moving window integration in
preprocessing to enhance the QRS complex. A finite-state machine

enhances the R-peak position [49], with an adaptive exponential
decaying threshold for R-peak detection [50].

The specificity, sensitivity, and positive predictive value (PPV) of the methods were
then compared against a ground truth set of labels (Figures 4 and 5). Specificity penalises
incorrect peak selection, and PPV identifies the ratio of correctly identified peaks out of all
the peaks identified for a given method. Given the sparsity of peaks within a signal, both
measures tend to be preferable due to their inclusion of false positives within the denomi-
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nator. The sensitivity is also important but can be falsely inflated by a method identifying
many false peaks, and so must be considered in the context of the other two metrics. These
methods all require the precise detection of peak location.

Specificity = (True Negatives)/(True Negatives + False Positives) (2)

Sensitivity = (True Positives)/(True Positives + False Negatives) (3)

Positive Predictive Value = (True Positives)/(True Positives + False Positives) (4)

Figure 4. Violin plots showing the specificity, sensitivity, and positive predictive values for the
pre-existing ECG approaches applied to Dataset A, with a local peak correction applied to allow for
cross-method comparison. The thin dark-grey lines represent interquartile values; the thick light-grey
line represents the median. Each dot represents a single result in the dataset, with the “violin” helping
visualise the distribution.

The distributions of the results are shown in violin plots, with black dots representing
each individual result. The median and interquartile ranges (IQRs) are also shown as
dotted lines. Collectively, this visualisation allows for the evaluation of both the summative
statistics and the general metric distribution. In cases where the results of some methods fall
far beyond the range of the best-performing methods, visualisations are truncated to present
a clearer comparison between the core performances. For each method, conventional
preprocessing was applied, although a local peak correction was used after labelling to allow
a fair comparison between the different methods. The datasets used were Datasets A and B,
which were both clean enough to have a reliable ground truth. A visualisation of the
algorithmically labelled peaks by different methods in a sample infant ECG without local
peak correction is shown in Figure 6, with the labels shown on both the preprocessed ECGs.
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Figure 5. Violin plots showing the specificity, sensitivity, and positive predictive values for the
pre-existing ECG approaches applied to Dataset B, with local peak correction applied to allow for the
cross-method comparison.

Figure 6. A visualisation of the peak detection for the pre-existing methods on a 12-month-old subject
from Dataset A. Detected peaks are shown as black dots. The raw ECG and ground truth are shown
on the left. All other approaches show the preprocessed ECG and original detected R-peak locations
for that method.

The range of successes that different current methods have for dealing with infant
ECGs are shown for Dataset A (Figure 4) and Dataset B (Figure 5). Figure 6’s visualisa-
tion shows the effect of different preprocessing methods on the raw heart rate, and that
some approaches label other complexes in the ECG instead of the QRS.

The inbuilt methods for both the Neurokit2 package [44] and HeartPy package [36]
outperformed the implementation of all other pre-existing methods, with the Neurokit2
method performing best between the two. This was true when considering their respective
full distribution, median, or interquartile ranges (IQRs). Out of the remaining methods,
Martínez et al.’s wavelet-based method [48] and Rodrigues et al.’s approach [30] were 3rd
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and 4th best respectively. Martínez’s method had good specificity and fairly good PPVs but
worse sensitivity, indicating the peaks that were detected were accurate, but many peaks
were missing. Rodrigues’s method was able to adapt better than most methods to the fast
heart rate and noisy signals, but still had some worst-case subjects that it was unable to
adapt to, especially in Dataset B.

Nabian et al.’s method [32] performed 5th-best overall, narrowly outperforming the
sensitivity of Martínez’s method for Dataset A, but had more results with poorer for speci-
ficity and PPV. Zong’s approach [31] did next best for Dataset A, but fell apart completely
for Dataset B. Engelse and Zeelenberg’s method [46,47] had a low false-peaks-detection rate,
but also did not detect enough of the true peaks for an accurate HR calculation. Christov’s
method [29] seemed to work well with some of the signals but needed the altering of its
internal threshold factors to properly adapt to the children’s ECGs.

All other approaches tested [28,33–35] did not perform well with the datasets and had
lower median specificity/sensitivity/PPV values than the other methods. They likely need
some fundamental changes to be suited to the ECG of a young child, as many of these
methods have time constraints that work very well for adults but are too rigid for the faster
heart rate of a child, falsely rejecting too many R-peaks or identifying other complexes in
the ECG over the QRS complex.

2.2.2. Proposed ECG Preprocessing

We developed two separate preprocessing approaches by adapting the best-performing
pre-existing approach (Neurokit2). These two approaches were a frequency-preprocessing
approach and an empirical mode decomposition (EMD) approach, which were both then
tested and compared against the existing approaches. The frequency-based approach
applies filters that attenuate the energy of a signal occurring at a given frequency. Low-pass
filters (LPFs) remove high-frequency detail, only allowing smooth changes in the signal
to pass through. High-pass filters (HPFs) do the opposite, removing smooth signal trends
to leave more rapidly altering complexes in the signal. Bandpass filters (BPFs) remove
some of the high-frequency and low-frequency information, whereas notch filters only
remove signal energy at a given frequency. One problem with frequency filters is that
they do not discriminate between two separate signal sources that share a frequency band.
EMD is an adaptive technique that decomposes the signal into intrinsic mode functions
(IMFs)—characteristic signals that can have an overlapping frequency information [51]. If
noise or non-QRS complexes can be completely captured in an IMF, they can be removed
without affecting the QRS. This same logic can also be applied to wavelet filtering [37,52,53].

A recent study [54] found that a 0.05–150 Hz BPF preprocessing approach outper-
formed a 1–17 Hz BPF approach on a study investigating peak detection in children—but
the study only tested those two specific filters. As such, it was considered worth evaluating
a range of 5th-order Butterworth BPFs and HPFs applied before R-peak detection.

We chose the Neurokit2 algorithm for peak detection due to its high performance
across all categories (Figures 4 and 5) as well as the simplicity of the initial baseline
Neurokit2 preprocessing (a 0.5 Hz HPF with a 50 Hz band stop filter). A variety of different
frequency filters were applied in addition to the standard Neurokit2 preprocessing to
determine the best frequency-preprocessing approach. Dataset A and Dataset B were both
used to test the frequency ranges (Figure 7). Upper frequency bounds of 20, 30, 50, 100, and
“None” were used (with the “None” option indicating no upper bound, i.e., a pure HPF).
A range of lower bounds was also tested, with 0.5, 2, 5, 8, 10, 15, and 20 Hz lower bounds
shown in Figure 7. All filters were 5th-order Butterworth filters. In general, the high-pass
filters had better median specificity/sensitivity/PPV than the bandpass filters, as well as
overall improved distributions. However, the improvement in the results is marginal when
compared to the 50 Hz/100 Hz upper bounds. For Dataset A, the 15 Hz HPF approach was
marginally better than similar filter approaches when considering median and IQR values,
although an upper bound of 50 Hz and any lower bound in the range of 8–20 Hz produced
fairly similar results. For Dataset B, the lower IQR had perfect specificity, sensitivity, and
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PPV for the 5–15 Hz HPF, with the only distinguishing factor being how well the worst-case
results were processed. However, the 20 Hz HPF results were a lot worse for Dataset B.

Figure 7. The Specificity, Sensitivity, and PPV (columns 1, 2, and 3, respectively) results shown
as violin plots for a selection of frequency-preprocessing methods applied to (a) Dataset A and
(b) Dataset B. In all subplots, the median is shown as a thick light-grey bar, and the IQR is shown as
thin dark-grey bars. Each black dot represents one result. The lower-frequency bounds are shown on
the y-axis, the upper-frequency bounds on the x-axis (with the right-most column of each subplot
indicating no upper bound, i.e., an HPF). Results are all shown at a consistent scale; violin plots that
extend to the edge of the graph may have results outside the visualised range.

During the assessment of the ECG preprocessing options, elevated T-waves were
observed in some of the subjects in the recordings. T-waves typically overlap in frequency
with QRS waves [55], which can cause some problems in R-peak detection. An approach
using EMD can remove the T-waves while preserving the QRS complex. Here, we removed
any signals with >50% of the signal power in the range of 0.5–8 Hz, given that the T-wave
content was reported to lie in the 0–10 Hz range [55], and the QRS was reported to lie
in the 8–20 Hz range [28]. The EMD approach was also used with standard Neurokit2
preprocessing and peak detection.

A comparison between the proposed 15 Hz HPF filter and the EMD approach with
the best-performing pre-existing approaches is shown in Figure 8 (Dataset A) and Figure 9
(Dataset B). The HeartPy, Neurokit2, Martinez, and Rodrigues results display the same
characteristics as in Figures 4 and 5. The 15 Hz HPF approach improves on the EMD and
all pre-existing methods in terms of worst-case labelling and median/IQR statistics for
Dataset A. Specifically, the 15 Hz HPF median specificity, sensitivity, and PPV (0.999989,
0.9958, and 0.9975, respectively) outperformed the median results of all other methods, the
closest pre-existing method being Neurokit2 (0.999975, 0.9863, 0.9938). If we interpret these
median results on the average signal length (30.5 min, 4180 peaks), it means 13 fewer peaks
were labelled incorrectly (10 vs. 23), 39 fewer peaks were missed (18 vs. 57), and only 0.25%
of peaks that were identified were labelled incorrectly (vs. 0.72% for Neurokit2). While
the EMD approach does improve on the other pre-existing approaches for Dataset A, for
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Dataset B, the EMD approach performs much worse overall, with a few worst-case labels
performing very poorly.

Figure 8. Violin plots for the best approaches for Dataset A. The median is shown as a thick light-grey
bar, and the IQR is shown as thin dark-grey bars. Each black dot represents one result. The HeartPy,
Neurokit2, Martinez, and Rodrigues results are the same as in Figure 4, but with a greater y-axis
zoom. The EMD and 15 Hz HPF approaches are new ones evaluated in this paper.

Figure 9. Violin plots for the best approaches for Dataset B. The median is shown as a thick light-
grey bar, and the IQR is shown as thin dark-grey bars. Each black dot represents one result. The
HeartPy, Neurokit2, Martinez, and Rodrigues results are the same as in Figure 5, but with a greater
y-axis zoom.
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Average heart rate varies as a function of age [16], so a sub-analysis visualising the
performance of the methods at different age boundaries on Dataset A is also carried out
(Figure 10). Age-divisions were chosen as a balance between keeping a large enough cohort
size for a valid analysis, and to recognise natural groupings that arose within the datasets
(Figure 3). Dataset B’s age-based analysis contained far fewer participants, especially when
split into cohorts, and is included in Appendix C for completeness. The results for the
15 Hz HPF on Dataset A are the worst in the 8–10 month age range, but still outperform all
other methods at all age ranges (Figure 10).

Figure 10. An age-based breakdown of Figure 8. A different age bracket is shown in each quadrant.
The median is shown as a thick light-grey bar, and the IQR is shown as thin dark-grey bars. Each black
dot represents one result.

2.2.3. ECG Peak Detection

R-peak detection is the process by which an algorithm finds the R-peak within the QRS
complex for all QRS complexes in an ECG signal. By testing all the pre-existing methods, it
was clear that Neurokit2 was one of the best suited to these datasets (Figures 4 and 5) and
worked well with the proposed preprocessing approaches of 15 Hz HPF or EMD filtering
(Figures 7 and 8). Neurokit2 peak detection was used in the proposed ECG pipeline without
alteration in this specific step.

2.2.4. Local Peak Correction

Stronger frequency filtering applied during the preprocessing step had a stronger
impact on peak location, shifting R-peaks (and other peaks) in the ECG (Figure 6). To
counteract the shifting-peaks effects, we implemented a novel local correction relative to
the unfiltered signal. This correction iteratively searches for the largest peak ± 0.01 s either
side of the peak location on the processed ECG to check for a larger local peak within the
raw unprocessed ECG, until no larger peak is found within the search limit. To distinguish
this technique from “peak detection”, it is referred to as “peak correction”. This peak
correction only has a small impact on peak location but preserves variations between peaks
and allows for a more accurate comparison of specificity/sensitivity/positive predictive
value measures (Appendix D). In instances where multiple indices could be labelled for
a given peak, the closest peak to the preprocessed ECG was used (Appendix E).
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It was also observed that the first and last beats of an ECG were liable to be missed
under certain methods. This was addressed by a one-second artificial extension of the
signal at the start and the end. The first/last values of the preprocessed ECG were used as
the constant values for the extensions at each end. While this only has a small impact for
long recordings, it can be very impactful for shorter recordings.

2.2.5. Square Wave Peak Correction

While filter-based preprocessing deals with many sources of noise, any periodic non-
ECG signal is likely to be preserved with the frequency-processing and EMD methods.
Square waves were occasionally observed when recording was started prior to attaching the
device to a subject. The nature of square waves is very likely dependent on the device, and
square wave removal is highly recommended in these recordings. For the EgoActive sensor
(University of York, UK) responsible for Dataset C, a median filter with a 101 sample width
was used to exclude blocks of signals that were within 0.5% of a local maximum/minimum.
The precise filter width and max/min margins depended on the gain and the sampling
rate of the device used. This correction was applied post-peak detection to remove any
peaks deemed to occur during these periods. Square wave correction was not required for
Datasets A and B.

2.3. The HR Pipeline
2.3.1. Raw Heart Rate Calculation

Once a set of R-peaks is detected, the heart rate can be calculated as described by
Equation (1). This is an instantaneous heart rate calculation reflecting beat-to-beat changes.
For some research questions, an average heart rate (collected over a few beats) will be
preferred and will likely reduce the impact of noise in the calculation. Here, only instanta-
neous heart rate was considered. Even with good R-peak-detection methods, a peak can be
missed or a non-R-peak can be incorrectly labelled. This leads to an erroneous heart rate
measurement, which can be detected using filtering.

2.3.2. Correction for Missing and Additional Beats

A missing R-peak causes two true measurements to be replaced by a single false
measurement of approximately half value (Figure 11a), while an additional peak causes one
true measurement to be replaced by two roughly double-false measurements (Figure 11b),
although the proximity of the additional peak to existing peaks alters the amplification
ratio of the subsequent heart rate.

Two metrics were used to ascertain the ideal filter width and proportional threshold
for HR processing. The first metric was used to evaluate the median approach applied to
a clean set of R-peak labels that only contained a few errors. The second metric was used
to evaluate the median approach applied to a realistically processed ECG.

Dataset A (n = 97) was captured using a BiosignalPlux device (PLUX Biosignals, Lisbon,
Portugal) that recorded the ECG with Bluetooth. Across the 97 recordings, occasional
disconnections occurred, leading to gaps in the signal (23 in total). Additionally, the
noise arising from infant motion also led to short periods where no QRS complex could
be identified (323). These gaps in the ground truth R-peak list resulted in drops in the
derived HR signal. The optimal median filter approach identifies these gaps without
removing any real signal. The expected number of gaps to interpolate over was recorded
for each participant. The absolute difference between interpolations made by the filter
and the expected number of interpolations was used to evaluate the optimal parameters
for a clean environment. Figure 12a shows the variation in these results with different
parameter choices.
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Figure 11. A demonstration of potential inaccuracies arising in R-peak labelling algorithms. Each QRS
complex should contain one R-peak label. The left column shows an ECG signal (purple) and peak
labels. The black “x” shows the underlying true peak labels. The blue “+” and red “o” show incorrect
labelling. The right column shows the corresponding instantaneous heart rate, calculated using
Equation (1). The black, blue, and red lines/markers in the right column correspond to heart rates
derived from the peaks in the ECGs. (a) A single lower heart rate measurement due to missing
a beat; (b) two raised heart rate measurements due to an additional beat; (c) two incorrect heart rate
measurements, one higher and one lower, with the order depending on the direction the beat is
shifted. (c) Adapted from Geangu et al. [13].To detect beats that varied above/below a local median
by more than a given proportional threshold, we used a median filter. The effects of the specific
filter width and threshold are illustrated in Figure 12. The identified incorrect measurements were
removed, and then estimated by local linear interpolation. If precise beat-to-beat comparisons are not
required, a more liberal threshold over a wider beat-window can robustly account for noise. The first
evaluation (Figure 12a) examines a clean ECG against a ground truth, and only deals with missing
beats. The second evaluation (Figure 12b) compares the residual heart rate from a filter applied to the
output of the ECG pipeline against a ground truth and represents the approach that should be taken
with a less clean initial ECG.

Next, the output from the proposed ECG pipeline (15 Hz HPF preprocessing, Neu-
rokit2 peak detection) was used to represent a realistically preprocessed signal. The residual
heart rate between the median-filtered ECG and a ground truth (with gaps interpolated
over) was used to demonstrate the optimal parameters from a noisier baseline (Figure 12b).

For the clean ECG test (Figure 12a), a high activation threshold (e.g., 1.7 or 1.8) com-
bined with a narrow filter width (e.g., 7–21) produced a very low number of incorrect
adjustments (<3% compared to the total number of adjustments or <0.0015% compared to
every potential adjustment, e.g., every single heart rate beat). Almost all these incorrect
adjustments were due to arrhythmias in the heart rate, causing a longer than expected
gap between the detected beats. A very conservative threshold combined with very few
beats needed to accurately determine the incorrect label made sense, given the cleanness of
the ground truth. For the test with the processed ECG (Figure 12b), a much more liberal
activation threshold (e.g., 1.2 or 1.3) with a much wider filter width (15–31) provided the
optimal parameters for reducing the heart rate residual with this dataset. This accounted
for the higher level of uncertainty in the underlying truth in the processed heart rate.
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Figure 12. The result of parameter variations for selecting different filter widths (FWs) and activation
thresholds (ATs) with a local moving-median filter. (a) The total number of errors in the interpolation
for the moving-median filters applied to a clean dataset, with 346 being the expected number of
interpolations across the dataset. One 12-month infant with a mildly arrhythmic heart rate accounts
for 4 of the incorrect interpolations in the optimal parameter choices. (b) The heart rate residual shows
the difference between the interpolated heart rate and the true heart rate for the moving-median filter
applied to a realistically processed dataset. A trade-off is then made between how strict the threshold
is in removing incorrect peak labels compared to preserving the original signal. (b) Adapted from
Geangu et al. [13], with additional data and labels added.

2.3.3. Correction for Shifted Beats

Wrongly located R-peaks can remain undetected by the median filter approach de-
scribed above. A useful observation is that an early labelled beat leads to a much greater
heart rate rise followed by a much steeper heart rate drop than typically appears in
a natural signal (Figure 11c). A late-labelled beat does the opposite. The proposed al-
gorithm searches for the presence of three consecutive sign changes concurrently with
a large variation in the heart rate difference (>15 bpm for the first and third heart rate
gaps, >25 bpm for the middle gap), thus identifying the mislabelled beats within a signal,
provided the neighbouring beats are correct. Areas with large amounts of mislabelled beats
are likely to be caught by the algorithm for missing/additional beats and are likely one
reason for the more conservative thresholds present In the processed HR tests.

2.3.4. Signal Quality Index Calculation

In addition to developing methods to correct R-peak labels for longform infant ECGs,
it is important to identify time periods that have many (consecutive) incorrect labels
due to noisy measurements. Local linear interpolation is unable to accurately reflect the
underlying HRs for these periods, and so they may need to be excluded from further data
analyses. Thus, we developed an algorithm optimised for longform infant ECGs to help
identify regions in which a data recovery approach was inadvisable.

Pre-existing methods for HR quality assessment were not found to be suitable for
long heart rates, and all of them were tuned on adult datasets. Kramer et al. [56] used
a non-stationary signal, viable heart rate range, and high signal-to-noise ratio (SNR), but
required the signal to be rejected/accepted in full. Rodrigues et al. [20] extracted shapes and
behaviours of the signal to group ECG samples by an agglomerative clustering approach,
an approach that becomes computationally inefficient for longer recordings. It is also
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worth noting that many SQI methods implicitly try to reject areas of high noise directly in
the ECG [57]. The HeartPy method [36] explicitly rejects peaks that create a beat interval
>30% above or below the mean interval time of the whole signal. Li et al. [58] used local
kurtosis based on expected kurtosis values for ECG and common ECG noise sources.
Bizzego et al. [59] rejected peaks if the R-peak maxima was not followed by an S-trough
minima at least 70% of the local (1 s wide) range of the signal. Additionally, Zhao and
Zhang [60] proposed a noise-detection algorithm based on an agreement from different
ECG algorithms. However, given the results in this paper showing the poor performance
of most algorithms on infant ECGs (Figures 4 and 5), this approach was not explored here.

The beat correction algorithm for missed/additional beats was used as a baseline mea-
sure of signal quality, with additional steps added to fine-tune the quality algorithm further.
Figure 2 highlights that correctly labelled R-peaks typically fall inside the expected bounds,
whereas incorrectly labelled R-peaks are likely going to either cause a steep decrease or
increase in heart rate (for missing or additional labels, respectively). By calculating the
proportion of “wrong” labels within a given filter width, a rolling measure of heart rate
signal quality was calculated. If a small number of incorrect labels was present, a close
approximation to the original heart rate could be recovered. If many measurements were
incorrect, then the heart rate could not be reliably approximated. A filter width of 31 and
an adaptive threshold of 1.3 were used (Figure 12b).

A moving-median approach was used to create the base of a binary signal quality
index (SQI) vector [13]. At each time point (i.e., heartbeat measurement), the percentage
of local beats within the filter width that deviated by a multiplicative factor of 1.3 above
or below the local median was calculated (i.e., the local median indicated the existence of
a poor signal within the sliding window, and for a median HR of 100 bpm, the proportion of
beats outside the range of 77–130 bpm was calculated). If the percentage of poor beats was
≤25%, then SQI = 1 (high signal quality) at that time point. Otherwise, SQI = 0 (low signal
quality). The sliding window was then moved to the next time point. This multiplicative
factor was similar to the value reported by Bizzego et al. [59], which used outlier detections
from the median of the five most recent “correctly labelled” HR values.

To make the SQI more accurate, additional manipulations were used to account for
the specific locations of the high-deviation beats. First, the regions of good SQIs were then
extended (i.e., set to SQI = 1) according to whether the beats just beyond the boundary of
the good SQI region were within the local median range. Second, continuous regions >3.5 s
long of high-deviation beats (>1.3 beats from local median) were set to SQI = 0, as were
any gaps in the heart rate longer than 2.5 s. Lastly, any remaining good regions <5 s long
were set to SQI = 0 to leave regions of a reasonable size. These parameters could be tailored
depending on the length of the useful heart rate region for a given research question, and
how precise a heart rate was required to be.

The Boolean SQI vector can then be applied to the heart rate by either setting areas of
bad signal to 0 bpm, or by cutting those regions from the signal.

2.3.5. SQI-Filtered Heart Rate

The SQI step of the pipeline was evaluated using the specificity and sensitivity metrics
(Equations (2) and (3)) applied to Dataset C, a very longform dataset (length ≥ 50 min)
captured outside of a lab environment, taken at 250 Hz. These factors were combined to
provide high levels of noise in the dataset, while still being clean enough to have areas of
signal that should be preserved. A set of filtering parameters that minimised the residual
error in the processed HR (AT: 1.3, FW: 31) were used as the base for the SQI algorithm
(Figure 12b). An example visualisation of the SQI algorithm applied to a noisy HR is shown
in Figure 13, with the results of the analysis shown in Figure 14.
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Figure 13. A demonstration of SQI on Dataset C. Top: derived HR signal. Brown and green lines
represent the raw HRs. Brown HR is an HR that falls within a local median, while a green HR falls
outside the local median. The red HR line represents the HR following a local linear interpolation to
remove outlier HR points. The purple line represents the SQI vector indicating whether a time point
has a good (=1) or poor (=0) signal quality. This vector indicates a noisy period when the HR data
can be considered unreliable and thus excluded from further analyses. Bottom: the corresponding
ECG signal (light purple), with the detected R-peaks shown as green dots. Individual missing peaks
can be approximated by interpolations, but a noisier period (SQI = 0) becomes harder to recover and
so is considered unreliable.

Figure 14. A demonstration of the SQI algorithm on a noisy dataset. Each dot represents one
recording. The algorithm has a very good true positive rate (sensitivity), but a slightly worse false
positive rate (1—specificity), implying it will often identify good areas, but may not reject areas of
bad HRs as often as it should.

As seen in Figure 13, the SQI algorithm is not designed to label an HR signal as poor
where only individual beats are missing. However, where multiple peaks are missing and
the underlying median filter is more unreliable, the HR is designed to be labelled as not
usable. Figure 14 shows the general success rate of the SQI algorithm when applied to
noisy datasets. Overall, the SQI has a high true positive rate, meaning almost no clean
signal is excluded from the recording. The SQI has a higher false positive rate for some of
the recordings, meaning some noisy signals can make it into the final analysis, which
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may require these recordings to be excluded. However, this does represent a significant
improvement over the baseline of including all HR signals and is also shown to work very
well for the cleaner signals (top left in Figure 14).

2.3.6. Cleaned and Filtered Heart Rates

The end result is a heart rate signal that has been corrected in areas of small misla-
belling, and is discounted in large areas of noise where the signal is unrecoverable.

3. Discussion

To date, there has been limited research on ECG R-peak-detection methods which
are adequate for infants. In this paper, existing open source ECG methods were tested on
infant datasets acquired in a range of conditions (including naturalistic conditions), and the
best-performing method was adapted into a high-performing novel pipeline that contained
all the necessary steps from raw ECG preprocessing to HR calculation.

The strengths of our proposed approach include: (1) improving preprocessing and
local peak-correction steps; (2) explicitly outlining a guide for when to interpolate miss-
ing/additional beats; and (3) introducing an SQI vector designed to detect unreliable areas
of HR measurements that can be adapted for further data analysis steps. These strengths
make our ECG pipeline particularly relevant for real-world large datasets collected in the
natural environment, where the manual rejection of unreliable areas of HR measurements
is not feasible. The first strength also improves infant ECG analysis specifically, an area in
which we demonstrate the current existing open source approaches to fall short. Addition-
ally, we ensured the entire process was computationally efficient and did not depend on
any commercial software in order to maximise ease of use.

Both the HeartPy and Neurokit2 packages are highly useful open source scientific
tools that collectively provide a wide range of options for ECG analysis. They both provide
a wide range of functionality beyond R-peak detection in ECGs, although that is all we
focussed on here. It is worth acknowledging that there are many methods that exist outside
of the open source domain that are not evaluated here. While many of the methods in
Neurokit2 were open source, originally some were written in different languages and had
to be adapted into Python, with both the translation issues and the inherent nature of open
source collaborative approaches meaning that some imperfections in implementations
could arise. The analysis in this paper focused on the available open source implementation
of these methods, rather than the methods themselves.

The HeartPy and Neurokit2 default methods showed the best results with Dataset A
and Dataset B overall, with both performing particularly well on Dataset B. The Ro-
drigues method performed well on Dataset A, and Martinez showed good specificity
and a reasonably good PPV IQR on Dataset A and a good overall performance on Dataset
B. All four approaches were quick to run and had ECGs that they labelled to a very high
standard, although all of them also had ECGs that were not labelled as accurately as our
proposed pipeline managed later.

The inbuilt Neurokit2 method was chosen as a candidate for further fine tuning
due to the high performance and simple initial preprocessing. Many existing methods
contain several hard-coded parameters that have been developed to work with adult
ECGs. Neurokit2′s inbuilt method only used a notch filter tuned at the mains frequency
and a conservative high-pass filter of 0.5 Hz. Neurokit2 preprocessing was applied before
all frequency-processing testing, but the specific notch filter could be altered depending on
the ECG device, and the 0.5 Hz HPF could also be removed, given that a stronger HPF is
likely to be optimal for an infant ECG.

In developing a new pipeline, it was found that a 15 Hz HPF provided an approx-
imate best filter for infant ECG preprocessing (Figure 7), which was very different to
the 8–20 Hz BPF commonly suggested for preprocessing in adults [28]. This held for
two different devices with different amounts of subject motion and different sampling rates
(Figures 8 and 9). It also improved on other methods at a range of age ranges (Figure 10).
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While the specific bands were slightly different for the two datasets (e.g., a 20 Hz HPF
worked well for Dataset A but not Dataset B), the 15 Hz HPF fell within a good range both
times. This gives us confidence that it is a more robust methodology for infants. It would
be interesting for a future study to test the age range at which the optimal HPF begins to
drop for older children. The precise frequency bounds used could vary slightly depending
on the specific device used and sample population. These results indicate that any upper
bound of 50 Hz or higher and any lower bound of 8–15 Hz appear to have very similar
levels of performance across both tested datasets.

The proposed EMD preprocessing approach improved the default Neurokit2 method
slightly in Dataset A but did not outperform the optimal frequency-processing filter. In
Dataset B, there were a few worst-case scenarios that caused the EMD approach to have
low specificity and PPV. Additionally, there was a dramatically increased run-time when
applying EMD processing. As such, it is not recommended to use this approach.

One major contribution of the new pipeline is the novel local peak correction. The
0.01 s threshold was determined heuristically to balance overcoming high-frequency noise
while minimising false peak detection. This allowed for much heavier filtering without
compromising the R-peak label locations, as well as a comparative analysis between R-peak
detections for the different methods. The start/end peak detections had a very minimal
reactive effect, and the start/end of ECGs were often discarded. However, in pure detection
terms, it was found to improve all the open source algorithms evaluated here at a very low
computational cost, and so is recommended for future inclusion. Square wave filtering
was device-specific, as two thirds of the devices detected did not tend to exhibit square
wave noise, and so square wave filtering only succeeded in subtracting noise from the
signal. However, for the device that did exhibit square wave noise, it greatly improved the
detection results.

Where either precise beat detection is required or a heart is suspected to contain
arrhythmias, the heart rate filtering proposed here may not be appropriate. However, it
was found to perform a good job at preserving the overall shape of the heart rate, and
subsequently served as a good way to detect noisy periods when also combined with
the SQI. It was found that a much more conservative activation threshold (1.7/1.8) and
thinner width of the median filter (7–15) were optimal for cleaner ECGs, but that more
liberal thresholds (1.2/1.3) and wider filters (15–31) produced lower residual heart rates
when applied to the detected heart rate (Figure 12). While it is recommended to view
some raw ECGs along with the processed heart rates to ascertain the underlying level of
noise, a choice of 1.7/11 or 1.3/31 activation thresholds/filter widths for cleaner and noisier
signals, respectively, can serve as a fair initial parameter choice (with the former being
recommended for short lab-based ECGs with no motion, and the latter being recommended
for any other forms of ECG).

Neither Datasets A nor B were sufficiently noisy to test the SQI analysis properly. As
such, Dataset C was the only one used for this purpose. The sensor used for Dataset C was
the EgoActive sensor (University of York, UK), a lightweight wearable device designed
for much longer recordings in the natural environment, while being as unobtrusive as
possible to the child to ensure comfort and allow free movement. The lower ECG sam-
pling rate (250 Hz) was chosen to maximise the duration of a continuous recording [13].
The SQI approach to determine noisy periods of HR served as a good first step towards
a robust noise-detection algorithm. The SQI-mediated HR allowed for the analysis of long
recordings, which could contain large amounts of noise. While the SQI method serves as
a good automatic way to identify unreliable heart rate calculations, the specific parameters
used depend on the research question. For example, a more noise-averse analysis, such
as standard deviation-based HRV, requires stricter noise thresholds. Analyses concerned
with general HR rises/falls or average HRs can use a looser threshold to capture more data.
The SQI calculation worked very well on recordings with easily discernible noise, being
particularly good at separating non-HR periods from HR periods, but struggled a bit more
with noisy HRs vs. clean HRs. Understanding and automatically detecting which types of
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noise cause a poorer performance can make it more robust in future studies. The specific pa-
rameters used in the SQI are dependent on how much noise is tolerable for a given research
problem, meaning it will likely have to be double-checked if the parameters are altered.

The proposed pipeline was very computationally efficient. The ECG pipeline was applied
to all of Dataset A (n = 97, sampling rate = 500 Hz, Mrecording = 32 min, 94,089,683 data points)
and took 111.33 s in total (1.15 s per ECG). The total preprocessing and peak labelling time
was 20.75 s (0.21 s per ECG) and the local peak correction took 90.59 s (0.93 s per ECG).
The HR pipeline is also computationally efficient, as a combination of median filters and
difference functions provide the backbone for both the SQI and the beat-cleaning algo-
rithms. By applying the SQI to the heart rate, the size of the vectors processed are greatly
reduced compared to an ECG (1–3 Hz sample density for HR compared to 250–1000 Hz
for ECG). A separate n = 63 set of noisy HR signals collectively covering 92 h (comprising
559,612 beats in total) took only a 6.68 s total processing time. This included both the
time to filter the heart rate with a moving-median filter and the time to create the SQI
vector. All calculations were performed consecutively using an 11th Gen Intel(R) Core (TM)
i5–1145G7 @ 2.60 GHz and did not include the loading times required to import the data
into Python initially.

3.1. Limitations

The research carried out here tested the performance of existing open source ap-
proaches on an infant ECG dataset. There are other approaches not included in these open
source packages that can show improved performances on infant datasets, and the nature of
open source software means that these approaches are susceptible to change. This research
was carried out on version 0.2.3 of Neurokit2 and version 1.2.6 of HeartPy. Version 1.1.1 of
PyEMD was used for the EMD analysis.

An additional limitation of the Neurokit2 peak-detection method was that heart rates
faster than 200 bpm were often mislabelled (with only alternate peaks being detected). It is
rare, but not impossible, for an infant heart rate to exceed 200 bpm, and so care must be
taken if this occurs.

As is usual with the filtering methodology, our HR pipeline is also dependent on filter
selection. We accounted for this by verifying the effect of different parameters on clean and
noisy HR signals and generated a set of optimal parameters for both scenarios. Additionally,
the pipeline was developed on a typically developing population without known cardiac
issues. An ECG containing a lot of arrhythmias or other HR irregularities may not be
suitable for an automated cleaning approach carried out in this manner. Similarly, the SQI
portion of the heart rate pipeline is also dependent on tuning parameters.

Finally, while we endeavoured to label a ground truth, there was some fundamental
uncertainty regarding R-peak locations in noisy ECGs. Noise is exacerbated in free-moving
individuals and such a movement is often heightened in infants. While we did our best
to adjust for this uncertainty (see Appendices B and E), it must be considered alongside
the results.

3.2. Future Research

Since adaptations are shown to improve the Neurokit2 pipeline, it is very possible that
other methods can also be adapted to process infant ECGs. Additionally, the Neurokit2
package is being continually updated and the interaction of newer methods [61] with
infant ECGs should be considered. Some exploratory analyses of the HeartPy and Pan–
Tompkins methods were carried out and were not initially encouraging (though they were
not in-depth enough to draw concrete conclusions). Additionally, while the computational
inefficiency of the EMD approach was a concern for longform ECGs, many studies have
focused on shorter infant ECG signals where the processing time was less of a factor.
Given the strong performance of the approach on Dataset A, it is very possible that small
alterations in the EMD methodology (such as the criteria for IMF rejection) can prove to be
a positive avenue for future research.
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The datasets captured here lay the groundwork for a future infant-specific approach
for R-peaks, especially for machine-learning approaches. Additionally, they could also be
of great use in future infant-specific analysis of the remaining ECG morphology.

Infants have fast heart rates, and their movements and activities can add substantial
noise to ECGs. Our method was developed particularly to address these issues for infant
ECG recordings. However, our pipeline can be adapted for other applications in which
researchers may need to deal with noisy data. For example, the pipeline was adapted by
using a different high-pass filter in preprocessing (e.g., 0.5 Hz vs. 15 Hz) to allow the whole
pipeline to work with adults [13]. It could be informative to acquire ECG recordings from
a range of ages (e.g., 3–18 year olds) to further test our pipeline to account for different heart
rate speeds [16] and investigate developmental trajectory through ECG recordings. Finally,
further testing is needed to investigate the performance of the HR SQI and peak-correction
algorithms on atypical heart rates (e.g., arrhythmias).

Finally, sensor orientation and position, particularly for small wearable sensors, can
have a great impact on different infant ECG complexes. A general analysis creating
a consistent set of guidelines for wearable infant ECGs can be of great use to the scientific
community, as can further validations of different aspects of this pipeline on the data
collected at specific sensor orientations and positions.

4. Conclusions

In this work, we evaluated existing open source ECG pipelines on longform infant
datasets, before improving the state-of-the art approach to develop our own pipeline.
We also developed an HR pipeline to clean up the signal and identify areas that were
too noisy to process. Collectively, these formed a full, computationally-efficient pipeline
to turn raw infant ECG signals into cleaned and processed HR signals. This process is
designed to even work on naturalistic recordings, although it also outperforms existing
methods in short lab-based recordings of infants. The use of the algorithms developed
here on three separate datasets provide evidence for their robustness across a range of
ECG devices. Importantly, these algorithms will increase confidence in future infant ECG
research, particularly for longform ECG datasets collected outside the lab where infants
can exhibit natural behaviours.

Author Contributions: Conceptualisation, H.T.M., E.G., M.I.K. and S.S.; methodology, H.T.M., E.G.,
M.I.K., S.S. and Q.C.V.; software, H.T.M.; validation, H.T.M., A.P.M.-C. and M.C.G.-d.-S.; formal
analysis, H.T.M.; investigation, A.P.M.-C., M.C.G.-d.-S. and E.G.; resources, E.G. and S.S.; data
curation, H.T.M., A.P.M.-C., M.C.G.-d.-S. and E.G.; writing—original draft preparation, H.T.M., E.G.,
M.I.K. and Q.C.V.; writing—review and editing, all authors; visualisation, H.T.M.; supervision, E.G.,
M.I.K., Q.C.V. and S.S.; project administration, E.G.; funding acquisition, E.G., M.I.K. and Q.C.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This work presented in this manuscript received funding from the Wellcome Leap, the
1 kD Program.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of the Department of Psychology, University of
York, for studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: All data and software will be made available upon reasonable request
sent to Elena Geangu (elena.geangu@york.ac.uk).

Acknowledgments: We would like to express our gratitude to all the families who dedicated their
time to donate data to the study. The authors would also like to thank Nicoleta Gavrila, Lauren
Charters, Aastha Mishra, Emily Clayton, and Brigita Ceponyte for their additional help in the data
collection, and David Mullineaux for his help in verifying the code used in the project.

Conflicts of Interest: The authors declare no conflicts of interest.



Signals 2024, 5 139

Appendix A. Datasets and Code Available Upon Request

The following additional resources will be made available to researchers upon request:

1. Datasets A, B, and C, with each file including:

a. Raw ECG.
b. ECG timeseries corresponding to a.
c. Labelled true R-peak indices (Datasets A and B only).
d. Detected R-peak indices from our 15 Hz HPF pipeline, post-correction.
e. Raw HR generated from d.
f. HR timeseries corresponding to e.
g. Moving-median-filtered HR example.
h. HR SQI (Dataset C only).
i. Labelled SQI truth (Dataset C only).

2. Python source code for applying the entire ECG and HR pipeline to raw ECG signals.

Appendix B. Additional Dataset Information

Dataset A served as the main dataset to develop the ECG-processing and early HR-
processing sections of the pipeline (everything except the HR signal quality). It comprised
97 separate ECG signals of children aged 3–42 months (total recording time: 52 h 20 min,
Mduration: 32 min, min: 11 min, max: 52 min, distribution of age and recording duration
shown in Figure 3a). ECGs in Dataset A were collected using a Biosignalsplux device
(PLUX Biosignals, Lisbon, Portugal) with a sampling rate of 500 Hz. ECGs were trimmed
at the start and end prior to any analysis to exclude any non-recording periods (e.g., the
trimmed periods were not included in the recording times above). There were 23 recording
gaps in total in the dataset due to Bluetooth dropout from the Biosignalsplux device. These
recordings occurred while infants engaged in free play in a semi-naturalistic setting in a lab
(i.e., playroom).

In Dataset A, R-peaks were hand-labelled, and any R-peaks where the ground truth
was difficult to ascertain due to signal morphology or noise levels were counted for
all ECGs. ECGs with more than 1 uncertain peak out of 400 were excluded from the
analysis, leaving 97 ECGs. Note that, due to the exclusion criteria allowing for some level of
peak-labelling uncertainty, this followed through into some uncertainties in the subsequent
metrics calculated. The worst-case and average uncertainties for each subject in Dataset A
were as follows. Specificity: worst case = −1.12 × 10−5; mean = −3.03 × 10−6. Sensitiv-
ity: worst case = −2.44 × 10−3; mean = −7.02 × 10−4. PPV: worst case = −2.43 × 10−3;
mean = −7.01 × 10−4. These values are sufficiently small (even assuming the worst-case
error for each individual subject in the dataset) so they do not affect any final conclusions.

Dataset B served as a validation set by using a different sampling rate and sensor.
Dataset B comprised 25 ECG signals from 19 infants aged 5–13 months (the ECGs from
the six infants who supplied two recordings were taken at least 2 months apart). The total
recording time was 3 h 34 min (Mduration: 8 min 36 s, min: 4 min 50 s, max: 17 min 31 s);
the distribution of age and recording duration are shown in Figure 3b. This dataset has
a higher signal quality than Dataset A (higher sampling frequency, less noise, and shorter
duration), but is a smaller dataset. The ECGs were collected across 19 subjects, with
6 subjects providing double recordings taken at least 2 months apart. ECGs were collected
using a Physio16 box for the Geodesic EEG System (GES) 400 device (Magstim EGI, USA)
with a sampling rate of 1000 Hz. The ECGs were trimmed at the start and end to exclude any
non-recording periods. These recordings were performed in a lab, and the infant remained
mostly stationary throughout. There were a maximum of two uncertain peak labels in
a subject (and only four uncertain labels across all subjects), which had a vanishingly
minimal effect on subsequent calculations.

Dataset C served as a test set for the HR signal quality. A total of 12 ECGs with a longer
recording time and lower sampling rate (250 Hz) were gathered using the EgoActive body
sensor (University of York, UK) [13], and were deliberately selected for a high noise level
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from a larger selection of recordings. Children in these recordings were in the range of
5–11 months old (Figure 3c). These 12 naturalistic recordings were taken from a larger
dataset recorded in the subject’s home, with the device often containing periods of high
movement and also being left on post-recording. Quality labelling was performed on
a beat-by-beat basis on the calculated HR signal. Any areas of “good” signals shorter than
5 s were marked as bad to ensure a minimum length of heart rate. Mduration = 90 min
long for the total signal lengths (min: 55 min, max: 120 min), or Mduration = 79 min when
accounting for non-signals at the start and end of the recording (min: 50 min, max: 112 min).
The latter value is shown in Table 1. ECGs were lightly trimmed to avoid processing >2 h of
the signal but aimed to include both HR and non-HR portions of the signal where possible.

An example segment of ECGs for each dataset along with normalised frequency
spectra are shown in Figure A1. In each case, there is no notable peak beyond 80 Hz.
Dataset A stops at 250 Hz, Dataset B at 500 Hz, and Dataset C at 125 Hz. Each dataset
contains a range of ECG morphologies, although there is a more abundant level of noise in
Dataset C throughout. The sensor for Dataset B has an inbuilt notch filter at 60 Hz, which
is visible for all subjects.

Figure A1. A visualisation of the different datasets. The first column shows a typical ECG segment.
The second column shows the normalised Fourier transform of the entire ECG. Each row corresponds
to a different dataset. All subjects shown here are approximately 6 months old. There are no notable
peaks beyond 80 Hz. The y-axis spectra for Dataset C are truncated in order to not be dominated by
the 0 Hz frequency.

Appendix C. Age-Based Analysis for Dataset B

The smaller dataset size of Dataset B (n = 25) compared to Dataset A (n = 97) made any
sub-analysis less reliable, as fewer outlier results are needed to sway the median values
and IQRs. While acknowledging the reduced statistical power, it is worth noting that the
15 Hz HPF approach proposed by our pipeline still outperforms all other methods after the
age breakdown is applied to Dataset B, with the IQR and medians still indicating perfect
specificity/sensitivity/PPV results in all cases, except the lower IQR value for sensitivity in
the 5–8-months-old cohort (Figure A2). The HeartPy and Neurokit2 default methods both
had very good median specificity/PPV results and reasonably good median sensitivity.
There were enough results in the cohorts to start to distinguish the general trends of the
methods, and no results were recorded to counteract the main age-related conclusions
drawn in Figure 9 (while accounting for the different overall performances of the different
methods between Datasets A and B).
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Figure A2. An age-based breakdown of Figure 9. A different age bracket is shown in each quad-
rant. The median is shown as a thick light-grey bar, and the IQR is shown as thin dark-grey bars.
Each black dot represents one result.

Appendix D. Results without Local Peak Corrections

In many of the results in the main text, a local peak correction was used to realign
the R-peak labelled on a preprocessed ECG with the R-peak on the original unprocessed
ECG. Prior to developing this methodology, either each method would have to be labelled
by hand, or a margin of error for permitted peaks (e.g., 0.01 s either side of the true label)
would have to be permitted. Naive uses of specificity/sensitivity/PPV analyses without
local corrections of error margins are shown in Figures A3 and A4 for Datasets A and B,
respectively. The improvements using local corrections are shown in Figures A5 and A6
(relative to the metrics calculated through the same approach without any local corrections
applied). The local peak correction improved the sensitivity and PPV for all methods,
showing an improvement in the ratio of true positives to both false negatives and false
positives. The EngZee method performed the best without this correction, likely due to the
very minimal preprocessing required by the approach. Interestingly, the specificity dropped
slightly for Pan–Tompkins, Hamilton, Christov, and Rodrigues, and more dramatically for
Kalidas and Elgendi. This could be due to the reduced number of true negatives and/or an
increase in the number of false positives (see Equation (2)).

Figure A3. Violin plots showing the specificity, sensitivity, and positive predictive values for the
pre-existing ECG approaches applied to Dataset A, with no local peak correction.
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Figure A4. Violin plots showing the specificity, sensitivity, and positive predictive values for the
pre-existing ECG approaches applied to Dataset B, with no local peak correction.

Figure A5. Violin plots showing the impact of using local peak corrections with changes in specificity,
sensitivity, and positive predictive values for the pre-existing ECG approaches applied to Dataset A,
relative to the same approach without local peak corrections. A negative improvement indicates that
a metric became worse when a local peak correction was applied.
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Figure A6. Violin plots showing the impact of using local peak corrections with changes in specificity,
sensitivity, and positive predictive values for the pre-existing ECG approaches applied to Dataset B,
relative to the same approach without local peak corrections. A negative improvement indicates that
a metric became worse when a local peak correction was applied.

Appendix E. Labelling Uncertainty

An ECG is an analogue signal recorded with digital devices. Analogue voltages that
are very close in value can end up being digitised as identical values due to discretisation,
resolution, and gain issues. If this issue occurs during a QRS complex, it means that there
are multiple timestamps that can define an R-peak within a given QRS complex (Figure A7),
as the digital device is unable to discern the difference between these values. Any method
that finds one of these peaks should be considered to have found a “true” peak, but can be
marked as incorrect if the “truth” label is on one of the other identical values in that QRS
complex. Since a preprocessed ECG is typically smooth, a local peak correction naturally
falls on the closest valid peak to the peak labelled on the preprocessed ECG. The R-peak on
the raw ECG closest to the peak on the preprocessed ECG is used in all cases to ensure that
if any of these peaks are achieved by a local peak correction, they are marked as “true” for
a given method.
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Figure A7. A demonstration of why local adjustments are needed where peaks need to be aligned
perfectly. Zooms A, B, C, and D all show the same central peak. Zoom D shows that 3 specific indexes
can all be labelled as the truth on the original ECG, due to the sensitivity of the sensor recording
3 values as “−16”. All three indexes (at 211.776 s, 211.780 s, and 211.782 s) are very close in value and
can serve as a “true” label.
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