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Abstract: The two-parameter distribution known as the Kumaraswamy distribution is a very flexible
alternative to the beta distribution with the same (0,1) support. Originally proposed in the field of
hydrology, it has subsequently received a good deal of positive attention in both the theoretical and
applied statistics literatures. Interestingly, the problem of testing formally for the appropriateness of
the Kumaraswamy distribution appears to have received little or no attention to date. To fill this gap,
in this paper, we apply a “biased transformation” methodology to several standard goodness-of-fit
tests based on the empirical distribution function. A simulation study reveals that these (modified)
tests perform well in the context of the Kumaraswamy distribution, in terms of both their low size
distortion and respectable power. In particular, the “biased transformation” Anderson–Darling test
dominates the other tests that are considered.
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1. Introduction

The two-parameter distribution introduced by Kumaraswamy [1] is a very flexible
alternative to the beta distribution with the same (0,1) support. Originally proposed for
the analysis of hydrological data, it has subsequently received a good deal of attention in
both the theoretical and applied statistics literature. For example, Sundar and Subbiah [2],
Seifi et al. [3], Ponnambalam et al. [4], Ganji et al. [5], and Courard-Hauri [6] provide
applications in various fields, and theoretical extensions are implemented by Cordeiro and
Castro [7], Bayer et al. [8], and Cordeiro et al. [9], among others.

The distribution function for a random variable, X, that follows the Kumaraswamy
distribution is as follows:

F(x) = 1 − (1 − xa)b a, b > 0; 0 < x < 1, (1)

which can be inverted to give the quantile function as follows:

Q(y) ≡ F−1(y) =
[
1 − (1 − y)1/b

]1/a
; 0 < y < 1 (2)

The corresponding density function is as follows:

f (x) = abxa−1(1 − xa)b−1 (3)

where ‘a’ and ‘b’ are both shape parameters. Some examples of the forms that this density
can take are illustrated in Figure 1. In particular, similarly to the beta density, f (x) is
unimodal if a > 1 and b > 1; uniantimodal if a < 1 and b < 1; increasing (decreasing) in x
if a > 1 and b ≤ 1 (a ≤ 1 and b > 1); and constant if a = b = 1. Nadarajah [10] notes that
the Kumaraswamy distribution is in fact a special case of the generalized beta distribution
proposed by McDonald [11].
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Figure 1. Kumaraswamy densities.

Jones [12] notes that the r’th central moment of the Kumaraswamy distribution exists
if r > −a and is given by the following:

E(Xr) = bB
(

1 +
r
a

, b
)

(4)

where B (., .) is the complete beta function; and from Equation (2), the median of the
distribution is as follows:

md=

[
1 − 0.5

1/b

]1/a
(5)

See Jones [12], Garg [13], and Mitnik [14] for a detailed discussion of the additional proper-
ties of the Kumaraswamy distribution.

These properties, compared with those of the beta distribution, are considered by many
to give the Kumaraswamy distribution a competitive edge. For example, compared with
the formula for the cumulative distribution function of the beta distribution, the invertible
closed-form expression in Equation (1) is seen by some as being advantageous in the context
of computer-intensive simulation analyses and modelling based on quantiles. The latter
consideration is of particular interest in the context of regression analyses. Beta regression,
based on the closed-form mean of the distribution, is well established (e.g., Ferrari and
Cribari-Neto [15]), but robust regression based on the median is impractical. In contrast,
the median of the Kumaraswamy distribution has a simple form, given in Equation (5), and
so robust regression based on this distribution is straightforward. See Mitnik and Baek [16]
and Hamedi-Shahraki et al. [17], for example.

Interestingly, the problem of testing formally for the appropriateness of the Ku-
maraswamy distribution appears to have received little or no attention in the literature.
Goodness-of-fit tests based on the empirical distribution function (EDF) are obvious can-
didates, but their properties are unexplored for this distribution. Raschke [18] observed
that such tests were unavailable for the beta distribution, and he proposed a “biased
transformation” that he then applied to the test of Anderson and Darling [19,20] to fill
this gap. He also used this approach to construct an EDF test for the gamma distribution.
Subsequently, Raschke [21] provided extensive simulation results that favoured the use of
the “bias-transformed” Anderson–Darling test over various other tests based on the EDF,
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such as those of Kuiper [22] and Watson [23], the Cramér–von Mises test (Cramér [24]; von
Mises [25]), and the Kolmogorov–Smirnov test (Kolmogorov [26]; Smirnov [27]).

In this paper, we apply Raschke’s methodology to the problem of constructing EDF
goodness-of-fit tests for the Kumaraswamy distribution, and we compare the performances
of several such standard tests in terms of both size and power. We find that Raschke’s
method performs well in this context, with the Kolmogorov–Smirnov and Cramér–von
Mises tests exhibiting the least size distortion, and the Anderson–Darling test being a clear
choice in terms of power against a wide range of alternatives.

In the next section, we introduce the “biased transformation” testing strategy sug-
gested by Raschke and describe the five well-known EDF tests that we consider in this
paper. Section 3 provides the results of a simulation experiment that evaluates the sizes and
powers of the tests, and an empirical application is included in Section 4. Some concluding
remarks are presented in Section 5.

2. Raschke’s “Biased Transformation” Testing

In very simple terms, the procedure proposed by Raschke involves the use of a
transformation that converts the problem of testing the null hypothesis that the data
follow the Kumaraswamy distribution into one of testing the null hypothesis of normality.
The latter, of course, is readily performed using standard EDF tests. More specifically, the
steps involved are as follows (Raschke [21]):

(i) Assuming that the data, X, follow the Kumaraswamy distribution, estimate the shape
parameters, a and b, using maximum likelihood (ML) estimation. See Lemonte [28]
and Jones [12] for details of the ML estimator for this distribution;

(ii) Using these parameter estimates, generate a sample of Y, where Y = Φ−1(F(X)), Φ is
the distribution function for the standard normal distribution, and F(.) is given in (1);

(iii) Obtain the ML estimates of the parameters of the normal distribution for Y;
(iv) Apply an EDF test for normality to the Y data;
(v) For a chosen significance level, α, reject H0 : “X is Kumaraswamy” if H′

0 : “Y is Normal”
is rejected.

We consider five standard EDF tests for normality at step (iv), with the n values of the Y
data in ascending order. See Stephens [29] for more details. The first two of these tests are
based on the two quantities D+ = max(i)[i/n − F(Yi)], D− = max(i)[F(Yi)− (i − 1)/n] and
D = max[D+, D−]. The Kolmogorov–Smirnov test statistic is D∗ = D

(√
n − 0.01+ 0.85/

√
n
)
,

and Kuiper’s test statistic is V∗ = V
(√

n + 0.05 + 0.82/
√

n
)
, where V = (D+ + D−). In each

case, H′
0 is rejected if the test statistic exceeds the appropriate critical value.

Further, defining W2 = ∑n
i=1[F(Yi)− (2i − 1)/(2n)]2, the Cramér–von Mises test statistic

is given by W2∗ = W2(1.0+ 0.5/n)). Similarly, if U2 = W2 − n
{

∑n
i=1[F(Yi]/n)− 0.5}2 ,

the Watson test statistic is defined as U2∗ = U2(1.0 + 0.5/n). Finally, the Anderson–
Darling test statistic is defined as A2∗ = A2(1.0 − 0.75/n/+2.25/n2), where A2 = −n −
∑n

i=1{(2i − 1)(ln[F(Yi)] + ln[1 − F(Yn+1−i)])}/n. Again, for these last three tests, the null
hypothesis is rejected if the test statistic exceeds the appropriate critical value. In the next
section, we consider nominal significance levels of α = 5% and α =10%. The critical values
for the five tests are from Table 4.7 of Stephens [29]. They are reported in the last row of
Table 1 in the next section, to the degree of accuracy provided by Stephens.
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Table 1. Simulated sizes of the EDF tests for various shape parameter values *.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

a = 3, b = 4
α = 5% α = 10%

10 0.0585 0.0597 0.0561 0.0550 0.0638 0.1193 0.1210 0.1133 0.1189 0.1277
25 0.0492 0.0464 0.0482 0.0486 0.0487 0.1053 0.0978 0.0990 0.1015 0.1037
50 0.0505 0.0475 0.0459 0.0451 0.0472 0.1007 0.0981 0.0941 0.0977 0.0982
100 0.0497 0.0467 0.0488 0.0480 0.0486 0.1002 0.0925 0.0932 0.0967 0.0949

a = 3, b = 8
α = 5% α = 10%

10 0.0577 0.0593 0.0559 0.0551 0.0628 0.1174 0.1209 0.1130 0.1178 0.1255
25 0.0479 0.0460 0.0474 0.0481 0.0485 0.1040 0.0972 0.0978 0.1013 0.1033
50 0.0498 0.0470 0.0447 0.0434 0.0463 0.1002 0.0969 0.0924 0.0976 0.0972
100 0.0494 0.0462 0.0481 0.0475 0.0475 0.0986 0.0926 0.0922 0.0956 0.0927

a = 2, b = 2.5
α = 5% α = 10%

10 0.0598 0.0590 0.0570 0.0560 0.0642 0.1184 0.1214 0.1133 0.1192 0.1267
25 0.0500 0.0470 0.0486 0.0486 0.0496 0.1048 0.0981 0.0991 0.1019 0.1034
50 0.0515 0.0479 0.0460 0.0460 0.0479 0.1021 0.0988 0.0951 0.0986 0.0985
100 0.0489 0.0468 0.0496 0.0494 0.0492 0.1010 0.0929 0.0946 0.0974 0.0957

a = 2.0, b = 5.0
α = 5% α = 10%

10 0.0586 0.0597 0.0557 0.0550 0.0630 0.1184 0.1208 0.1130 0.1184 0.1269
25 0.0491 0.0463 0.0478 0.0486 0.0489 0.1055 0.0977 0.0983 0.1015 0.1032
50 0.0503 0.0472 0.0457 0.0445 0.0468 0.1003 0.0973 0.0931 0.0976 0.0976
100 0.0496 0.0464 0.0488 0.0474 0.0485 0.1000 0.0923 0.0930 0.0959 0.0941

a = 2.0, b = 20.0
α = 5% α = 10%

10 0.0576 0.0593 0.0550 0.0550 0.0620 0.1170 0.1205 0.1106 0.1172 0.1248
25 0.0473 0.0455 0.0474 0.0481 0.0476 0.1034 0.0969 0.0978 0.1018 0.1022
50 0.0492 0.0464 0.0442 0.0430 0.0456 0.0999 0.0963 0.0911 0.0974 0.0964
100 0.0485 0.0463 0.0469 0.0466 0.0459 0.0978 0.0923 0.0913 0.0943 0.0923

a = 1.0, b = 3.0
α = 5% α = 10%

10 0.0589 0.0592 0.0560 0.0553 0.0642 0.1189 0.1209 0.1131 0.1192 0.1273
25 0.0497 0.0464 0.0486 0.0486 0.0493 0.1051 0.0980 0.0993 0.1021 0.1037
50 0.0512 0.0477 0.0460 0.0455 0.0474 0.1014 0.0986 0.0948 0.0981 0.0985
100 0.0495 0.0470 0.0493 0.0487 0.0487 0.1002 0.0926 0.0940 0.0968 0.0955

a = 0.5, b = 0.5
α = 5% α = 10%

10 0.0625 0.0603 0.0574 0.0582 0.0679 0.1260 0.1199 0.1179 0.1203 0.1346
25 0.0592 0.0527 0.0619 0.0590 0.0643 0.1154 0.1071 0.1158 0.1168 0.1235
50 0.0650 0.0571 0.0689 0.0624 0.0742 0.1267 0.1165 0.1285 0.1238 0.1366
100 0.0864 0.0730 0.0940 0.0819 0.1017 0.1563 0.1356 0.1605 0.1509 0.1706
Crit. 0.895 1.489 0.126 0.117 0.752 0.819 1.386 0.104 0.096 0.631

* Crit. = Upper-tail critical values when the normal distribution’s parameters are both estimated. Source:
Stephen [29], Table 4.7. (Stephens reports these values to only 3 decimal places). α = nominal significance level at
which the tests are applied. K-S = Kolmogorov and Smirnov; C-M = Cramér and von Mises; and A-D = Anderson
and Darling.

3. A Simulation Study

Using Raschke’s “biased transformation”, each of the five EDF tests for the Ku-
maraswamy null hypothesis has been evaluated in a simulation experiment, using R
(R Core Team [30]). In all parts of the Monte Carlo study, 10,000 Monte Carlo replications
were used. The ‘univariateML’ package (Moss and Nagler [31]) was used for obtaining the
ML estimates of the Kumaraswamy distribution in step (i), and the ‘GoFKernel’ package
(Pavia [32]) was used to invert the distribution in step (ii) in the last section. Random
numbers for the truncated log-normal and triangular distribution were generated using the
‘EnvStats’ package (Millard and Kowarik [33]), while those for the Kumaraswamy distribu-
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tion itself were generated using the ‘VGAM’ package (Yee [34]). The ‘trapezoid’ package
(Hetzel [35]) and the ‘truncnorm’ package (Mersmann et al. [36]) were used to generate
random variates from the trapezoidal and truncated normal distributions, respectively, and
the R base ‘stats’ package was used for the beta variates. Finally, random variates from the
truncated gamma distribution were generated using the ‘cascsim’ package (Bear et al. [37]),
and those for the truncated Weibull distribution were obtained using the ‘ReIns’ package
(Reynkens [38]). The R code that was used for both parts of the simulation experiment is
available for download from https://github.com/DaveGiles1949/r-code/blob/master/
Kumaraswmay%20Paper%20EDF%20Power%20Study.R (accessed on 5 March 2024).

In the first part of the experiment, we investigate the true “size” of each of the five EDF
tests for various sample sizes (n) and a selection of values of the parameters (a and b) of the
null distribution. As noted above, the tests are applied using nominal significance levels of
both 5% and 10%, and we are concerned here with the extent of any “size distortion” that
may arise.

The results obtained with seven representative (a,b) pairs and sample sizes ranging
from n = 10 to n = 100 are shown in Table 1. The corresponding Kumaraswamy den-
sities appear in Figure 1. The simulated sizes of all of the tests are very close to the
nominal significance levels in all cases. This result is very encouraging and provides
initial support for adopting the “biased transformation” EDF testing strategy for the
Kumaraswamy distribution.

Of the five tests considered, the Kolmogorov–Smirnov test performs best, in terms of
the least absolute difference between the nominal and simulated sizes in 16 of the 36 cases
at the 5% nominal level and 10 of the 36 cases at the 10% nominal level, as shown in Table 1.
In the latter case, it is outperformed by the Cramér–von Mises test, which dominates for 14
of the 36 cases that are considered. Further, there is a general tendency for the simulated
sizes of all of the tests to exceed the nominal significance levels when n ≤ 25, while the
converse is true (in general) when n ≥ 50. An exception is when both of the distributions’
parameters equal 0.5, in which case the density is uniantimodal. These size distortions are
generally small, but their direction has implications for the results relating to the powers of
the tests.

The second part of the Monte Carlo experiment investigates the powers of the five
tests against a range of alternative hypotheses. The latter all involve distributions on the
(0,1) interval, with some distributions truncated accordingly. It should be noted that the
simulated powers that are reported are “raw powers” and are not “size-adjusted”. That is,
the various critical values that are used are those reported at the end of Table 1. In practical
applications, this is how a researcher would proceed.

The results of this part of the study are reported in Table 2. The sample sizes range
from n = 10 to n = 1000. A wide range of parameter values was considered for each of the
alternative distributions, and a representative selection of the results that were obtained
are reported here. For the truncated log-normal distribution, “meanlog” is the mean of
the distribution of the non-truncated random variable on the log scale, and “sdlog” is the
standard deviation of the distribution of the non-truncated random variable on the log
scale. For the trapezoidal distribution, m1 and m2 are the first and second modes, n1 is the
growth parameter, and n3 is the decay parameter.

One immediate result that emerges is that, with only two exceptions, all of the tests
are “unbiased” in all of the settings considered. That is, the power of the test exceeds
the nominal significance level. The only exceptions that were encountered are when the
alternative distribution is truncated log-normal, with both parameters equal to 0.5 and with
a sample size of n = 10. This is a very encouraging result. A test that is “biased” has the
unfortunate property that it rejects the null hypothesis less frequently when it is false than
when it is true. Moreover, as the various tests are “consistent”, their powers increase as the
sample size increases, for any given case.

https://github.com/DaveGiles1949/r-code/blob/master/Kumaraswmay%20Paper%20EDF%20Power%20Study.R
https://github.com/DaveGiles1949/r-code/blob/master/Kumaraswmay%20Paper%20EDF%20Power%20Study.R
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Table 2. Simulated powers of the EDF tests against various alternative hypotheses.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

Triangular (mode = 1/4)
α = 5% α = 10%

10 0.0784 0.0752 0.0765 0.0754 0.0878 0.1439 0.1409 0.1426 0.1463 0.1604
25 0.0978 0.0868 0.1097 0.0987 0.1175 0.1766 0.1550 0.1857 0.1785 0.1988
50 0.1422 0.1218 0.1707 0.1498 0.1806 0.2397 0.2061 0.2597 0.2422 0.2742
100 0.2470 0.2121 0.3051 0.2639 0.3160 0.3740 0.3182 0.4157 0.3773 0.4333
250 0.5491 0.4885 0.6490 0.5831 0.6723 0.6762 0.6224 0.7564 0.703 0.7712
500 0.8529 0.8178 0.9246 0.8865 0.9347 0.9196 0.8940 0.9573 0.9351 0.9637

1000 0.9929 0.9909 0.9978 0.9961 0.9986 0.9975 0.9963 0.9992 0.9986 0.9994
Triangular (mode = 7/8)

α = 5% α = 10%
10 0.0676 0.0711 0.0660 0.0644 0.0755 0.1314 0.1330 0.1283 0.1353 0.1446
25 0.0736 0.0680 0.0822 0.0768 0.0866 0.1422 0.1294 0.1455 0.1462 0.1538
50 0.0969 0.0884 0.1144 0.1052 0.1233 0.1797 0.1626 0.1966 0.1854 0.2124
100 0.1575 0.1336 0.1928 0.1659 0.2191 0.2561 0.2294 0.2964 0.2703 0.3264
250 0.3588 0.3192 0.4530 0.3883 0.5122 0.5053 0.4532 0.5853 0.5231 0.6366
500 0.6568 0.6198 0.7771 0.6994 0.8386 0.7845 0.7446 0.8622 0.8127 0.9001

1000 0.9364 0.9310 0.9789 0.9603 0.9890 0.9730 0.9671 0.9904 0.9815 0.9954
Truncated Log-Normal (meanlog = 0,

sdlog = 1)
α = 5% α = 10%

10 0.0774 0.0758 0.0762 0.0738 0.0883 0.1458 0.1409 0.1420 0.1452 0.1614
25 0.1011 0.0862 0.1147 0.1003 0.1260 0.1836 0.1560 0.1918 0.1796 0.2139
50 0.1536 0.1212 0.1836 0.1548 0.2073 0.2533 0.2037 0.2842 0.2528 0.3148

100 0.2778 0.2193 0.3431 0.2785 0.3907 0.4153 0.3310 0.4672 0.4035 0.5182
250 0.6143 0.5376 0.7436 0.6318 0.8054 0.7399 0.6646 0.8319 0.7519 0.8795
500 0.9105 0.8815 0.9713 0.9290 0.9867 0.9600 0.9397 0.9870 0.9657 0.9936
1000 0.9981 0.9975 1.0000 0.9992 1.0000 0.9996 0.9994 1.0000 0.9999 1.0000

Truncated Log-Normal
(meanlog = 0.5, sdlog = 0.5)

α = 5% α = 10%
10 0.0398 0.0400 0.0375 0.0382 0.0432 0.0786 0.0757 0.0751 0.0765 0.0841
25 0.0653 0.0589 0.0672 0.0635 0.0718 0.1303 0.1167 0.1313 0.1272 0.1382
50 0.0798 0.0671 0.0868 0.0760 0.0956 0.1503 0.1290 0.1539 0.1459 0.1673

100 0.1164 0.0924 0.1349 0.1106 0.1474 0.1997 0.1679 0.2168 0.1946 0.2374
250 0.2427 0.1834 0.2966 0.2365 0.3371 0.3668 0.2937 0.4120 0.354 0.4568
500 0.4474 0.3538 0.5422 0.4401 0.6156 0.5861 0.4880 0.6661 0.5742 0.7337
1000 0.7557 0.6784 0.8670 0.7678 0.9163 0.8594 0.7980 0.9255 0.8623 0.9582



Stats 2024, 7 379

Table 2. Cont.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

Truncated Normal (mean = 0.5,
sd = 0.1)

α = 5% α = 10%
10 0.0704 0.0648 0.0686 0.0629 0.0799 0.1348 0.1253 0.1260 0.1287 0.1476
25 0.0839 0.0770 0.0952 0.0856 0.1076 0.1540 0.1368 0.1644 0.1517 0.1798
50 0.1188 0.0986 0.1395 0.1166 0.1607 0.2031 0.1698 0.2209 0.1991 0.2457
100 0.1928 0.1506 0.2309 0.1868 0.2682 0.3029 0.2497 0.3393 0.2945 0.3834
250 0.4263 0.3493 0.5179 0.4206 0.5840 0.5625 0.4782 0.6409 0.5542 0.6987
500 0.7151 0.6509 0.8345 0.7321 0.8822 0.8227 0.7661 0.8988 0.8336 0.9310

1000 0.9516 0.9408 0.9891 0.9675 0.9957 0.9813 0.9723 0.9954 0.9857 0.9984
Truncated Normal (mean = 0.8,

sd = 0.8)
α = 5% α = 10%

10 0.0577 0.0586 0.0547 0.0559 0.0647 0.1170 0.1166 0.1137 0.1163 0.1306
25 0.0519 0.0500 0.0529 0.0517 0.0540 0.1040 0.0981 0.1045 0.1080 0.1096
50 0.0544 0.0507 0.0584 0.0559 0.0573 0.1081 0.1003 0.1044 0.1063 0.1088
100 0.0558 0.0544 0.0558 0.0552 0.0574 0.1193 0.1075 0.1115 0.1126 0.1154
250 0.0681 0.0657 0.0720 0.0692 0.0765 0.1293 0.1244 0.1284 0.1241 0.1349
500 0.0873 0.0867 0.0999 0.0904 0.1099 0.1648 0.1578 0.1696 0.1628 0.1790

1000 0.1404 0.1300 0.1566 0.1410 0.1717 0.2318 0.2196 0.2476 0.2374 0.2695
Trapezoidal (m1 = 1/8, m2 = 3/8;

n1 = n3 = 2)
α = 5% α = 10%

10 0.0636 0.0652 0.0606 0.0605 0.0691 0.1250 0.1249 0.1193 0.1254 0.1372
25 0.0632 0.0570 0.0651 0.0620 0.0730 0.1282 0.1169 0.1293 0.1261 0.1400
50 0.0771 0.0652 0.0830 0.0703 0.0968 0.1473 0.1275 0.1537 0.1417 0.1704
100 0.1124 0.0877 0.1292 0.1054 0.1531 0.1934 0.1616 0.2146 0.1889 0.2477
250 0.2306 0.1772 0.2885 0.2196 0.3537 0.3521 0.2873 0.4103 0.3433 0.4821
500 0.4214 0.3613 0.5405 0.4248 0.6512 0.5705 0.4937 0.6686 0.5650 0.7640

1000 0.7258 0.7011 0.8737 0.7625 0.9371 0.8409 0.8148 0.9322 0.8639 0.9694
Trapezoidal (m1 = 5/8, m2 = 7/8;

n1 = n3 = 2)
α = 5% α = 10%

10 0.0587 0.0618 0.0570 0.0575 0.0678 0.1221 0.1241 0.1172 0.1232 0.1331
25 0.0553 0.0518 0.0570 0.0572 0.0603 0.1136 0.1040 0.1121 0.1151 0.1176
50 0.0628 0.0577 0.0622 0.0580 0.0681 0.1185 0.1102 0.1231 0.1201 0.1309
100 0.0726 0.0637 0.0822 0.0740 0.0936 0.1439 0.1222 0.1477 0.1390 0.1635
250 0.1270 0.1021 0.1473 0.1203 0.1781 0.2181 0.1827 0.2343 0.2051 0.2822
500 0.2183 0.1782 0.2735 0.2157 0.3452 0.3429 0.2856 0.3934 0.3329 0.4788

1000 0.3973 0.3560 0.5320 0.4180 0.6536 0.5543 0.5058 0.6674 0.5676 0.7692
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Table 2. Cont.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

Trapezoidal (m1 = 1/4, m2 = 3/4;
n1 = n3 = 3)

α = 5% α = 10%
10 0.0626 0.0732 0.0637 0.0687 0.0719 0.1271 0.1389 0.1291 0.1395 0.1439
25 0.0711 0.0862 0.0781 0.0858 0.0809 0.1402 0.1560 0.1517 0.1663 0.1576
50 0.0973 0.1285 0.1224 0.1313 0.1274 0.1860 0.2172 0.2143 0.2302 0.2213

100 0.1543 0.2168 0.2118 0.2317 0.2272 0.2707 0.3330 0.3306 0.3574 0.3496
250 0.3816 0.5086 0.5225 0.5503 0.5607 0.5477 0.6386 0.6588 0.6863 0.6912
500 0.7178 0.8402 0.8635 0.8791 0.8885 0.8447 0.9095 0.9238 0.9322 0.9389
1000 0.9719 0.9914 0.9938 0.9953 0.9969 0.9905 0.9971 0.9983 0.9989 0.9991

Truncated Gamma (2,3)
α = 5% α = 10%

10 0.2211 0.2728 0.2364 0.2498 0.3155 0.3266 0.3958 0.3626 0.3759 0.4511
25 0.5018 0.6293 0.5807 0.5813 0.7294 0.6489 0.7385 0.7025 0.7058 0.8269
50 0.8745 0.9442 0.9062 0.9023 0.9748 0.9391 0.9708 0.9516 0.9507 0.9890
100 0.9985 0.9998 0.9989 0.9983 1.0000 0.9997 0.9999 0.9996 0.9996 1.0000
250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Truncated Gamma (2,6)
α = 5% α = 10%

10 0.1423 0.1321 0.1550 0.1423 0.1834 0.2234 0.2082 0.2346 0.2222 0.2713
25 0.2556 0.2388 0.3222 0.2818 0.3717 0.3662 0.3426 0.4142 0.3788 0.4710
50 0.4407 0.4211 0.5428 0.4775 0.6116 0.5646 0.5251 0.6368 0.5872 0.7005
100 0.7104 0.6954 0.8124 0.7516 0.8649 0.8072 0.7799 0.8703 0.8268 0.9083
250 0.9740 0.9743 0.9910 0.9830 0.9958 0.9878 0.9860 0.9956 0.9906 0.9977
500 0.9998 0.9997 1.0000 0.9997 1.0000 1.0000 0.9999 1.0000 0.9999 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Truncated Weibull (shape = 2,

scale = 1)
α = 5% α = 10%

10 0.0569 0.0553 0.0508 0.0524 0.0540 0.1138 0.112 0.1052 0.1099 0.1086
25 0.0587 0.0537 0.0608 0.0588 0.0630 0.1192 0.1084 0.1156 0.1148 0.1266
50 0.0643 0.0580 0.0696 0.0644 0.0745 0.1243 0.1168 0.1275 0.1243 0.1345
100 0.0852 0.0702 0.0935 0.0807 0.1004 0.1508 0.1306 0.1563 0.1455 0.1701
250 0.1450 0.1108 0.1607 0.1345 0.1739 0.2354 0.1943 0.2535 0.2244 0.2744
500 0.2478 0.1900 0.2874 0.2381 0.3143 0.3634 0.2943 0.3938 0.3456 0.4239

1000 0.4308 0.3457 0.5167 0.4260 0.5630 0.5717 0.4757 0.6333 0.5563 0.6767
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Table 2. Cont.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

Beta (3,3)
α = 5% α = 10%

10 0.0545 0.0573 0.0539 0.0528 0.0606 0.1128 0.1115 0.1065 0.1105 0.1215
25 0.0506 0.0484 0.0534 0.0513 0.0542 0.1047 0.0982 0.1036 0.1054 0.1088
50 0.0527 0.0501 0.0565 0.0542 0.0569 0.1114 0.0975 0.1075 0.1073 0.1149

100 0.0577 0.0532 0.0600 0.0586 0.0629 0.1215 0.1112 0.1186 0.116 0.1232
250 0.0790 0.0641 0.0821 0.0706 0.0897 0.1492 0.1266 0.1492 0.1369 0.1571
500 0.1151 0.0863 0.1148 0.0964 0.1302 0.1939 0.1603 0.1947 0.1714 0.2145
1000 0.1847 0.1339 0.2065 0.1586 0.2340 0.2919 0.2257 0.3078 0.2603 0.3401

Beta (20,20)
α = 5% α = 10%

10 0.0710 0.0670 0.0689 0.0664 0.0790 0.1344 0.1288 0.1296 0.1325 0.1493
25 0.0892 0.0765 0.0974 0.0858 0.1100 0.1608 0.1397 0.1738 0.1610 0.1941
50 0.1340 0.1048 0.1629 0.1347 0.1808 0.2313 0.1871 0.2501 0.2235 0.281

100 0.2395 0.1784 0.2922 0.2287 0.3373 0.3682 0.2842 0.4157 0.3494 0.4655
250 0.5380 0.4486 0.6598 0.5398 0.7355 0.6814 0.5858 0.7703 0.6677 0.8338
500 0.8580 0.8040 0.9427 0.8691 0.9692 0.9295 0.8896 0.9719 0.9291 0.9875
1000 0.9925 0.9904 0.9995 0.9953 0.9999 0.9981 0.9968 0.9997 0.9987 0.9999

Beta (4,2)
α = 5% α = 10%

10 0.0562 0.0588 0.0562 0.0578 0.0630 0.1155 0.1153 0.1102 0.1138 0.1229
25 0.0509 0.0532 0.0507 0.0503 0.0522 0.1003 0.1019 0.1009 0.1046 0.1072
50 0.0542 0.0516 0.0555 0.0544 0.0574 0.1080 0.0982 0.1050 0.1071 0.1100

100 0.0549 0.0540 0.0562 0.0545 0.0559 0.1079 0.1038 0.1074 0.1076 0.1076
250 0.0672 0.0613 0.0641 0.0579 0.0649 0.1237 0.1134 0.1186 0.1156 0.1232
500 0.0740 0.0647 0.0761 0.0674 0.0795 0.1414 0.1245 0.1346 0.1283 0.1433
1000 0.1048 0.0787 0.1085 0.0905 0.1167 0.1866 0.1489 0.1808 0.1635 0.1956

Beta (2,4)
α = 5% α = 10%

10 0.0567 0.0584 0.0533 0.0557 0.0601 0.1118 0.1127 0.1075 0.1131 0.1194
25 0.0521 0.0544 0.0553 0.0539 0.0575 0.1053 0.1032 0.1066 0.1069 0.1120
50 0.0571 0.0539 0.0579 0.0534 0.0587 0.1108 0.1036 0.1121 0.1117 0.1180

100 0.0599 0.0563 0.0631 0.0599 0.0674 0.1168 0.1057 0.1164 0.1116 0.1238
250 0.0799 0.0671 0.0782 0.0689 0.0840 0.1455 0.1262 0.1436 0.1335 0.1569
500 0.1066 0.0835 0.1156 0.0973 0.1254 0.1896 0.1540 0.1897 0.1686 0.2060
1000 0.1720 0.1248 0.1855 0.1498 0.2118 0.2744 0.2068 0.2879 0.2426 0.3124
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Table 2. Cont.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

Beta (3,20)
α = 5% α = 10%

10 0.0580 0.0585 0.0562 0.0550 0.0651 0.1180 0.1170 0.1125 0.1147 0.1297
25 0.0662 0.0581 0.0688 0.0640 0.0738 0.1270 0.1182 0.1287 0.1243 0.1413
50 0.0833 0.0678 0.0879 0.0781 0.0953 0.1516 0.1291 0.1574 0.1452 0.1677
100 0.1182 0.0932 0.1374 0.1117 0.1504 0.2104 0.1643 0.2211 0.1936 0.2384
250 0.2426 0.1747 0.2923 0.2226 0.3365 0.3674 0.2825 0.4119 0.3431 0.4621
500 0.4480 0.3450 0.5458 0.4331 0.6145 0.5923 0.4819 0.6718 0.5656 0.7343

1000 0.7586 0.6753 0.8664 0.7577 0.9139 0.8600 0.7928 0.9258 0.8546 0.9548
Beta (0.5,0.5)

α = 5% α = 10%
10 0.0547 0.0557 0.0482 0.0491 0.0577 0.1154 0.1121 0.1053 0.1129 0.1224
25 0.0500 0.0506 0.0529 0.0531 0.0542 0.1067 0.0997 0.1073 0.1120 0.1131
50 0.0500 0.0501 0.0532 0.0505 0.0541 0.1048 0.1042 0.1052 0.1102 0.1070
100 0.0538 0.0533 0.0553 0.0542 0.0585 0.1064 0.1056 0.1070 0.1069 0.1086
250 0.0663 0.0615 0.0675 0.0631 0.0702 0.1263 0.1165 0.1235 0.1210 0.1259
500 0.0834 0.0726 0.0853 0.0772 0.0898 0.1551 0.1363 0.1530 0.1457 0.1600

1000 0.1192 0.0993 0.1275 0.1137 0.1363 0.1983 0.1750 0.2071 0.1895 0.2232
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The results in Table 2 also provide overwhelming support for the Anderson–Darling
test in terms of power. Interestingly, this result is totally consistent with the conclusion
reached by Raschke [21] for the same “biased transformation” EDF tests in the context
of the beta distribution. This may reflect that fact that the latter distribution and the
Kumaraswamy distributions have densities that are capable of following very similar
shapes, depending on the values of the associated parameters. Moreover, Stephens [29]
recommends the Anderson–Darling test over other EDF tests in general.

The Anderson–Darling test has the highest power among all five tests, in all cases,
except for very small samples when the alternative distribution is trapezoidal with the
parameters m1 = 1/4 and m2 = 3/4; when n1 = n3 = 3; and for the truncated Weibull
alternative with n = 10. Of the other tests under study, the Cramér–von Mises test ranks
second in terms of power, followed by Watson’s test and the Kolmogorov–Smirnov test.
We find that Kuiper’s test is the least powerful, in general.

As was noted in Section 1, the density for the Kumaraswamy distribution can take
shapes very similar to those of the beta density, as the values of the two shape parameters
vary in each case. The densities for the alternative beta distributions that are considered in
the power analysis are depicted in Figure 2 and may be compared with the Kumaraswamy
densities in Figure 1. This similarity suggests that there may be instances in which the pro-
posed EDF tests have relatively low power. If the data are generated by a beta distribution
whose characteristics can be mimicked extremely closely by a Kumaraswamy distribution
with the same, or similar, shape parameters, the tests may fail to reject the latter distribution.
An obvious case in point is when the values of both of these shape parameters are 0.5, and
the densities of both distributions are uniantimodal, though not identical. As can be seen
in Figure 1, the density for the Kumaraswamy distribution is slightly asymmetric in this
case, while its beta distribution counterpart is symmetric. The relatively low power of all
of the EDF tests, even for n = 1000, in this case can be seen in the last section of Table 2.
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In view of these observations, we have considered a wide range of different values for
the shape parameters associated with the beta distributions that are taken as alternative
hypotheses in the power analysis of the EDF tests. A representative selection of the results
appears in Table 2. There, we see that although the various tests have modest power when
the data are generated by beta (2,4), beta (4,2), and beta (3,3) distributions, they perform
extremely well against several other beta alternatives.

Although the degree of size distortion associated with the use of Stephens’ critical
values exhibited in Table 1 is generally quite small, a researcher may choose to simulate
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exact (bias-corrected) critical values for the various EDF tests. It is important to note that
such values will depend on the samples size, n, and on the values of the shape parameters,
a and b, associated with the Kumaraswamy distribution. In a practical application, the first
of these values would be known, and estimates of the shape parameters could be obtained
from the sample values in question.

However, the powers of the various tests will also depend on these three values, as
well as on the characteristics of the distribution associated with the alternative hypothesis.
This complicates the task of illustrating these powers when the critical values are simulated,
but Table 3 provides a limited set of results. These results focus on relatively small sample
sizes, as the size distortion becomes negligible for large n values. A selection of the
alternative hypotheses covered in Table 2 is chosen for further investigation, and the values
of the Kumaraswamy shape parameters are chosen to provide the similarity between
their shapes and the associated alternatives’ densities. The critical values themselves are
obtained as the 90th and 95th percentiles of 10,000 simulated values of each test statistic
under the null distribution. There is a different critical value for every entry in Table 3,
so they are not reported individually. The powers themselves are then simulated from a
further 10,000 replications under the alternative hypothesis, as was the case for the results
in Table 2.

Ranking the various tests in terms of the power results in Table 3 leaves our previous
conclusions unchanged. The Anderson–Darling test emerges as the preferred choice.
The powers based on the simulated critical values tend to be smaller than their counterparts
in Table 2. This is consistent with the earlier observation that the size distortion emerging
in that table was positive for small sample sizes.

Table 3. Simulated powers of the EDF tests with simulated critical values *.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

Triangular (mode = ¼);
a = 2, b = 20

α = 5% α = 10%
10 0.0649 0.0612 0.0647 0.0638 0.0662 0.1227 0.1124 0.1206 0.1162 0.1251
25 0.0912 0.0829 0.0482 0.1001 0.1021 0.1531 0.1443 0.1715 0.1606 0.1729
50 0.1243 0.1171 0.1527 0.1398 0.1535 0.2146 0.1931 0.2421 0.2224 0.2410

100 0.2078 0.1914 0.2537 0.2269 0.2600 0.3197 0.2906 0.3594 0.3308 0.3644
Truncated-Log-Normal
(meanlog = sdlog = 0.5);
a = 2, b = 20

α = 5% α = 10%
10 0.0507 0.0508 0.0502 0.0496 0.0511 0.1005 0.1015 0.1010 0.0098 0.1001
25 0.0691 0.0617 0.0729 0.0655 0.0757 0.1204 0.1177 0.1334 0.1281 0.1328
50 0.0817 0.0974 0.0970 0.0877 0.1009 0.1494 0.1364 0.1672 0.1531 0.1730

100 0.1253 0.1078 0.1454 0.1274 0.1603 0.2132 0.1856 0.2379 0.2108 0.2600
Trapezoidal (m1 = ¼,
m2 = ¾, n1 = n2 = 3);
a = 3, b = 8

α = 5% α = 10%
10 0.0505 0.0574 0.0527 0.0552 0.0514 0.1073 0.1158 0.1045 0.1114 0.1049
25 0.0697 0.0882 0.0817 0.0874 0.0818 0.1330 0.1562 0.1507 0.1573 0.1530
50 0.0959 0.1328 0.1266 0.1415 0.1311 0.1796 0.2183 0.2218 0.2325 0.2254

100 0.1263 0.2346 0.2299 0.2503 0.2454 0.2820 0.3522 0.3567 0.3770 0.3742
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Table 3. Cont.

n K-S Kuiper C-M Watson A-D K-S Kuiper C-M Watson A-D

Beta (20,20); a = 3, b = 8
Truncated Gamma (2,3);
a = 3, b = 4

α = 5% α = 10%
10 0.1924 0.2435 0.2263 0.2353 0.2767 0.3011 0.3435 0.3351 0.3425 0.4010
25 0.5145 0.6463 0.5869 0.5889 0.7374 0.6464 0.7506 0.7104 0.7113 0.8297
50 0.8733 0.9454 0.9143 0.9236 0.9756 0.9392 0.9706 0.9570 0.9528 0.9888

100 0.9978 0.9998 0.9986 0.9979 1.0000 0.9993 0.9999 0.9999 0.9998 1.0000
α = 5% α = 10%

10 0.0623 0.0603 0.0651 0.0616 0.0678 0.1201 0.1127 0.1225 0.1201 0.1257
25 0.0942 0.0824 0.1033 0.0907 0.1154 0.1574 0.1457 0.1806 0.1647 0.1921
50 0.1357 0.1126 0.1692 0.1461 0.1934 0.2273 0.1908 0.2704 0.2272 0.2892

100 0.2399 0.1916 0.3063 0.2455 0.3511 0.3659 0.3040 0.4326 0.3610 0.4767
Beta (3,20); a = 2, b = 20

α = 5% α = 10%
10 0.0572 0.0544 0.0568 0.0568 0.0565 0.1083 0.1073 0.1093 0.1072 0.1100
25 0.0692 0.0679 0.0755 0.0711 0.0777 0.1242 0.1239 0.1340 0.1254 0.1363
50 0.0822 0.0689 0.0940 0.0846 0.1015 0.1507 0.1312 0.1661 0.1474 0.1738

100 0.1209 0.0993 0.1425 0.1193 0.1595 0.2078 0.1778 0.2329 0.2002 0.2539
Beta (0.5,0.5); a = b = 0.5

α = 5% α = 10%
10 0.0442 0.0491 0.0498 0.0501 0.0499 0.0954 0.0966 0.0958 0.0974 0.0938
25 0.0534 0.0552 0.0569 0.0562 0.0546 0.1002 0.1037 0.1026 0.1032 0.1048
50 0.0478 0.0529 0.0524 0.0519 0.0510 0.0965 0.0997 0.1074 0.1092 0.1058

100 0.0549 0.0539 0.0546 0.0532 0.0563 0.1099 0.1100 0.1114 0.1121 0.1141

* a and b are the shape parameters for the Kumaraswamy distribution.

4. Empirical Applications

To illustrate the effectiveness of the “biased transformation” Anderson–Darling test,
we present two applications with actual (economic) data. The R code and associated data
files can be downloaded from https://github.com/DaveGiles1949/r-code/blob/master/
Kumaraswamy%20Paper%20Applications.R (accessed on 5 March 2024).

4.1. The Hidden Economy

The first application uses data for the size of the so-called “hidden economy” or
“underground economy” for 158 countries in each of the years from 1991 to 2017. These data
measure the size of the hidden economy (HE) relative to the value of gross domestic product
(GDP) in each country and are reported by Medina and Schneider [39]. These ratios range
from 0.0543 for Switzerland to 0.5578 for Bolivia, with a mean of 0.2741 and a standard
deviation of 0.1120. A random sample of size n = 250 was obtained from this population of
2329 values, using the “sample” command in R with replacement.

When a Kumaraswamy distribution is fitted to the sample data, the estimates of
the two shape parameters are 2.8832 and 15.4084. See Figure 3a,b. The value for the
“biased transformation” Anderson–Darling statistic is 0.6313, which is less than both the
asymptotic and simulated 5% critical values of 0.7520 and 0.7298, respectively. So, at this
significance level, we would not reject the hypothesis that the data follow a Kumaraswamy
distribution. If a beta distribution is fitted to the data, the estimates of the two shape
parameters are 4.3809 and 8.5369. The corresponding Anderson–Darling statistic (using
the “biased transformation” and the beta distribution) is 1.3585. This exceeds both the
asymptotic and simulated 5% critical values of 0.7520 and 0.7638, respectively, leading us to
reject the hypothesis that the data follow a beta distribution. These two test results support
each other and allow us to discriminate between the potential distributions.

https://github.com/DaveGiles1949/r-code/blob/master/Kumaraswamy%20Paper%20Applications.R
https://github.com/DaveGiles1949/r-code/blob/master/Kumaraswamy%20Paper%20Applications.R
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4.2. Food Expenditure

The second application uses data for the fraction of household income that is spent on
food. A random sample of 38 households is available in the “FoodExpenditure” data-set
in the ‘betareg’ package for R (Zeileis et al. [40]). In our sample, the observations range
from 0.1075 to 0.5612 in value, and the sample mean and standard deviation are 0.2897 and
0.1014, respectively. When a Kumaraswamy distribution is fitted to the data, the estimates
of the two shape parameters are 2.9546 and 26.9653. See Figure 4a,b. The Anderson–Darling
statistic is 0.8521, which exceeds the asymptotic and simulated 5% critical values of 0.7520
and 0.7415, respectively. This supports the rejection of the hypothesis that the data are
Kumaraswamy-distributed. Fitting a beta distribution to the data yields estimates of 6.0721
and 14.8224 for the shape parameters. The corresponding Anderson–Darling statistic is
0.5114. The asymptotic and simulated 5% critical values are 0.7520 and 0.7700, respectively,
suggesting that the hypothesis that the data are beta-distributed cannot be rejected at this
significance level.
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5. Conclusions

The Kumaraswamy distribution is an alternative to the beta distribution, which has
been applied in statistical studies in a wide range of disciplines. Its theoretical properties
are well established, but the literature lacks a discussion of formal goodness-of-fit tests for
this distribution. In this paper, we have applied the “biased transformation” methodology
suggested by Raschke [18] to various standard tests based on the empirical distribution
function and investigated their performance for the Kumaraswamy distribution.

The results of our simulation experiment, which focuses on both the size and power of
these tests, can be summarized as follows. The “biased transformation” EDF goodness-of-fit
testing strategy performs well for the Kumaraswamy distribution against a wide range
of possible alternatives, though it needs to be treated with caution against certain beta
distribution alternatives. In all cases, the Anderson–Darling test clearly emerges as the
most powerful test of those considered and is recommended for practitioners.
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