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Abstract: In this paper, an adaptive active disturbance rejection control is newly designed for precise
angular steering position tracking of the uncertain and nonlinear SBW system with time delay
communications. The proposed adaptive active disturbance rejection control comprises the following
two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback
controller. The adaptive extended state observer with adaptive gains is employed for estimating the
unmeasured velocity, acceleration, and compound disturbance which consists of system parameter
uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are
dynamically adjusted based on the estimation error to enhance estimation performances. Based on
the accurate estimations of the adaptive extended state observer, the proposed adaptive full state
error feedback controller is equipped with variable gains driven by the tracking error to develop
control precision. The integration of the advantages of the adaptive extended state observer and the
adaptive full state error feedback controller can improve the dynamic transient and static steady-
state effectiveness, respectively. To assess the superior performance of the proposed adaptive active
disturbance rejection control, a comparative analysis is conducted between the proposed control
scheme and the classical active disturbance rejection control in two different cases. It is worth noting
that the active disturbance rejection control serves as a benchmark for evaluating the performance of
the proposed control approach. The results from the comparison studies executing two simulated
cases validate the superiority of the suggested control, in which estimation, tracking response rate,
and steering angle precision are greatly improved by the scheme proposed in this article.

Keywords: steer by wire (SBW); adaptive active disturbance rejection control (AADRC); extend state
observer (ESO); full state error feedback controller (FSEFBC); adaptive gain; unknown external road
disturbance; time-varying delays

1. Introduction

From approximately 1980s till now, steer-by-wire (SBW) systems have garnered sig-
nificant attention from researchers in the domain of control application [1]. SBW systems
employ electric motors and corresponding driving control systems as an alternative to
mechanical linkages [2,3]. To be specific, to improve the stability and dependability of steer-
ing vehicles, the shaft connecting the steering wheel and the front wheels is removed [4].
Instead, an electric motor which is denoted as the steering motor is utilized to drive the
front wheels. Furthermore, to allow drivers a sense of various tyre self-aligning forces, a
feedback motor is mounted near the steering wheel. However, various uncertainties, includ-
ing parameter variations of the SBW model and external disturbances induced by various
road conditions, pose challenges to conventional control algorithms such as proportional-
derivative control. These uncertainties prevent the front wheels from accurately following
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the driver’s intended actions and even make the system unstable. Therefore, the enhance-
ment of the front wheels’ tracking accuracy and robustness against uncertainties emerge as
crucial research topics in the SBW systems [5].

To bolster the tracking precision and robustness of various sources of uncertainty,
the disturbance/uncertainty estimation and attenuation (DUEA) techniques have been
garnering significant attention over the past several decades. It is worth noting that ac-
tive disturbance rejection control (ADRC), as well as disturbance observer-based control
(DOBC), fall under the umbrella of DUEA techniques [6], i.e., an observation methodology
is established to estimate the disturbances or uncertainties, with the estimation results then
utilized to compensate for uncertainties within a robust controller. In [7], the ADRC is effec-
tively utilized to ensure precise control of the angular position of the front wheels, enabling
them to accurately follow the movements of the steering wheel against uncertainties such as
the self-aligning torque. To enhance the controller’s robustness even further, sliding mode
control (SMC) is seamlessly integrated into the ADRC in [8]. To enhance the convergence
rate of the SMC, the fractional-order SMC is introduced in the SBW system to enhance the
integral and derivative actions, thereby increasing the parameter optimization space and
improving tracking performance [4]. In these references, the extended state observer (ESO)
is adopted in ADRC to compensate for uncertainties. Due to the potential presence of exten-
sive unknown nonlinearities and uncertainties in SBW systems, refs. [9,10] considered the
application of neural networks (NNs) to enhance the SBW systems’ uncertainty estimation
performance. The underlying rationale is that NNs possess the remarkable capability to
approach various functions with arbitrary precision under specific conditions. Please notice
that the controller gains mentioned in the literature above are constant, i.e., they are fixed
values and determined before operating the control algorithms.

Adaptive control belongs to crucial control methodology to deal with time-varying
model parameters [2,11]. In addition, it can be seamlessly integrated with various control
algorithms in the SBW systems [12–19]. In [12], a prior equation is adopted to estimate
and compensate for the self-aligning torque. Moreover, an adaptive law is tailored to
determine the gain of this equation. The outcome of the prior equation is delivered to a
feedback motor, enabling it to produce a responsive force that replicates the ’road feels’
for the driver. In addition, it serves as a crucial uncertainty compensation in the fast non-
singular terminal SMC (FNTSMC). This uncertainty compensation component effectively
mitigates the impact of a self-aligning torque. However, as the prior equation may contain
noise and uncertainty and it cannot be used to estimate unavailable system states such
as angular velocity of the steering motor, an adaptive sliding mode observer (ASMO) as
well as a Kalman filter (KF) are employed in [15] to improve estimation performance of
SBW system states. To further improve the estimation rate, an adaptive fixed-time state
observer (AFTSO) is proposed to compute the front wheels’ speed in [17]. An adaptive SMC
(ATSMC) terminal is proposed in [19]. In this work, the bounds of the system parametric
uncertainty and the external disturbances are compensated by the adaptive laws in the
reaching law of ATSMC. Given that disturbances in SBW systems can be categorized as
a predictable part and a bounded unknown component, ref. [14] utilizes the Luenberger
observer to estimate the former. In [13], the adaptive law is applied to determine the output
layer parameters of the extreme learning machine (ELM) which is designed to compensate
for the lumped uncertainty. As the precise bounds on some state-dependent uncertainties
of the SBW systems may not be known, ref. [18] suggests the implementation of an adaptive
control approach that eliminates the need for prior knowledge of uncertainty structures
and bounds. Unfortunately, the aforementioned references fail to consider the negative
impact of communication time delays in SBW systems, which may hinder the practical
implementation of these methods.

In terms of SBW systems, the control input is voltage which is utilized to regulate the
steering motor, while the angular position of the front wheels serves as the feedback [12].
However, the introduction of the CAN bus in these systems introduces communication time
delays in both the control input (denoted as input delay) and the feedback signal (denoted
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as output delay) [20,21]. Since the input and output delays can considerably affect control
performance [22,23], it is imperative to consider them during the controller design process.
Thus, ref. [21] introduces a layered time-delay robust control strategy (LTDRCS) to address
large random time delays in SBW systems. Nevertheless, this strategy does not account for
uncertainty estimation and compensation, and the selection of control parameters can be
complex. In another recent study [24], the time-delayed knowledge of control input and
system states is utilized to compute uncertainties. However, this approach necessitates
precise knowledge of the past values of control input and system states, thereby posing
practical implementation challenges.

The human–machine interface (HMI) has found widespread applications in many
automated systems, including those pertaining to SBW systems [25]. However, in highly
automated systems, the design of the HMI is primarily influenced by technological ad-
vancements, rather than the expertise of the individuals who drive the vehicles. In practice,
drivers may not fully comprehend the operations performed through the HMI [26]. In
scenarios such as the emergence of traffic conditions, the safety of drivers is compromised.
As a potential solution, it is imperative to develop HMIs for the SBW systems that offer
intuitive and user-friendly information specifically tailored for drivers to enhance driving
experience, usability, and safety. Another practical challenge for the SBW system lies in its
fault-tolerant capability. Specifically, all components of the steering system should possess
fault-tolerant features to accommodate at least one failure [27]. One potential solution
to this challenge is to employ multiple identical units operating in parallel. In the event
of a failure in one unit, the backup units can seamlessly take over, ensuring continued
operation. However, this solution comes with added costs and results in an increase in
system volume. An alternative approach to enhancing reliability without adding weight
or cost to the system is to utilize estimation techniques, including the implementation of
state observers [27].

In this paper, motivated by the published work of time-varying ADRC design in [28],
a novel time-varying adaptive gain ADRC is proposed for the uncertain nonlinear SBW
plant under communication time delays. The proposed AADRC has two components: the
adaptive ESO (AESO) and adaptive full-state error feedback control (AFSEFBC). The main
contributions are summed up as follows:

1. Large time delays in a communication channel that the second-order SBW suffers are
considered, therein a first-order Taylor series expansion is introduced to address the
time delays. However, the order of SBW becomes three; thus, the increase in system
order makes the control tasks more complicated. To solve the complexity arising from
the Taylor approximation, we propose a novel active disturbance rejection control
(AADRC) for the time-delayed SBW subject to system uncertainties and disturbances
from external factors.

2. Because of consideration and approximation of the time delays, the overall distur-
bances acting on the SBW become very large. To overcome this issue, we lump the
nonlinearities, uncertainties, and external disturbances of the SBW that are separated
from the total disturbances. Such separation of disturbances makes the feasibility of
application of the novel AADRC which is a combination of AESO and AFSEFBC.

3. A novel AESO is proposed to estimate unmeasured velocity and acceleration, as well
as the lumped disturbance with better estimation precision, low computation cost,
and minimum peak phenomenon. Adaptive gains of the AESO are updated online
based on a position estimation error to improve estimation performance.

4. A novel AFSEFBC is improved to enhance the trajectory tracking efficiency of the
angular steering position of the front wheel, in which its gains are adjusted online
according to the position tracking error, and thus the angular steering position is
improved in terms of lesser overshoot and better steady state.

5. The boundedness of the estimation and the tracking error of the closed-loop stability
of the AESO and AFSEFBC, respectively, is rigorously analyzed.
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Finally, two simulation cases with a comparison with the standard ADRC are carried
out to show the validity of the suggested AADRC scheme.

The remainder of this text is structured as follows: Section 2 introduces the SBW plant
represented by the benchmark simulation model. Section 3 presents the novel adaptive
ADRC design procedure for the time-delayed SBW system, which is divided into subsec-
tions of designing AESO and AFSEFBC. In this section, the boundedness of estimation and
tracking errors of the AESO and AFSEFBC, respectively, are analyzed. Then, in Section 4,
the efficiency and feasibility of the proposed control scheme are validated by simulation
results from the simulative SBW vehicle. Finally, Section 5 describes the conclusions of this
full text with future work.

2. SBW Plant Dynamical Modeling
2.1. Structure of the SBW Plant

Figure 1 illustrates the schematic system of the SBW. It is composed of three main
parts: the middle part contains the communication time delays, the upper part is the
hand/steering wheel that interfaces with the drivers, and the lower part is the steering
actuator module that produces the vehicle’s steering responses. A steering motor takes
the place of the mechanical link between the steering wheel and the steering actuation,
as opposed to traditional hydraulic or electrical power steering systems. The driving
command for the steering motor and the angular feedback are both transmitted through
signal wires in the SBW system’s operating principle. The key concern for the SBW system
is high-precision tracking control of the front wheels to follow its corresponding reference
of the steering wheel provided by drivers to ensure precise steering efficiency.

Steering wheel

Steering wheel angle sensor

Feedback motor

ECU

Steering motor

Pinion angle sensor

Rack and gearbox

Front wheel Front wheel

Control input

Angle feedback

Communication time delays Input delay Output delay

𝑢(𝑡 − 𝜏𝑖) 

𝜏𝑜  

𝑦(𝑡 − 𝜏𝑜) 

𝜏𝑖  

Figure 1. Schematic SBW system with communication time delays.

2.2. Dynamical Modeling of the Nominal SBW Plant with Uncertainties

The differential equation of motion for the SBW plant can be expressed as follows
using the simplified model of the SBW system described in [29]:

Je θ̈s + Be θ̇s = κu − τc − τsel

κ = κ1 · κ2 · κ3 · κ4

τc = ξ f sign(θ̇s)

(1)
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where θs, θ̇s, and θ̈s, are, respectively, the angular position, velocity, and acceleration of the
steering motion of the front wheels; u indicates the steering motor unit’s voltage torque
that is designed by the proposed controller; τsel is the self-aligning torque applied to the
steering system; τc is the frictional torque caused by the Coulomb friction; and sign(·) is
the standard signum function. Table 1 lists all of the other system parameters and their
corresponding descriptions, values, and units. Additionally, Table 1 provides the scaling
factors related to κ along with their respective descriptions and values.

Table 1. Value of the SBW system.

Symbols Descriptions Values Units

Je Equivalent inertial moment of the SBW system 85.5 kgm2

Be Equivalent viscous damping friction of the SBW
system

218.8 Nms/rad

ξ f Coulomb friction constant 4.2 Nm
κ1 Scale factor to account for transmitting from the

linear motion of the rack to the steering angle of
front wheels

6.0 -

κ2 Gear ratio between the pinion and rack system 3.0 -
κ3 Gear ratio of the gear head 8.5 -
κ4 Scale factor accounting for converting from the in-

put voltage of steering motor to the output torque
of the steering motor

1.8 -

It should be noted that, for the purposes of this study, κ can be regarded as a constant
because, at least for the duration of our investigation, its value does not change noticeably
over time. Nonetheless, the nonlinearities and external disturbances of the model may lead
to unpredictable and fluctuating system parameters [2]. The system temperature fluctua-
tions, erratic external road loads that result in tiny deformations in the steering system, and
other factors can all contribute to these parameter variations. The parametric uncertainties
can be regarded as bounds, according to [2], and are given here with corresponding bounds.

|∆Je | = |Je − Je0| ≤ ∆̄Je ; (∆̄Je = 0.1Je0)

|∆Be | = |Be − Be0| ≤ ∆̄Be ; (∆̄Be = 0.1Be0)

|∆ξ f | = |ξ f − ξ f 0| ≤ ∆̄ξ f ; (∆̄ξ f = 0.1ξ f 0)

(2)

where Je0, Be0, and ξ f 0 represent the nominal components of the SBW model parameters;
∆Je , ∆Be , and ∆ξ f denote the uncertain parts of the SBW model parameters; ∆̄Je , ∆̄Be , and
∆̄ξ f refer to the upper bounds of the corresponding model parameters.

The velocities of the front wheels cannot always be measured due to practical con-
straints of the SBW system. Moreover, a front-wheel camber angle that is too inadequate
may arise from the absence of weight distribution on the front wheels [30]. Consequently,
during the steering process, the tires might not sense exact self-aligning torques. In our
investigation, we assume that the tire slip angles are small. Therefore, to approximate the
self-aligning torque, a hyperbolic tangent function can be used [31,32] as

τsel = ρτtanh(θs) (3)

where ρτ is the time-varying coefficient related to various road statuses; it is given elabo-
rately in Simulation Outcomes section. In addition, we define function tanh(·) as in the
following expression:

tanh(z) =
e2z − 1
e2z + 1

. (4)
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Regarding the model uncertainties in (2) with external disturbances d(t) that the SBW
plant dynamic is subject to, the differential motion equation of this SBW plant in (1) can be
expressed as

(Je0 + ∆Je)θ̈s + (Be0 + ∆Be)θ̇s = κu − (ξ f 0 + ∆ξ f )sign(θ̇s)− τsel + d(t) (5)

which can be concisely rearranged to have

θ̈s = −Be0

Je0
θ̇s +

κ

Je0
u + D(θs, t) (6)

where

D(θs, t) =
1
Je0

[−ξ f 0sign(θ̇s)− ∆Je θ̈s − ∆Be θ̇s − ∆ξ f sign(θ̇s)− τsel + d(t)]

and D(x, t) ∈ R represents the lumped disturbance, including model uncertainties, external
disturbances, etc.

We define x1 = θs and x2 = θ̇s to be the SBW system states; thus, the state space form
of the nonlinear second-order perturbed systems SBW modeled in (6) is as follows:

ẋ1 = x2

ẋ2 = F0(t, x) + b0u ++D(x, t)
y = x1

(7)

with
F0(x, t) =

Be0

Je0
θ̇s = a20θ̇s; and b0 =

κ

Je0

where vector x = [x1, x2]
T ∈ R2 represents the system states, y ∈ R stands for the output of

the SBW plant, u ∈ R is the AADRC input to be designed, and F0(x, t) ∈ R is the nominal
dynamic of the SBW system.

2.3. Dynamical Modeling of the Time-Delayed SBW Plant with Uncertainties

The connection between the steering wheel located in the upper section and the
steering motor located in the lower section is made through the transmission channel, as
seen in Figure 1. Time delays of τi for the input and τo for the output are introduced by this
connection. The uncertain SBW system presented in (7) can be reformulated as follows by
accounting for the time delays in the transmission channel:

ẋ1(t) = x2(t)
ẋ2(t) = F0(t, x) + b0u(t − τi) + D(x, t)
y = x1(t − τo).

(8)

As stated in [33], the overall delay, τ, is determined by summing the input delay, τi,
and the output delay, τo, which is the time-varying parameter. At this point, the SBW
system’s dynamical modeling in (8) is rethought by
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
ẋ1(t) = x2(t)
ẋ2(t) = F0(t, x) + b0u(t − τ) + D(x, t)
y = x1(t)

(9)

where τ = τi + τo is the total time delay that the uncertain and disturbed SBW is subject to.

2.4. Time-Delay Approximation by Taylor Series

To cope with the time delays that uncertain SBW system (9) suffers, this SBW plant
under the overall input delay term b0 u(t − τ) is approximated by utilizing first-order
Taylor series expansion. The detailed approximation of the time-delayed SBW system is
elaborately given herein. We recall the acceleration state of System Dynamics (9) as follows:

ẋ2(t) = a20x2(t) + b0u(t − τ) + D(x, t). (10)

Taking the Laplace transformation of the above Dynamics (10) leads to

X1(S)S2 = −a20X1(S)S + b0u(s)e−τS + D(S) (11)

By combining the terms with X1(S) in (11), we have

(S2 + a20S)X1(S) = b0u(s)e−τS + D(S) (12)

which is divided by e−τS to have the following dynamics:

(S2 + a20S)eτSX1(S) = b0u(s) + D(S)eτS (13)

where time delay operator e−τS is approximated using the following first-order Taylor
series expansion:

e−τS = 1/(1 + τS). (14)

Accordingly, the simplification of the above formula is rendered as follows:

(S2 + a20S)(1 + τS)X1(S) = b0u(s) + D(S)(1 + τS). (15)

For further simplification, Dynamics (15) become[
(τS3 + (1 + a20τ)S2 + a20S

]
X1(S) = b0u(S) + D(S) + τSD(S). (16)

The final dynamics of the Laplace transformation in (16) can be rearranged as follows:

τS3X1(S) = −
[
(1 + a20τ)S2 + a20S

]
X1(S) + b0u(S) + D(S) + τSD(S). (17)

Taking the Laplace inverse of the above Dynamics (17) results in

τ
...
x 1(t) =− ẍ1(t)− a20τẍ1(t)− a20 ẋ1(t) + b0u(t) + D(t) + τḊ(t). (18)

With considering the variation of time delay ∆τ in Dynamical System (18), we obtain

(τ0 + ∆τ)
...
x 1(t) =− ẍ1(t)− a20(τ0 + ∆τ)ẍ1(t)− a20 ẋ1(t) + b0u(t) + D(t) + τḊ(t) (19)

which can be represented by

τ0
...
x 1(t) =− (1 + a20τ0)ẍ1(t)− a20 ẋ1(t) + b0u(t)

− ∆τ
...
x 1(t)− a20∆τẍ1(t) + D(t) + τḊ(t). (20)
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Based on the dynamics in (20), we can reformulate the high-order derivative system
dynamics as follows:

...
x 1(t) =− (1 + a20τ0)

τ0
ẍ1(t)−

a20

τ0
ẋ1(t) +

b0

τ0
u(t)

− ∆τ

τ0

...
x 1(t)−

a20∆τ

τ0
ẍ1(t) +

1
τ0

D(t) +
τ

τ0
Ḋ(t). (21)

To this end, SBW system (9) can be expressed as third-order dynamics that can be
written in the following compact state space form:

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
ẋ3(t) = f0(x, t) + b0u(t) + ζ(x, t)
y = x1(t)

(22)

where

f0(x, t) = − (1 + a20τ0)

τ0
x3(t)−

a20

τ0
x2(t)

ζ(x, t) = −∆τ

τ0
ẋ3(t)−

a20∆τ

τ0
x3(t) +

1
τ0

D(t) +
τ

τ0
Ḋ(t)

and x =
[
x1 = θs, x2 = θ̇s, x3 = θ̈s

]
is the new state vector of approximated SBW system (22).

This paper aims to develop a control methodology for Dynamic Model (22) to regulate
the angular position of the front wheel, θs, to be a desired range of the hand wheel so that
steering responses can still be satisfied regardless of the uncertain dynamics, disturbances,
and input and output delays in the transmission mechanism.

Two factors make control construction and stability analysis challenging: (1) the
dimensionality of the SBW is higher in a third-order system due to the adoption of the
Taylor approach, (2) the SBW is subject to uncertain communication delays in addition
to parametric uncertainties and external disturbances, and (3) only the output angular
position of the SBW plant x1 can be measured from a position encoder that is time-delayed
by a certain amount.

Assumption 1. The first time derivative of lumped disturbance ζ(x, t) in Dynamics (22) is
postulated to be bounded, i.e., |ζ̇(x, t)| ≤ K1, where K1 > 0 is the constant.

Remark 1. Time delay τ affecting SBW dynamics (9) is approximated using a first-order Taylor
series expansion, i.e., e−τS = 1/(1 + τS) [34,35]. This expansion can treat the process as a
delay-free system, but the SBW system order is increased by one. More importantly, in this work,
we propose a robust control for the accurate steering performance of the SBW by handling not only
the time-delay communication but also the increased order resulting from the approximation of that
time delay by Taylor expansion. Furthermore, the approximated third-order mathematical model
(22) of the second-order SBW system (9) contributes to easing the control design procedure and
enhancing the control performance of the SBW in the presence of the time delay.

3. Proposed Controller Design and Stability Analysis

In this section, a novel adaptive ADRC (AADRC) approach is established for the
time-delayed SBW plant (22), in which the AADRC is constituted from an adaptive full
state error feedback control (AFSEFBC) and adaptive extended state observer (AESO). The
overall configuration of our designed control scheme is shown in Figure 2, including the
AESO and the AFSEFBC, where the adaptive gains of the AESO and the AFESFBC are,
respectively, driven by the estimation, and the tracking error of the angular position of
SBW dynamics in (8) are constructed to develop the control performance according to [28].
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(28)

AESO (24)
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𝝉
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 𝟏

-

Figure 2. Configuration of the proposed AADRC for the SBW system.

3.1. Construction of the AESO Estimator

In this subsection, the novel AESO is designed for estimating the unmeasured states
and the lumped disturbances, ζ(x, t). Defining ζ(x, t) as a new extended state x4(t) with
h̄o(x, t) ≜ ζ̇(x, t), nonlinear SBW system (8) is extended as follows:

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
ẋ3(t) = x4(t) + fo(x, t) + b0u(t)
ẋ4(t) = h̄o(x, t).

(23)

For the extended system dynamics given in (23), the AESO is designed as

e1(t) = x1(t)− z1(t)
ż1(t) = z2(t) + 4(ωo + go(e1(t)))e1(t)
ż2(t) = z3(t) + 6(ωo + go(e1(t)))

2e1(t)
ż3(t) = z4(t) + 4(ωo + go(e1(t)))

3e1(t) + b0u(t)
ż4(t) = (ωo + go(e1(t)))

4e1(t)

(24)

where e1(t) is the estimation error, zi(t), i = 1, 2, 3, 4 are the estimates of system state xi,
i = 1, 2, 3, lumped disturbance x4 = ζ, and observer bandwidth ωo > 0. In addition,
adaptive gain g(e1(t)) is defined as

go(e1(t)) = ηo|e1(t)| (25)

where ωo > 0 represents the basic observer bandwidth and ηo > 0 is the observer accuracy
factor which is used to increase the estimation accuracy of the AESO.
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3.2. Construction of AFSEFBC

In this subsection, the AFESFBC is designed to attain satisfactory tracking efficiency.
The tracking state error vector of the SBW system, ϕ(t) = [ϕ1(t), ϕ2(t), ϕ3(t)]

T , is pre-
sented by 

ϕ1(t) = yd(t)− x1(t)
ϕ2(t) = ẏd(t)− ẋ1(t) = ẏd(t)− x2(t)
ϕ3(t) = ÿd(t)− ẍ1(t) = ÿd(t)− x3(t)

(26)

where yd stands for the desirable reference signal. Based on (26) and networked time-
delayed SBW system (22), the tracking error dynamic is determined as

ϕ̇1(t) = ϕ2(t)
ϕ̇2(t) = ϕ3(t)
ϕ̇3(t) =

...
y d(t)− f0(t)− b0u(t)− ζ(x, t).

(27)

It is noteworthy that the tracking error, ϕ1(t), is formally defined in (26), the estimation
error, e1(t), is precisely delineated in (24), and the lumped uncertainty is exhibited in (6).
Furthermore, the lumped uncertainty naturally resides within the plant model, whereas
the estimation error serves as the foundation for designing the AESO, and the tracking
error is utilized in the design of the AFSEFBC.

According to the AESO (24), the AFSEFBC, u(t), for the dynamical error system in (27)
is designed in (24),

u(t) =
1
b0

[ ...
y d(t) + λ1(ϕ1(t))ϕ1(t) + λ2(ϕ1(t))ϕ̂2(t) + λ3(ϕ1(t))ϕ̂3(t)− f0(zi, t)− z4(t)

]
(28)

where ϕ̂2(t) = ẏd(t)− z2(t) and ϕ̂3(t) = ÿd(t)− z3(t) are, respectively, the estimates of
velocity and acceleration tracking error and variables z2 and z3 are the states estimated by
the AESO. Here, the variable gains are designed as

λ1(ϕ1(t)) = (ωc + gc(ϕ1(t)))3

λ2(ϕ2(t)) = 3(ωc + gc(ϕ1(t)))2

λ3(ϕ3(t)) = 3(ωc + gc(ϕ1(t)))

(29)

and
gc(ϕ1(t)) = ηc|ϕ1(t)| (30)

where ωc > 0 is the basic control bandwidth and ηc > 0 is the control accuracy factor,
which is used to increase the tracking accuracy of the AFSEFBC.

Remark 2. It is worth pointing out that the proposed adaptive extended state observer AESO
in (24) and the proposed adaptive full state error feedback control AFSEFBC (28) work together
in the novel adaptive ADRC approach for the time-delayed SBW dynamics. For controlling the
steering angle of the SBW as the desired driver hand–wheel angle, the proposed control process
starts with preparing the estimation of unmeasured states and the lumped disturbances by the
AESO, in which those estimates are required in designing the control law of the AFSEFBC (28).
In addition, the AESO is employed to estimate the lumped disturbance that is compensated for in
the control law in (28). With the aid of estimations, the proposed AESO-based AFSEFBC is then
synthesized to constitute the AADRC scheme, which is used to deal with time-varying disturbances
and time delays.

To further help understand the proposed control scheme and ease the practical design
process, the corresponding flowchart is presented in Figure 3.
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Constructing AFSEFBC (28) with adaptive gains (29)-(30)

Figure 3. Flowchart of the proposed AADRC scheme.

3.3. Stability Proof

This subsection involves the proof of the boundedness of the closed-loop stability
under the suggested observer and controller as follows:

3.3.1. Convergence of the AESO

Theorem 1. Based on Assumption 1 stating that the boundedness of the first derivative of lumped
disturbance h̄o = ζ̇(x, t) is by |h̄o| ≤ K1, the estimation errors of the AESO are bounded by e ≤ K2,
where K2 is the positive constant.

Proof of Theorem 1. With the assistance of extended System Dynamics (23) and AESO
Dynamics (24), the estimation error dynamics can be determined as

ė1(t) = e2(t)− 4(ωo + go(e1(t)))e1(t)
ė2(t) = e3(t)− 6(ωo + go(e1(t)))2e1(t)
ė3(t) = e4(t)− 4(ωo + go(e1(t)))3e1(t)
ė4(t) = (ωo + go(e1(t)))

4e1(t)− h̄o(t)

(31)

where ei = xi − zi for i = 1, 2, 3, 4 represent the estimations errors. Let us define time-
varying observer gains which are a function of the position estimation error as



Appl. Syst. Innov. 2024, 7, 22 12 of 22


β1(e1) = 4(ωo + go(e1(t))) = 4ωo

β2(e1) = 6(ωo + go(e1(t)))2 = 6ω2
o

β3(e1) = 4(ωo + go(e1(t)))3 = 4ω3
o

β4(e1) = (ωo + go(e1(t)))4 = ω4
o

(32)

where ωo > 0 and ωo ≥ ωo. Accordingly, the observer gains in (32) can be rewritten in the
vector form as follows:

[β1(e1), β2(e1), β3(e1), β4(e1)] =
[
4ωo, 6ω2

o , 4ω3
o , ω4

o

]
. (33)

Using (33), estimation Error Dynamics (31) can be reformulated by the following
compact form:

ė(t) = Aoe(t) + Bo h̄o(t) (34)

where

e =


e1(t)
e2(t)
e3(t)
e4(t)

, Ao =


−4ωo 1 0 0
−6ω2

o 0 1 0
−ω3

o 0 0 1
−4ω4

o 0 0 0

, Bo =


0
0
0
1

.

From (34), we have

e(t) = eAote(0) +
∫ t

0
eAo(t−τ)Bo h̄o(x(τ), τ)dτ (35)

where matrix Ao is stable Hurwitz, matrix T is invertible real. Accordingly, Ao can be
expressed by

Ao = Tdiag{−ωo,−ωo,−ωo,−ωo}T−1 (36)

where −ωo(ωo > 0) for i = 1, 2, 3, 4, stands for the eigenvalues of the proposed AESO.
Then, we have

eAot = Tdiag{e−ωo , e−ωo , e−ωo , e−ωo}T−1. (37)

In addition, using m∞-norm, the inequality of the exponential of the Hurwitz matrix
Ao can be given by ∥∥∥eAotϕ(0)

∥∥∥ ≤ e−ωot (38)

where β is the positive constant.
From (38) and the assumption of |h̄o| ≤ K1, we can derive the inequality of closed-loop

dynamics in (35) as follows:∥∥∥eAote(0)
∥∥∥ =

∥∥∥∥eAote(0) +
∫ t

0
eAo(t−τ)Bo h̄o(x(τ), τ)dτ

∥∥∥∥
≤

∥∥∥eAote(0)
∥∥∥+ ∥∥∥∥∫ t

0
eAo(t−τ)Bo h̄o(x(τ), τ)dτ

∥∥∥∥
≤ βe−ωot∥e(0)∥+ ∥Bo∥∥h̄o(x(τ), τ)∥

∫ t

0
eAo(t−τ)

≤ βe−ωot∥e(0)∥+ K1∥Bo∥β

ωo
(1 − e−ωot)

≤ β∥e(0)∥+ K1∥Bo∥β

ωo

= K2. (39)
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3.3.2. Convergence of the AFSEFBC

Theorem 2. We consider that SBW model (8) can track the bounded input reference, xd(t); if the
estimation errors satisfy

lim
t→∞

∥e(t)∥ = 0 (40)

and the adaptive gains are chosen to meet (29), that tracking errors ϕi for i = 1, 2, 3 also converge
to zero.

Proof of Theorem 2. Based on the tracking error trajectories defined in (26), the control
effort of the AFSEFBC in (28) is reformulated by

u(t) =
1
b0

[ ...
y d(t) + εϕ(t) −εe(t)− f0(zi, t)− ζ(x, t)] (41)

where

εϕ(t) =λ1(ϕ1(t))ϕ1(t) + λ2(ϕ1(t))ϕ2(t) + λ3(ϕ1(t))ϕ3(t)

εe(t) =λ2(ϕ1(t))e2(t) + λ3(ϕ1(t))e3(t)− e4(t).

We let the time-varying controller gains be
λ1(ϕ1) = (wc + ηc|ϕ1|)3 = w3

c

λ2(ϕ1) = 3(wc + ηc|ϕ1|)2 = 3w2
c

λ3(ϕ1) = 3(wc + ηc|ϕ1|) = 3wc

(42)

where ωc > 0 and ωc ≥ ωc. Those gains in (44) can be rewritten as in the following row
vector form:

[λ1(ϕ1), λ2(ϕ1), λ3(ϕ1)] =
[
ω3

c , 3ω2
c , 3ωc

]
(43)

Then, according to (27) and (28), the closed-loop control SBW plant can be expressed
as follows: 

ϕ̇1(t) = ϕ2(t)
ϕ̇2(t) = ϕ3(t)
ϕ̇3(t) = −εϕ(t) + εe(t)− f0e(e, t)

(44)

where f0e(e, t) = f0(x, t)− f0(z, t) which is presumed to be bounded by | f0e(e, t)| and the
above dynamics can be written in the following compact form:

ϕ̇(t) = Ac(t)ϕ(t) + Bchc(t) (45)

where Bc =
[

0 0 1
]T , hc(t) ≜ εe(t)− f0e(e, t).

Ac(t) =

 0 1 0
0 0 1

−ω3
c −3ω2

c −3ωc

.

From (40), observation errors ei(t), i = 1, 2, 3 are bounded; thus, the term h̄c(t) is also
bounded, and we have

h̄c(t) =εe(t)− fe0(e, t)

≤3 ω2
c |e2(t)|+ 3 ωc |e3(t)|+ | f0e(e, t)|

=h̄cmax.
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From (45), we have

ϕ(t) = eActϕ(0) +
∫ t

0
eAc(t−τ)Bc h̄c(e(τ), τ)dτ

where Ac is also a Hurwitz matrix, thus satisfying∥∥∥eAtϕ(0)
∥∥∥ ≤

∥∥∥βe−ωct
∥∥∥.

As a result, there is the following inequality about ϕ(t):∥∥∥eActϕ(0)
∥∥∥ =

∥∥∥∥eActϕ(0) +
∫ t

0
eAc(t−τ)Bc h̄c(e(τ), τ)dτ

∥∥∥∥
≤

∥∥∥eActϕ(0)
∥∥∥+ ∥∥∥∥∫ t

0
eAc(t−τ)Bc h̄c(e(τ), τ)dτ

∥∥∥∥
≤ βe−ωct∥ϕ(0)∥+ ∥Bc∥∥h̄c(e(τ), τ)∥

∫ t

0
eAc(t−τ)

≤ βe−ωct∥ϕ(0)∥+ K2∥Bc∥β

ωc
(1 − e−ωct). (46)

On the basis of the assumption given in (40), it can be concluded that the boundedness
of ϕ(t) is as follows:

lim
t→∞

∥ϕ(t)∥ = 0. (47)

From Proof in Sections 3.3.1 and 3.3.2, with the integration of the AESO and the control
action of the AFSEFBC, dynamic closed-loop Tracking Error System (45) is bounded, thus
the closed-loop stability dynamic is guaranteed.

Remark 3. If go(e1(t)) = gc(ϕ1(t)) = 0, the proposed AADRC (28), (24) can be reduced to the
well-known ADRC scheme, in which its ESO element is designed as follows:

e1(t) = x1(t)− z1(t)
ż1(t) = z2(t) + 4(ωo)e1(t)
ż2(t) = z3(t) + 6(ωo)

2e1(t)
ż3(t) = z4(t) + 4(ωo)

3e1(t) + b0u(t)
ż4(t) = (ωo)

4e1(t).

(48)

In addition, the control law of the FSEFBC with fixed gains is employed as follows:

u(t) =
1
b0

[
λ1ϕ1(t) + λ2ϕ̂2(t) + λ3ϕ̂3(t)− z4(t)

]
(49)

in which its gains are tuned according to the following fixed control gains given by
λ1 = ω3

c

λ2 = 3ω2
c

λ3 = 3ωc.

(50)

The basic ADRC designed in (48) and (49) is used for a comparison purpose that could be fair
owing to similar architecture in constructing both proposed AADRC and comparative ADRC. The
proposed AADRC approach is expected to perform better than the baseline ADRC in terms of the
estimation and tracking performance as discussed in the subsequent section of simulation results.



Appl. Syst. Innov. 2024, 7, 22 15 of 22

4. Simulation Design and Analysis

To validate the proposed AADRC method, simulations are conducted using MAT-
LAB/SIMULINK 2021. The computer configuration which is utilized for the simulation is
presented as follows: i5-2500 CPU @ 3.30 GHz and 4 GB of RAM. The model parameters
of the SBW system (1) are detailed in Table 1. Moreover, to demonstrate the superiority
of the proposed AFSEFBC with AESO, a comparative analysis, which is conducted be-
tween the proposed approach and the benchmark ADRC method [36], is presented in this
section. To ensure a fair comparison, both methods utilize an identical sampling time of
Ts = 4 × 10−3 s. Furthermore, Table 2 provides the tuned controller and observer gains for
both the proposed control scheme and the ADRC. Afterward, we detail the simulation
outcomes and correlative examinations across two diverse scenarios. In these two cases,
the angle of the front wheels is controlled to track a sinusoidal trajectory. It is important to
note that, for the sake of comparing the robustness of various controllers, the controller and
observer gains are held constant across the two cases. Moreover, both the Coulomb friction
torque as expressed in τc in (1) and the self-aligning torque τsel as given in (3) are taken
into account in these two cases. To account for the various road conditions throughout the
simulation, ρτ is utilized to determine τsel as outlined below:

ρτ =


155, 0 < t ≤ 20 s, Road with snow
585, 20 < t ≤ 40 s, Road with wet asphalt
960, 40 < t ≤ 60 s, Road with dry asphalt.

(51)

Table 2. Parameters of Control Schemes in All Cases.

Control Proposed ADRC
Parameters (24)–(28) (48) and (49)

ωc 25 25
kc 700 -
ωo 125 125
ko 1 × 109 -

4.1. Case 1: Nominal SBW System with Nonlinearity under the Fixed Input and Output
Time Delay

In the first case, the SBW system’s tracking performance is assessed under the nominal
nonlinear SBW dynamics in the presence of fixed communication time delays. To investigate
this case, both the parametric uncertainties as expressed in (2) and external disturbance d(t)
as given in (5) are set to zero. Furthermore, the input and output time delays as illustrated
in Figure 1 are assigned values of τi = 5 × 10−3 s and τo = 5 × 10−3 s, respectively. Thus,
the sum of τi and τo matches the sampling time Ts. In Figure 4a–d, the estimation errors
for x1, x2, x3, and x4 are presented, highlighting the superior estimation performance of
the proposed algorithm when compared to the benchmark ADRC method. It is evident
that estimation errors x1, x2, x3, and x4 of the proposed algorithm are lower than those
of the comparison approach. In addition, the estimation error in the proposed approach
converges faster. Moreover, it is observed that some spikes occur in the estimation errors
in both methods due to the observer gains’ dependency on the discrepancy between x1
and its estimation. Nevertheless, the AESO exhibits a faster convergence rate compared to
the ESO in the comparative method, with estimation errors being smaller in the proposed
approach. In Figure 5a–c, the trajectories of steering angle θs, the tracking error of θs, and
control input u(t) are displayed under both the proposed algorithm and the comparative
method. In Figure 5a,b, it is evident that the convergence rate achieved under the proposed
control method outperforms that of the ADRC. Furthermore, the tracking error in the
proposed algorithm is reduced, as the impact of time delays is effectively mitigated by
the AESO in the proposed control approach. In addition, Figure 5c clearly illustrates that
the proposed control approach exhibits a more expeditious response in the control input
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when compared to the ADRC. To achieve a comprehensive understanding of the proposed
control scheme, Figure 6a,b presents adaptive gain kc of the AGSEFBC and adaptive gain
ko of the AESO, respectively, along with the corresponding fixed gains of ESO in the ADRC.
By comparing Figure 4a and Figure 6a, Figure 5b and Figure 6b, it can be observed that
adaptive gains kc and ko vary in response to the estimation error of x1 and the tracking
error of θs, respectively. In contrast, it is evident that the gains in the ADRC remain fixed,
as illustrated in Figure 6a,b.
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Figure 4. Estimation error responses for the nominal system with nonlinearity under the input
time delay, τi = 5 × 10−3 s, and the output time delay, τo = 5 × 10−3 s (Case 1).
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Figure 5. Tracking responses for the nominal system with nonlinearity under the input time delay,
τi = 5 × 10−3 s, and the output time delay, τo = 5 × 10−3 s (Case 1).
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Figure 6. Adaptive gains (where ko = ωo, kc = ωc) of the proposed scheme for the nominal system
under input delay τi = 5 × 10−3 s and output delay τo = 5 × 10−3 s (Case 1).

4.2. Case 2: Uncertain SBW System with Nonlinearity under Input and Output
Time-Varying Delay

In comparison to Case 1, parameter uncertainties such as inertia, damping, and
Coulomb fraction variations are newly considered in Case 2, which are specified in (2).
Accordingly, the inertia, damping, and Coulomb fraction variations are formulated by
∆̄Je = 0.1Je0, ∆̄Be = 0.1Be0, and ∆̄ξ f = 0.1ξ f 0, respectively, as in (2). In addition, the external
disturbance acting on the SBW dynamics modeled in (5) is defined by d(t) = sin(t). The
time-varying communication delays consist of a fixed component, i.e., τi = 2 × 10−2 s for
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the control input and τo = 2 × 10−2 s for the front wheels’ angle feedback, and a varying
component with an upper bound of 5 × 10−3 for both input and out delays. Please note
that the sum of the input and output delays significantly exceeds sampling time Ts in
Case 2. In Figure 7a–d, the estimation errors for x1, x2, x3, and x4 are depicted. In Case
2, we notice that the performance of the proposed algorithm consistently surpasses the
ADRC with respect to estimation, as it exhibits a quicker convergence rate and smaller
estimation errors even under large time delays. In Figure 8a–c, it is clear that the tracking
error of θs in the proposed control remains smaller than that of the ADRC. Furthermore,
the convergence rate of the tracking error and the response rate of the control input in
the proposed control are faster than the comparative ADRC. By comparing Figure 7a
and Figure 9a, Figure 8b and Figure 9b, it can be observed that adaptive gains kc and
ko in Case 2 exhibit a broader range than those in Case 1 to counteract the existence of
parameter uncertainties, external disturbance, and significant time-varying delays. Thus,
the adaptive gains in the proposed AADRC scheme can adaptively update to maintain
good performance, whereas the estimation and tracking performance of the ADRC are not
as good as the proposed one due to the ADRC’s fixed controller and observer gains.
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Figure 7. Estimation error responses for the uncertain system under the input time delay, τi = 2 ×
10−2 s, the output time delay, τo = 2 × 10−2 s, and delay variation ∆τ = 5 × 10−3 s (Case 2).
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Figure 8. Tracking responses for the uncertain system under the input time delay, τi = 2 × 10−2 s,
the output time delay, τo = 2 × 10−2 s, and delay variation ∆τ = 5 × 10−3 s (Case 2).

To sum up, it is worth mentioning from Cases 1 and 2 that adaptive mechanisms used
in (25) and (30) are, respectively, used to update gains of Observer (24) and Controller
(28) elements, which play a focal role in contributing and improving not only the peaking
reduction in transient region and the accuracy steady as shown in Figures 5b and 8b. The
reason for the adaptive mechanisms’ contribution is that the adaptive gains of both the
proposed observer and controller are, respectively, functions of the estimation and tracking
errors, in which those gains increase when the errors become bigger and vice versa. As
depicted in Figures 6 and 9, both the proposed observer and controller gains increase largely
in the transient region to compensate for the peaking phenomenon in the estimation and
tracking trajectories in that region. In addition, those gains continue increasing at different
times in the steady-state region, especially when the errors occur largely in that region,
leading to the enhancement of observation and tracking accuracy. Furthermore, these
adaptively increased gains bring strong robustness as demonstrated in Case 2 compared to
the well-known ADRC with fixed gains.

Consequently, according to the results extracted from Cases 1 and 2, the advantages
of the proposed AADRC methodology are highlighted by and summarized into the fol-
lowing: (1) Better estimation accuracy with a lesser peak pheromone of the estimated
states, uncertainties, and disturbances; even the time-delayed SWB order increases by one
due to the use of Taylor transformation; (2) Strong robustness in effectively handling not
only the detrimental effects of the parametric uncertainties, nonlinearities, and external
disturbances but also input and output time delays induced from the networked control
SBW system and variations in those time delays; and (3) Improvement in the transient
and steady-state performances of the output tracking trajectory of the SWB system with
time-delay communications.



Appl. Syst. Innov. 2024, 7, 22 20 of 22

Time (sec)

(a)

0 10 20 30 40 50 60
A

d
a
p

ti
v
e
 o

b
s
e
rv

e
r 

g
a

in
 k

o
0

100

200

300

400

500
Proposed

ADRC

Time (sec)

(b)

0 10 20 30 40 50 60

A
d

a
p

ti
v
e
 c

o
n

tr
o

ll
e
r 

g
a
in

 k
c

24

26

28

30

32

34
Proposed

ADRC

0 10 20 30 40 50 60
24.9

25

25.1

25.2

25.3

Figure 9. Adaptive gains (where ko = ωo, kc = ωc) of the proposed scheme for the uncertain sys-
tem under the input delay, τi = 2 × 10−2 s, output delay τo = 2 × 10−2 s, and delay variation
∆τ = 5 × 10−3 s (Case 2).

5. Conclusions

In this paper, the novel AADRC scheme is designed for the SBW with disturbances and
time delays induced by the transmission channel to improve the transient rate and steady-
state tracking accuracy of the steer angle performance. To diminish the impacts of large
time delays in communication, Taylor series expansion is employed for the time-delayed
second-order SBW system. Then, the impact of not only uncertainties, disturbances, and
time delays is diminished, but also the increased order by the Taylor transformation is well
dealt with by the proposed AADRC approach. The novel AADRC scheme comprises the
AESO and AFSEFBC elements. First, the AESO is built to observe unmeasured velocity,
acceleration states, and the lumped disturbance, in which adaptive gains of the AESO
are varied online according to the estimation error of the steering angle to minimize the
peaking of the estimation. Second, the AFSEFBC is constructed to attain steering tracking
control, in which its gains are driven depending on the tracking error of the steering angle.
Finally, the convergence and boundedness analysis of the closed-loop dynamics of both
the AESO and AFSEFBC are mathematically presented in the presence of large time delays
and unknown disturbances. Simulation outcomes verify the superiority of the proposed
control algorithm in comparison to the well-known ADRC technique with fixed gains.

Future research should focus on the potential applications of the proposed control
strategy to other x-by-wire technologies (i.e., x-by-wire including drive/brake-by-wire
systems) with time delays induced from the NCSs and other automobile applications, such
as automobile electronic throttle systems subject to more sophisticated probability density
function distribution disturbances describing the influence of uncertainty propagation
on those systems. More specifically, despite the challenges associated with obtaining
an accurate mathematical representation of lumped uncertainty in practice, we can still
leverage statistical methods to model this uncertainty as a random input to the system.
Utilizing probability density functions, we can approximate and analyze the corresponding
system output triggered by this uncertainty [37].
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