
Citation: Petsiuk, A.; Singh, H.;

Dadhwal, H.; Pearce, J.M.

Synthetic-to-Real Composite Semantic

Segmentation in Additive

Manufacturing. J. Manuf. Mater.

Process. 2024, 8, 66. https://doi.org/

10.3390/jmmp8020066

Academic Editor: Jing Shi

Received: 1 February 2024

Revised: 26 March 2024

Accepted: 26 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Manufacturing and
Materials Processing

Journal of

Article

Synthetic-to-Real Composite Semantic Segmentation in
Additive Manufacturing
Aliaksei Petsiuk 1 , Harnoor Singh 1, Himanshu Dadhwal 1 and Joshua M. Pearce 1,2,*

1 Department of Electrical & Computer Engineering, Western University, London, ON N6A 3K7, Canada;
apetsiuk@uwo.ca (A.P.); hdadhwal@uwo.ca (H.D.)

2 Ivey School of Business, Western University, London, ON N6A 3K7, Canada
* Correspondence: joshua.pearce@uwo.ca

Abstract: The application of computer vision and machine learning methods for semantic segmenta-
tion of the structural elements of 3D-printed products in the field of additive manufacturing (AM)
can improve real-time failure analysis systems and potentially reduce the number of defects by
providing additional tools for in situ corrections. This work demonstrates the possibilities of using
physics-based rendering for labeled image dataset generation, as well as image-to-image style transfer
capabilities to improve the accuracy of real image segmentation for AM systems. Multi-class semantic
segmentation experiments were carried out based on the U-Net model and the cycle generative ad-
versarial network. The test results demonstrated the capacity of this method to detect such structural
elements of 3D-printed parts as a top (last printed) layer, infill, shell, and support. A basis for further
segmentation system enhancement by utilizing image-to-image style transfer and domain adaptation
technologies was also considered. The results indicate that using style transfer as a precursor to
domain adaptation can improve real 3D printing image segmentation in situations where a model
trained on synthetic data is the only tool available. The mean intersection over union (mIoU) scores
for synthetic test datasets included 94.90% for the entire 3D-printed part, 73.33% for the top layer,
78.93% for the infill, 55.31% for the shell, and 69.45% for supports.

Keywords: 3D printing; additive manufacturing; g-code segmentation; sim-to-real; semantic segmen-
tation; synthetic data

1. Introduction

With its current exponential growth, the amount of plastic waste produced could
reach 250 billion tons by 2050 [1], vast quantities of which cause pollution of the natural
environment on land and in the ocean [2]. Distributed manufacturing using additive
manufacturing (AM) is reforming global value chains as its usage increases rapidly [3],
because there are millions of free 3D printable consumer product designs and 3D print-
ing them results in substantial cost savings compared to conventionally manufactured
commercial products [4,5].

The growing popularity of 3D printing is playing a notable role in the problem of
recycling as 3D-printed products rarely have recycling symbols [6], use uncommon poly-
mers [7], and are increasing the overall market of plastic materials [8]. This is not only
caused by additional plastic products, but also from disturbing failure rates. Inexperienced
3D printer users are estimated to have failure rates of 20% [9]. Even experienced profes-
sionals working in 3D print farms, however, have failure rates of at least 2% [10]. The
probability of a manufacturing defect increases with the size and print time of the object
(e.g., using large-scale fused filament printers [11] or products [12,13], or fused granule
printers [14,15]), which can magnify the waste materials created from even a small per-
centage of failures. It is clear that the ability to automatically detect deviations in AM will
significantly help to reduce material waste and the time spent on reproducing failed prints.

J. Manuf. Mater. Process. 2024, 8, 66. https://doi.org/10.3390/jmmp8020066 https://www.mdpi.com/journal/jmmp

https://doi.org/10.3390/jmmp8020066
https://doi.org/10.3390/jmmp8020066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0002-1366-4469
https://orcid.org/0000-0001-9802-3056
https://doi.org/10.3390/jmmp8020066
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp8020066?type=check_update&version=1

J. Manuf. Mater. Process. 2024, 8, 66 2 of 19

As recent studies [16] show, computer vision is becoming increasingly popular in
analyzing AM and extrusion-based 3D printing processes. For example, Ceruti et al. [17]
utilized data from computer-aided design (CAD) files that are used in the first step of the
design of a 3D-printed component. Then, further down the software toolchain, Nuchit-
prasitchai et al. [18], Johnson et al. [19], and Hurd [20] developed failure analysis based
on comparisons with the Standard Tessellation Language (STL) files used at the slicing
step in most 3D printing processes. Further still, both Jeong et al. [21] and Wasserfall
et al. [22] used, instead, the G-code files that provide the 3D printer with spatial toolpath
instructions for printing parts. The 3D printing software toolchain does not need to be
used at all, as several approaches use comparisons with reference data [23,24] or ideal 3D
printing processes [25,26]. In addition, a 3D reconstruction-based scanning method for
real-time monitoring of AM processes is also possible [27]. In previous works, the authors
considered the possibilities of detecting critical manufacturing errors using classical image-
processing methods [28], as well as employing synthetic reference images rendered with a
physics-based graphics engine [29]. The proposed methods, however, do not fully utilize
the available information and are limited in determining the location-based categories of
production deviations.

The popular open source Spaghetti Detective application [30,31] is also a direct confir-
mation of the effectiveness of visual monitoring. An analysis of Spaghetti Detective’s [30]
user performance database, collected over 2.3 years, showed that 24% of all 5.6 million
print jobs were canceled, which can be represented as 456 wasted hours of continuous
printing compared to 5232 h of printing where all the print jobs were finished (Figure 1).

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 2 of 19

will significantly help to reduce material waste and the time spent on reproducing failed
prints.

As recent studies [16] show, computer vision is becoming increasingly popular in
analyzing AM and extrusion-based 3D printing processes. For example, Ceruti et al. [17]
utilized data from computer-aided design (CAD) files that are used in the first step of the
design of a 3D-printed component. Then, further down the software toolchain, Nuchit-
prasitchai et al. [18], Johnson et al. [19], and Hurd [20] developed failure analysis based
on comparisons with the Standard Tessellation Language (STL) files used at the slicing
step in most 3D printing processes. Further still, both Jeong et al. [21] and Wasserfall et al.
[22] used, instead, the G-code files that provide the 3D printer with spatial toolpath in-
structions for printing parts. The 3D printing software toolchain does not need to be used
at all, as several approaches use comparisons with reference data [23,24] or ideal 3D print-
ing processes [25,26]. In addition, a 3D reconstruction-based scanning method for real-
time monitoring of AM processes is also possible [27]. In previous works, the authors con-
sidered the possibilities of detecting critical manufacturing errors using classical image-
processing methods [28], as well as employing synthetic reference images rendered with
a physics-based graphics engine [29]. The proposed methods, however, do not fully utilize
the available information and are limited in determining the location-based categories of
production deviations.

The popular open source Spaghetti Detective application [30,31] is also a direct con-
firmation of the effectiveness of visual monitoring. An analysis of Spaghetti Detective’s
[30] user performance database, collected over 2.3 years, showed that 24% of all 5.6 million
print jobs were canceled, which can be represented as 456 wasted hours of continuous
printing compared to 5232 h of printing where all the print jobs were finished (Figure 1).

Figure 1. Analysis of 3D printer users’ activity over 2.3 years. The runtime distribution shows a 24%
failure rate for all 5.6 million printing tasks longer than 5 min.

This statistic, however, does not include over a million canceled print jobs less than
5 min long, which are assumed to be due to initial bed-leveling issues and cannot, there-
fore, indicate manufacturing failures. It also does not consider the working time of human
operators spent on starting later-canceled printing tasks.

Semantic segmentation [32] of both the entire manufactured part and its separate
structural regions at the stage of production of each layer will expand the capacity of the
visual analysis of AM processes and can make it possible to more accurately determine
the nature of individual production errors depending on their localization. This can pro-
vide advanced tools for correcting printing defects in situ, where each successive layer can
be modified depending on the deviations found in the previous stage, thus improving
both the mechanical and aesthetic characteristics of the entire object. It may also reduce
the requirements for camera positioning accuracy and calibration, eliminating the need
for visual markers and rigid holders.

In the previous work [29], the authors demonstrated the ability of Blender [33], a free
and open-source physics rendering engine, to generate photorealistic images of ideal 3D
printing processes based on existing G-code files. This work served as a milestone in the

Figure 1. Analysis of 3D printer users’ activity over 2.3 years. The runtime distribution shows a 24%
failure rate for all 5.6 million printing tasks longer than 5 min.

This statistic, however, does not include over a million canceled print jobs less than
5 min long, which are assumed to be due to initial bed-leveling issues and cannot, therefore,
indicate manufacturing failures. It also does not consider the working time of human
operators spent on starting later-canceled printing tasks.

Semantic segmentation [32] of both the entire manufactured part and its separate
structural regions at the stage of production of each layer will expand the capacity of the
visual analysis of AM processes and can make it possible to more accurately determine the
nature of individual production errors depending on their localization. This can provide
advanced tools for correcting printing defects in situ, where each successive layer can be
modified depending on the deviations found in the previous stage, thus improving both
the mechanical and aesthetic characteristics of the entire object. It may also reduce the
requirements for camera positioning accuracy and calibration, eliminating the need for
visual markers and rigid holders.

In the previous work [29], the authors demonstrated the ability of Blender [33], a free
and open-source physics rendering engine, to generate photorealistic images of ideal 3D
printing processes based on existing G-code files. This work served as a milestone in the
development of a deep learning-based approach, presented in this paper, to the semantic
segmentation of structural elements in 3D printing environments.

J. Manuf. Mater. Process. 2024, 8, 66 3 of 19

Using a synthetic dataset, however, comes at the cost of a domain shift, which is often
strongly associated with appearance changes [34]. When the source (synthetic images)
and target (real images) domains are semantically related, but are different in visual
representation, direct propagation of learned knowledge about one domain to another
can adversely affect segmentation performance in the latter domain. Therefore, domain
adaptation (DA) is needed in order to learn generalized segmentation rules in the presence
of a gap between the source and target dataset distributions [34,35].

There are examples in the literature of successful synthetic-to-real (sim-to-real) DA
applications. Imbusch, Schwarz, and Behnke [36] proposed an unsupervised Generative
Adversarial Network (GAN)-based DA approach to a robotics environment image dataset
that provides a performance close to those trained on real data and does not require
annotations of real robotic setups. Li et al. [37] presented a semantically aware GAN-
based neural network model for virtual-to-real urban scene adaptation with the ability
to store important semantic information. Lee et al. [38] introduced a sim-to-real vehicle
identification technique consisting of DA and semi-supervised learning methods.

Domain adaptation, however, is a separate area of research and is not covered in this arti-
cle. The possibility of applying a cycle-consistent adversarial network (CycleGAN) [39]—an
image-to-image style transfer method—was considered for segmentation improvement,
as generative adversarial networks can perform a significant role in domain adaptation
techniques and be used in future research.

The proposed method is a novel approach to segmenting key regions of manufactured
parts during their fabrication using G-code information and synthetic data. Revealing
this system to end users will allow constant expansion of the synthetic image database
for subsequent neural network training. The presented contributions, therefore, can be
summarized as follows:

• A technique for generating synthetic image-mask pairs of layer-by-layer ideal 3D
printing processes has been developed for subsequent neural network training;

• Three independent labeled synthetic image datasets for (a) the entire part, (b) the top
(last printed) layer, and (c) the infill, shell, and supports for 3D-printed objects have
been created;

• A neural network was trained for the semantic segmentation of the entire printed part,
as well as its last printed top layer and internal structure;

• Image-to-image style transfer approaches to improve segmentation results have
been explored.

All the above steps are sequentially described in this article after first reviewing related
works in detail. The Results section will discuss the potential for the localization of 3D-
printed parts in the image frame, as well as the application of image processing methods to
the parts’ structural elements for subsequent detection of manufacturing deviations.

2. Background

Semantic image segmentation problems represent an actively developing area of re-
search in deep machine learning [32,40]. The main limiting factor, however, is the difficulty
of obtaining annotated databases for the training of machine learning architectures. This ap-
proach requires thousands of images with labeled masked regions, which is a difficult and
time-consuming task—manual annotation of a single image with pixel-by-pixel semantic
labels can take more than 1.5 h [41].

The use of synthetic images, in turn, allows the procurement of a segmented training
database conditionally ”free of charge”, since masked regions of interest can be automat-
ically annotated when creating virtual physics-based renders. In addition, advances in
computer graphics make it possible to generate an almost unlimited amount of labeled
data by varying environmental parameters in ranges that are difficult to obtain in real
conditions [34]. The success of simulated labeled data is clearly illustrated in the already
classic GTA5 [42] and Synthia [43] image sets.

J. Manuf. Mater. Process. 2024, 8, 66 4 of 19

There are many examples of applying synthetic datasets to solve real-world practical
problems. Nikolenko [44] presented an up-to-date technological slice of the use of synthetic
data in a wide variety of deep learning tasks. Melo et al. [45] outlined the most promising
approaches to integrating synthesized data into deep learning pipelines. Ward, Moghadam,
and Hudson [46] used a real plant leaf dataset augmented with rendered images—for
instance, leaf segmentation—to measure complex phenotypic traits in agricultural sustain-
ability problems. Boikov et al. [47] presented a methodology for steel defect recognition in
automated production control systems based on synthesized image data.

Several researchers introduced artificial intelligence (AI)-based methods into the AM
field to classify the quality of manufacturing regions, as well as to segment failed areas in 3D
printing processes. Valizadeh and Wolff [48] provided a comprehensive overview of neural
network applications to several aspects of AM processes. Banadaki et al. [49] proposed a
convolutional neural network (CNN)-based automated system for assessing surface quality
and internal defects in AM processes. The model is trained on captured images during
material layering at various speeds and temperatures, and demonstrates 94% accuracy
in five failure gradations in real time. Saluja et al. [50] utilized deep learning algorithms
to develop a warping detection system. Their method extracts the layered corners of
printed components and identifies warpage with 99.3% accuracy. Jin et al. [51] presented
a novel CNN-based method incorporating strain to measure and predict four levels of
delamination conditions. These works solve a set of specific production problems. The
developed algorithms, however, are difficult to generalize and scale. Brion and Pattison [52]
introduced an error detection and correction system based on visual and neural network
analyses of extruded segments. This study demonstrates promising results; however, it is
limited in providing general information about the whole working volume.

Analysis based on semantic segmentation, in turn, has significant potential for de-
tecting and evaluating a wide range of manufacturing defects. Wong et al. [53] have
demonstrated U-Net CNN 3D volumetric segmentation in AM using medical imaging
techniques to automatically detect defects in X-ray-computed tomography images of speci-
mens. Cannizzaro et al. [54] proposed an AI in-situ emerging defects monitoring system
utilizing automatic GAN-based synthetic image generation to augment the training dataset.
These functions are built into a holistic distributed AM platform that allows storage and
integration of data at all manufacturing stages. Davtalab et al. [55] presented a neural
network-automated system of semantic pixel-wise segmentation, based on one million
images, to detect defects in 3D-printed layers.

Combining various analysis techniques with the segmentation of characteristic areas
of fabricated parts will make a significant contribution to the field of AM. Having an
open-structure annotated database for additive manufacturing will create considerable
opportunities for the development of failure detection systems in the future. Segmentation
and localization of the individual structural elements of manufactured objects can make it
easier to detect and track erroneous regions when they occur.

3. Methods

Preparation for 3D printing involves layer-by-layer slicing of the model, where each
extruded segment corresponds to a certain set of characteristics, such as fan speed, temper-
ature, plastic flow rate, line type (internal, external, and overhang perimeters; support and
its interface; solid and internal infill; etc.), reflected in the G-code. By using this information
as input to the developed visual processing pipeline, it is possible to create an individual
pixel-perfect mask for each section of the manufactured part.

Based on the most common words in 3D print filenames stored in the Spaghetti
Detective database [30], sets of labeled images of printed products at various stages of their
production were generated in the physics-based graphics engine [29]. These image–mask
pairs were further used to train neural networks for the tasks of visual segmentation of
manufactured parts and their structural elements. Additionally, the possibilities of image-
to-image style translation were also explored, to reduce the domain gap and increase the

J. Manuf. Mater. Process. 2024, 8, 66 5 of 19

segmentation precision. The segmentation efficiency was tested both on synthetic renders
outside of training sets and on real images. Data and source code for this project can be
obtained from the Open Science Framework (OSF) repository [56].

3.1. Creation of Synthetic Image Datasets

(1) Selecting CAD designs for rendering: More than 5.6 million filenames were parti-
tioned into meaningful lexical parts and processed through Spaghetti Detective’s user per-
formance database [30] to create a dictionary of the most frequently used words (Figure 2).
These print jobs were performed by 49,000 unique users on 57,000 different 3D printers.
The average print time was 3.6 h.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 5 of 19

production were generated in the physics-based graphics engine [29]. These image–mask
pairs were further used to train neural networks for the tasks of visual segmentation of
manufactured parts and their structural elements. Additionally, the possibilities of image-
to-image style translation were also explored, to reduce the domain gap and increase the
segmentation precision. The segmentation efficiency was tested both on synthetic renders
outside of training sets and on real images. Data and source code for this project can be
obtained from the Open Science Framework (OSF) repository [56].

3.1. Creation of Synthetic Image Datasets
(1) Selecting CAD designs for rendering: More than 5.6 million filenames were parti-

tioned into meaningful lexical parts and processed through Spaghetti Detective’s user per-
formance database [30] to create a dictionary of the most frequently used words (Figure
2). These print jobs were performed by 49,000 unique users on 57,000 different 3D printers.
The average print time was 3.6 h.

Figure 2. Distribution of the 25 most frequently used words in file names for 3D printing. A detailed
analysis of the users’ print task database is given in the source file repository [56].

Based on the compiled dictionary, a set of random Standard Tessellation Language
(STL) files was collected from Thingiverse [57]—an open catalog of widely used computer-
aided designs (CADs) for 3D printing—for further processing. These files formed the basis
for generating a database of synthetic images. A complete list of the used CAD designs is
in the OSF repository [56].

(2) Graphics rendering pipeline: All the selected STL files were converted into G-
codes in free MatterControl software [58], maintaining the same slicing parameters: 0.3
mm layer height, 0.4 mm nozzle diameter, 4 perimeters, and 30% grid infill. The resulting
G-codes were further parsed layer by layer in the Blender [33] programming interface,
where the extruder trajectory is converted into a set of curves with a controllable thickness
parameter and preset material settings. Each G-code layer is thus transformed into an in-
dependent 3D object. The whole rendering process is illustrated in the following diagram
(Figure 3).

Figure 2. Distribution of the 25 most frequently used words in file names for 3D printing. A detailed
analysis of the users’ print task database is given in the source file repository [56].

Based on the compiled dictionary, a set of random Standard Tessellation Language
(STL) files was collected from Thingiverse [57]—an open catalog of widely used computer-
aided designs (CADs) for 3D printing—for further processing. These files formed the basis
for generating a database of synthetic images. A complete list of the used CAD designs is
in the OSF repository [56].

(2) Graphics rendering pipeline: All the selected STL files were converted into G-codes
in free MatterControl software [58], maintaining the same slicing parameters: 0.3 mm layer
height, 0.4 mm nozzle diameter, 4 perimeters, and 30% grid infill. The resulting G-codes
were further parsed layer by layer in the Blender [33] programming interface, where the
extruder trajectory is converted into a set of curves with a controllable thickness parameter
and preset material settings. Each G-code layer is thus transformed into an independent
3D object. The whole rendering process is illustrated in the following diagram (Figure 3).

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 5 of 19

production were generated in the physics-based graphics engine [29]. These image–mask
pairs were further used to train neural networks for the tasks of visual segmentation of
manufactured parts and their structural elements. Additionally, the possibilities of image-
to-image style translation were also explored, to reduce the domain gap and increase the
segmentation precision. The segmentation efficiency was tested both on synthetic renders
outside of training sets and on real images. Data and source code for this project can be
obtained from the Open Science Framework (OSF) repository [56].

3.1. Creation of Synthetic Image Datasets
(1) Selecting CAD designs for rendering: More than 5.6 million filenames were parti-

tioned into meaningful lexical parts and processed through Spaghetti Detective’s user per-
formance database [30] to create a dictionary of the most frequently used words (Figure
2). These print jobs were performed by 49,000 unique users on 57,000 different 3D printers.
The average print time was 3.6 h.

Figure 2. Distribution of the 25 most frequently used words in file names for 3D printing. A detailed
analysis of the users’ print task database is given in the source file repository [56].

Based on the compiled dictionary, a set of random Standard Tessellation Language
(STL) files was collected from Thingiverse [57]—an open catalog of widely used computer-
aided designs (CADs) for 3D printing—for further processing. These files formed the basis
for generating a database of synthetic images. A complete list of the used CAD designs is
in the OSF repository [56].

(2) Graphics rendering pipeline: All the selected STL files were converted into G-
codes in free MatterControl software [58], maintaining the same slicing parameters: 0.3
mm layer height, 0.4 mm nozzle diameter, 4 perimeters, and 30% grid infill. The resulting
G-codes were further parsed layer by layer in the Blender [33] programming interface,
where the extruder trajectory is converted into a set of curves with a controllable thickness
parameter and preset material settings. Each G-code layer is thus transformed into an in-
dependent 3D object. The whole rendering process is illustrated in the following diagram
(Figure 3).

Figure 3. Synthetic AM database creation pipeline. Each 3D part, in the form of an STL (green) file, is
converted into a set of printer tool head trajectories (G-code, blue), which is the input parameter of the
automated scripted section (gray). Blender environment (textures, camera, lights) and compositing
settings can also be automated in the future. The image-mask pairs (red) are the result of frame-by-
frame animation rendering for each individual G-code file.

J. Manuf. Mater. Process. 2024, 8, 66 6 of 19

The functional component of the repository [59] was used as a basis for importing
G-code files into the graphics engine. To create photorealistic renders, scenes similar to real
physical environments were created in Blender. The position of the camera, as well as the
degree of illumination and the locations of light sources, were chosen to closely match the
actual workspace (Figure 4).

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 6 of 19

Figure 3. Synthetic AM database creation pipeline. Each 3D part, in the form of an STL (green) file,
is converted into a set of printer tool head trajectories (G-code, blue), which is the input parameter
of the automated scripted section (gray). Blender environment (textures, camera, lights) and com-
positing settings can also be automated in the future. The image-mask pairs (red) are the result of
frame-by-frame animation rendering for each individual G-code file.

The functional component of the repository [59] was used as a basis for importing G-
code files into the graphics engine. To create photorealistic renders, scenes similar to real
physical environments were created in Blender. The position of the camera, as well as the
degree of illumination and the locations of light sources, were chosen to closely match the
actual workspace (Figure 4).

Figure 4. Blender scene—user window (left) and virtual camera viewport (right); 1––printing
bed/ground surface texture, 2—background image plane simulating ambient environment, 3—ren-
dered manufactured part, 4—light sources with variable locations, 5—camera with variable loca-
tion.

The whole scene, in addition to the printed part, includes components such as point
light sources to create diverse heterogeneous all-round illumination; the “Sun”, to create
uniform background lighting; a flat printing surface with realistic texture and reflectivity;
and a plane with a superimposed blurred background image to create an illusion of a
defocused ambient environment. Figure 5 illustrates several examples of realistic textures
for the printing bed/ground surface plane.

Figure 5. Texture samples for the printing bed/ground surface. More than 15 photographs of sur-
faces such as wood, metal, paper, stone, and others were superimposed onto the virtual working
area. Variations in lighting, cropping, scaling, and image orientation during animation allow the
creation of unique backgrounds.

Figure 4. Blender scene—user window (left) and virtual camera viewport (right); 1—-printing
bed/ground surface texture, 2—background image plane simulating ambient environment, 3—rendered
manufactured part, 4—light sources with variable locations, 5—camera with variable location.

The whole scene, in addition to the printed part, includes components such as point
light sources to create diverse heterogeneous all-round illumination; the “Sun”, to create
uniform background lighting; a flat printing surface with realistic texture and reflectivity;
and a plane with a superimposed blurred background image to create an illusion of a
defocused ambient environment. Figure 5 illustrates several examples of realistic textures
for the printing bed/ground surface plane.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 6 of 19

Figure 3. Synthetic AM database creation pipeline. Each 3D part, in the form of an STL (green) file,
is converted into a set of printer tool head trajectories (G-code, blue), which is the input parameter
of the automated scripted section (gray). Blender environment (textures, camera, lights) and com-
positing settings can also be automated in the future. The image-mask pairs (red) are the result of
frame-by-frame animation rendering for each individual G-code file.

The functional component of the repository [59] was used as a basis for importing G-
code files into the graphics engine. To create photorealistic renders, scenes similar to real
physical environments were created in Blender. The position of the camera, as well as the
degree of illumination and the locations of light sources, were chosen to closely match the
actual workspace (Figure 4).

Figure 4. Blender scene—user window (left) and virtual camera viewport (right); 1––printing
bed/ground surface texture, 2—background image plane simulating ambient environment, 3—ren-
dered manufactured part, 4—light sources with variable locations, 5—camera with variable loca-
tion.

The whole scene, in addition to the printed part, includes components such as point
light sources to create diverse heterogeneous all-round illumination; the “Sun”, to create
uniform background lighting; a flat printing surface with realistic texture and reflectivity;
and a plane with a superimposed blurred background image to create an illusion of a
defocused ambient environment. Figure 5 illustrates several examples of realistic textures
for the printing bed/ground surface plane.

Figure 5. Texture samples for the printing bed/ground surface. More than 15 photographs of sur-
faces such as wood, metal, paper, stone, and others were superimposed onto the virtual working
area. Variations in lighting, cropping, scaling, and image orientation during animation allow the
creation of unique backgrounds.

Figure 5. Texture samples for the printing bed/ground surface. More than 15 photographs of surfaces
such as wood, metal, paper, stone, and others were superimposed onto the virtual working area.
Variations in lighting, cropping, scaling, and image orientation during animation allow the creation
of unique backgrounds.

The color of the plastic material and the surface characteristics of the printed part
were created and adjusted empirically using a rich library of Blender shaders [60]. When
simulating surface irregularities, the Noise Texture [61] and Voronoi Texture [62] nodes
were used to add Perlin and Worley noises, respectively, while the “Bump” node was added
to adjust the overall roughness. The Mix node was used to balance the Voronoi and Noise
textures to create the desired roughness characteristics. Photorealistic color, transparency,

J. Manuf. Mater. Process. 2024, 8, 66 7 of 19

and reflection parameters were obtained through the combination of Principled [63] (adds
multiple layers to vary color, reflection, sheen, transmission, and other parameters), Glossy [64]
(adds reflection with microfacet distribution), Diffuse [65] (adds Lambertian and Oren–Nayar
diffuse reflections), and Transparent [66] (adds transparency without refraction) Bidirectional
Scattering Distribution Functions (BSDFs) (Figure 6). Mix shaders 1 to 3 were used to adjust
the strength of each BSDF component in the material output.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 7 of 19

The color of the plastic material and the surface characteristics of the printed part
were created and adjusted empirically using a rich library of Blender shaders [60]. When
simulating surface irregularities, the Noise Texture [61] and Voronoi Texture [62] nodes
were used to add Perlin and Worley noises, respectively, while the “Bump” node was
added to adjust the overall roughness. The Mix node was used to balance the Voronoi and
Noise textures to create the desired roughness characteristics. Photorealistic color, trans-
parency, and reflection parameters were obtained through the combination of Principled
[63] (adds multiple layers to vary color, reflection, sheen, transmission, and other param-
eters), Glossy [64] (adds reflection with microfacet distribution), Diffuse [65] (adds Lam-
bertian and Oren–Nayar diffuse reflections), and Transparent [66] (adds transparency
without refraction) Bidirectional Scattering Distribution Functions (BSDFs) (Figure 6). Mix
shaders 1 to 3 were used to adjust the strength of each BSDF component in the material
output.

Figure 6. The shading node network has been experimentally developed to achieve maximum real-
ism of generated renders. The creation of all connections and node settings is fully automated in the
code, which provides the flexibility to adjust the color, transparency, reflectivity, and other charac-
teristics of the output material (red).

A detailed example of the creation of such a texture is shown in Figure 7. The Princi-
pled BSDF node represents an elementary material. Adding Diffuse, Glossy, and Trans-
parent shaders allows material variations to create a desirable effect. Adding different
types of noise can simulate realistic unevenness and deviations in elevation in a surface
map. The provided selection and hierarchy of BSDF shaders were chosen experimentally,
and the desired result may be achieved in multiple alternative ways.

Figure 7. Detailed example of texture creation. (a) Single Principled BSDF node; (b) Principled BSDF
node mixed with Glossy, Diffuse, and Transparent BSDFs; (c) combined BSDF material with Noise
and Voronoi textures; (d) final output with added color ramp nodes to truncate the Bump heights
and create transmission anisotropy in the Principled BSDF.

The developed shading node network does not reflect all possible and constantly ex-
panding varieties of available 3D printing materials, but provides end users with an initial

Figure 6. The shading node network has been experimentally developed to achieve maximum realism
of generated renders. The creation of all connections and node settings is fully automated in the code,
which provides the flexibility to adjust the color, transparency, reflectivity, and other characteristics of
the output material (red).

A detailed example of the creation of such a texture is shown in Figure 7. The Princi-
pled BSDF node represents an elementary material. Adding Diffuse, Glossy, and Transpar-
ent shaders allows material variations to create a desirable effect. Adding different types of
noise can simulate realistic unevenness and deviations in elevation in a surface map. The
provided selection and hierarchy of BSDF shaders were chosen experimentally, and the
desired result may be achieved in multiple alternative ways.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 7 of 19

The color of the plastic material and the surface characteristics of the printed part
were created and adjusted empirically using a rich library of Blender shaders [60]. When
simulating surface irregularities, the Noise Texture [61] and Voronoi Texture [62] nodes
were used to add Perlin and Worley noises, respectively, while the “Bump” node was
added to adjust the overall roughness. The Mix node was used to balance the Voronoi and
Noise textures to create the desired roughness characteristics. Photorealistic color, trans-
parency, and reflection parameters were obtained through the combination of Principled
[63] (adds multiple layers to vary color, reflection, sheen, transmission, and other param-
eters), Glossy [64] (adds reflection with microfacet distribution), Diffuse [65] (adds Lam-
bertian and Oren–Nayar diffuse reflections), and Transparent [66] (adds transparency
without refraction) Bidirectional Scattering Distribution Functions (BSDFs) (Figure 6). Mix
shaders 1 to 3 were used to adjust the strength of each BSDF component in the material
output.

Figure 6. The shading node network has been experimentally developed to achieve maximum real-
ism of generated renders. The creation of all connections and node settings is fully automated in the
code, which provides the flexibility to adjust the color, transparency, reflectivity, and other charac-
teristics of the output material (red).

A detailed example of the creation of such a texture is shown in Figure 7. The Princi-
pled BSDF node represents an elementary material. Adding Diffuse, Glossy, and Trans-
parent shaders allows material variations to create a desirable effect. Adding different
types of noise can simulate realistic unevenness and deviations in elevation in a surface
map. The provided selection and hierarchy of BSDF shaders were chosen experimentally,
and the desired result may be achieved in multiple alternative ways.

Figure 7. Detailed example of texture creation. (a) Single Principled BSDF node; (b) Principled BSDF
node mixed with Glossy, Diffuse, and Transparent BSDFs; (c) combined BSDF material with Noise
and Voronoi textures; (d) final output with added color ramp nodes to truncate the Bump heights
and create transmission anisotropy in the Principled BSDF.

The developed shading node network does not reflect all possible and constantly ex-
panding varieties of available 3D printing materials, but provides end users with an initial

Figure 7. Detailed example of texture creation. (a) Single Principled BSDF node; (b) Principled BSDF
node mixed with Glossy, Diffuse, and Transparent BSDFs; (c) combined BSDF material with Noise
and Voronoi textures; (d) final output with added color ramp nodes to truncate the Bump heights
and create transmission anisotropy in the Principled BSDF.

The developed shading node network does not reflect all possible and constantly
expanding varieties of available 3D printing materials, but provides end users with an initial
set of tools to change color, texture, and transparency parameters to achieve the required
effects. The developed materials are available in the open-source file repository [56].

J. Manuf. Mater. Process. 2024, 8, 66 8 of 19

The G-code parsing procedure heavily utilizes the functionality of the Blender applica-
tion programming interface [67], which provides access to the properties of all shader nodes
used in the scene. The entire animation process is scripted with randomized locations of the
camera, light sources, and printing bed/ground surface plane in timeline keyframes, while
the graphics engine adds intermediate frames by interpolation. Most of the G-codes were
used twice with different levels of part completion, material color, print surface texture,
light source locations, and camera orientations.

The built-in compositing interface [68] was used to create pixel-perfect masks for each
frame (Figure 8). During the slicing procedure, each extruder path acquires its own type,
which can be visualized in pseudo colors in the slicing environment (Figure 9). In this work,
the outer and inner walls were combined into one structural element “shell”. For visual
segregation (masking) of individual scene elements (background, top layer, infill, shell, and
support), different values of the object pass index parameter [69] were set at the G-code
parsing stage. This allows each selected element to be rendered as a region filled with a
certain grayscale level.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 8 of 19

set of tools to change color, texture, and transparency parameters to achieve the required
effects. The developed materials are available in the open-source file repository [56].

The G-code parsing procedure heavily utilizes the functionality of the Blender appli-
cation programming interface [67], which provides access to the properties of all shader
nodes used in the scene. The entire animation process is scripted with randomized loca-
tions of the camera, light sources, and printing bed/ground surface plane in timeline
keyframes, while the graphics engine adds intermediate frames by interpolation. Most of
the G-codes were used twice with different levels of part completion, material color, print
surface texture, light source locations, and camera orientations.

The built-in compositing interface [68] was used to create pixel-perfect masks for each
frame (Figure 8). During the slicing procedure, each extruder path acquires its own type,
which can be visualized in pseudo colors in the slicing environment (Figure 9). In this
work, the outer and inner walls were combined into one structural element “shell”. For
visual segregation (masking) of individual scene elements (background, top layer, infill,
shell, and support), different values of the object pass index parameter [69] were set at the
G-code parsing stage. This allows each selected element to be rendered as a region filled
with a certain grayscale level.

Figure 8. The composite node network (for internal structure segmentation, in this example) assigns
user-defined color labels to each pixel in the output image, depending on whether it belongs to a
particular area (infill, shell, or support) of the rendered part. This creates a pixel-precise ground
truth mask (red) for each output image frame (red) in the animation.

The internal physics-based path tracer Cycles [70] was used to render each frame of
the animation. To reduce rendering time, the number of samples was set to 64, the total
number of light path reflections was reduced to 8, and the Reflective and Refractive Caus-
tics features were disabled. This rendering optimization may restrict the quality of the
images produced but can greatly reduce the computational load. Cycles’ performance de-
pends on the system’s computational power. An 8 GB GPU setup with a 256 × 256 render
tile size and an output image size of 1024 × 1024 pixels takes up to one minute to process
a single frame, depending on the scale and geometric complexity of the scene within the
camera viewport. Rendering an entire 50-frame animation this way can take up to one
hour.

Figure 8. The composite node network (for internal structure segmentation, in this example) assigns
user-defined color labels to each pixel in the output image, depending on whether it belongs to a
particular area (infill, shell, or support) of the rendered part. This creates a pixel-precise ground truth
mask (red) for each output image frame (red) in the animation.

The internal physics-based path tracer Cycles [70] was used to render each frame of
the animation. To reduce rendering time, the number of samples was set to 64, the total
number of light path reflections was reduced to 8, and the Reflective and Refractive Caustics
features were disabled. This rendering optimization may restrict the quality of the images
produced but can greatly reduce the computational load. Cycles’ performance depends on
the system’s computational power. An 8 GB GPU setup with a 256 × 256 render tile size
and an output image size of 1024 × 1024 pixels takes up to one minute to process a single
frame, depending on the scale and geometric complexity of the scene within the camera
viewport. Rendering an entire 50-frame animation this way can take up to one hour.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 8 of 19

set of tools to change color, texture, and transparency parameters to achieve the required
effects. The developed materials are available in the open-source file repository [56].

The G-code parsing procedure heavily utilizes the functionality of the Blender appli-
cation programming interface [67], which provides access to the properties of all shader
nodes used in the scene. The entire animation process is scripted with randomized loca-
tions of the camera, light sources, and printing bed/ground surface plane in timeline
keyframes, while the graphics engine adds intermediate frames by interpolation. Most of
the G-codes were used twice with different levels of part completion, material color, print
surface texture, light source locations, and camera orientations.

The built-in compositing interface [68] was used to create pixel-perfect masks for each
frame (Figure 8). During the slicing procedure, each extruder path acquires its own type,
which can be visualized in pseudo colors in the slicing environment (Figure 9). In this
work, the outer and inner walls were combined into one structural element “shell”. For
visual segregation (masking) of individual scene elements (background, top layer, infill,
shell, and support), different values of the object pass index parameter [69] were set at the
G-code parsing stage. This allows each selected element to be rendered as a region filled
with a certain grayscale level.

Figure 8. The composite node network (for internal structure segmentation, in this example) assigns
user-defined color labels to each pixel in the output image, depending on whether it belongs to a
particular area (infill, shell, or support) of the rendered part. This creates a pixel-precise ground
truth mask (red) for each output image frame (red) in the animation.

The internal physics-based path tracer Cycles [70] was used to render each frame of
the animation. To reduce rendering time, the number of samples was set to 64, the total
number of light path reflections was reduced to 8, and the Reflective and Refractive Caus-
tics features were disabled. This rendering optimization may restrict the quality of the
images produced but can greatly reduce the computational load. Cycles’ performance de-
pends on the system’s computational power. An 8 GB GPU setup with a 256 × 256 render
tile size and an output image size of 1024 × 1024 pixels takes up to one minute to process
a single frame, depending on the scale and geometric complexity of the scene within the
camera viewport. Rendering an entire 50-frame animation this way can take up to one
hour.

Figure 9. 3D model slicing procedure. (a) Whole part in STL format. (b) Internal structure of sliced
layers (red—outer shell, green—inner shell, yellow—infill, blue—support). (c) Side view illustrates
current printing layer (top layer at each manufacturing stage).

J. Manuf. Mater. Process. 2024, 8, 66 9 of 19

(3) Synthetic image datasets: For the further task of semantic segmentation, three separate
datasets were created (Figure 10). A total of 5763 1024 × 1024 pixel image–mask pairs were
generated for the segmentation of the entire 3D-printed part; 3570 for the top layer segmen-
tation; and 1140 for the infill, shell, and support (internal layer structure) segmentation.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 9 of 19

Figure 9. 3D model slicing procedure. (a) Whole part in STL format. (b) Internal structure of sliced
layers (red—outer shell, green—inner shell, yellow—infill, blue—support). (c) Side view illustrates
current printing layer (top layer at each manufacturing stage).

(3) Synthetic image datasets: For the further task of semantic segmentation, three sep-
arate datasets were created (Figure 10). A total of 5763 1024 × 1024 pixel image–mask pairs
were generated for the segmentation of the entire 3D-printed part; 3570 for the top layer
segmentation; and 1140 for the infill, shell, and support (internal layer structure) segmen-
tation.

Figure 10. Image-mask pair samples for each AM synthetic dataset. (a) Whole part segmentation.
(b) Top layer segmentation. (c) Internal layer segmentation.

3.2. Semantic Image Segmentation
Minaee et al. [32], as well as Ulku and Akagunduz [40], presented a comprehensive

overview of the modern research state in the field of semantic segmentation. As can be
seen from the works [71–73], the U-Net family of neural network architectures has demon-
strated high segmentation efficiency with small amounts of training data. The DeepLab
architecture, in turn, is one of the basic architectures for subsequent domain adaptation
[74–76].

This work employs the U-Net architecture [77] and its multi-class adaptation [78] due
to its efficiency and simplicity.

3.3. Image-to-Image Translation
To potentially improve the efficiency of semantic segmentation, the application of the

unpaired image-to-image translation method based on the CycleGAN network [39] was
considered. The given method learns the mapping between the source domain (real im-
ages) and the target domain (synthetic images) by minimizing the cycle consistency loss
LC (Figure 11) in the absence of paired data samples.

Figure 10. Image-mask pair samples for each AM synthetic dataset. (a) Whole part segmentation.
(b) Top layer segmentation. (c) Internal layer segmentation.

3.2. Semantic Image Segmentation

Minaee et al. [32], as well as Ulku and Akagunduz [40], presented a comprehensive
overview of the modern research state in the field of semantic segmentation. As can
be seen from the works [71–73], the U-Net family of neural network architectures has
demonstrated high segmentation efficiency with small amounts of training data. The
DeepLab architecture, in turn, is one of the basic architectures for subsequent domain
adaptation [74–76].

This work employs the U-Net architecture [77] and its multi-class adaptation [78] due
to its efficiency and simplicity.

3.3. Image-to-Image Translation

To potentially improve the efficiency of semantic segmentation, the application of
the unpaired image-to-image translation method based on the CycleGAN network [39]
was considered. The given method learns the mapping between the source domain (real
images) and the target domain (synthetic images) by minimizing the cycle consistency loss
LC (Figure 11) in the absence of paired data samples.

J. Manuf. Mater. Process. 2024, 8, 66 10 of 19J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 10 of 19

Figure 11. Unpaired image-to-image translation using the cycle-consistent adversarial network.
Handpicked images of real and virtual printed parts were loaded into CycleGAN, which learns to
map real domain images to their synthetic counterparts and vice versa, minimizing the cycle con-
sistency loss LC. Here, the red and blue circles represent the same image presented in different do-
mains.

For this task, we manually selected 589 synthetic renders and 794 real images of 3D-
printed parts. The learning result is two generators that convert the original images of the
real domain into their synthetic counterparts, and vice versa (Figure 12).

As can be seen from Figure 12, translating a synthetic render into a real image makes
colors more natural, while translating a real image into a synthetic one also reduces the
contrast and saturation of both reflections on the printing bed/ground surface and inci-
dental filament strings. This characteristic can improve segmentation in mediocre images.

Figure 11. Unpaired image-to-image translation using the cycle-consistent adversarial network.
Handpicked images of real and virtual printed parts were loaded into CycleGAN, which learns to map
real domain images to their synthetic counterparts and vice versa, minimizing the cycle consistency
loss LC. Here, the red and blue circles represent the same image presented in different domains.

For this task, we manually selected 589 synthetic renders and 794 real images of 3D-
printed parts. The learning result is two generators that convert the original images of the
real domain into their synthetic counterparts, and vice versa (Figure 12).

As can be seen from Figure 12, translating a synthetic render into a real image makes
colors more natural, while translating a real image into a synthetic one also reduces the con-
trast and saturation of both reflections on the printing bed/ground surface and incidental
filament strings. This characteristic can improve segmentation in mediocre images.

J. Manuf. Mater. Process. 2024, 8, 66 11 of 19J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 11 of 19

Figure 12. Image-to-image style translation example. Translating a real image into its synthetic ver-
sion reduces the contrast and saturation of reflections and incidental filament strings.

4. Results
The results of the semantic segmentation are presented using several real images,

presented in Figure 13. The training of the neural network was carried out on synthetic
renders without using the style translation technique.

Figure 12. Image-to-image style translation example. Translating a real image into its synthetic
version reduces the contrast and saturation of reflections and incidental filament strings.

4. Results

The results of the semantic segmentation are presented using several real images,
presented in Figure 13. The training of the neural network was carried out on synthetic
renders without using the style translation technique.

Quantitative results are shown in Table 1. Test datasets include synthetic renders of
STL models, both those included in the training dataset and those not included in it. The
3D models included in the training dataset have had their color, angle, and environmental
parameters changed to avoid matching the data the model was trained on.

J. Manuf. Mater. Process. 2024, 8, 66 12 of 19J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 12 of 19

Figure 13. The results of semantic segmentation, presented using several real images. The neural
network was trained on similar synthetic 3D models. The color, printing surface texture, and slicing
parameters, however, differ from those used in the training dataset.

Quantitative results are shown in Table 1. Test datasets include synthetic renders of
STL models, both those included in the training dataset and those not included in it. The
3D models included in the training dataset have had their color, angle, and environmental
parameters changed to avoid matching the data the model was trained on.

Table 1. Segmentation results for synthetic test datasets (mIoU scores, %).

No. of Images Test Dataset Background Top Layer Shell Support Infill
89 Whole part segmentation (real images) 78.16 — — — —

101 Whole part segmentation (synthetic render images) 94.90 — — — —
68 Top layer segmentation (synthetic renders) 99.74 73.33 — — —
57 Internal structure segmentation (synthetic renders) 94.52 — 55.31 69.45 78.93

The intersection over union (IoU) quantifies the degree of overlap (from 0 to 100%)
between the ground truth mask and the segmented pixel area of its predicted version,
where a larger value indicates a more accurate segmentation, and the mIoU is the mean
IoU value across the correspondent classes in the dataset. The calculation of mIoU scores
for the real images was carried out only for the segmentation of the entire part, since ob-
taining manually-labeled ground truth masks for the top layer and the internal structure
of the part is a nontrivial task, considering the geometric complexity of the filling ele-
ments.

As can be seen from Table 1, the segmentation accuracy on real images (78.16%) is
inferior to that of the synthetic data (94.90%), which indicates the need for additional re-
search on domain adaptation. Detecting the top layer is a more complex task for the neural

Figure 13. The results of semantic segmentation, presented using several real images. The neural
network was trained on similar synthetic 3D models. The color, printing surface texture, and slicing
parameters, however, differ from those used in the training dataset.

Table 1. Segmentation results for synthetic test datasets (mIoU scores, %).

No. of Images Test Dataset Background Top Layer Shell Support Infill

89 Whole part segmentation (real images) 78.16 — — — —

101 Whole part segmentation (synthetic render images) 94.90 — — — —

68 Top layer segmentation (synthetic renders) 99.74 73.33 — — —

57 Internal structure segmentation (synthetic renders) 94.52 — 55.31 69.45 78.93

The intersection over union (IoU) quantifies the degree of overlap (from 0 to 100%)
between the ground truth mask and the segmented pixel area of its predicted version,
where a larger value indicates a more accurate segmentation, and the mIoU is the mean IoU
value across the correspondent classes in the dataset. The calculation of mIoU scores for
the real images was carried out only for the segmentation of the entire part, since obtaining
manually-labeled ground truth masks for the top layer and the internal structure of the
part is a nontrivial task, considering the geometric complexity of the filling elements.

As can be seen from Table 1, the segmentation accuracy on real images (78.16%) is
inferior to that of the synthetic data (94.90%), which indicates the need for additional
research on domain adaptation. Detecting the top layer is a more complex task for the
neural network compared to segmenting the entire part, which is clearly noticeable in
the results within the same dataset (mIoU 73.33% for the top layer, versus 99.74% for the
background). Shell segmentation has the lowest score (mIoU 55.31%). This, apparently, is
due to the variety of geometric shapes and the lack of a characteristic texture that the infill
and support areas have. The segmentation efficiency of individual part elements depends

J. Manuf. Mater. Process. 2024, 8, 66 13 of 19

on their geometric complexity and the key factor for effective semantic segmentation is the
number of image–mask pairs. With the developed open-source methodology, this database
can be significantly expanded by end users, which will lead to increased segmentation
accuracy among all available categories.

To analyze the influence of style transfer (ST) on semantic segmentation, separate
CNN training of three datasets of one part was carried out (Figure 14). Synthetic and real
datasets consist of 49 and 36 image–mask pairs, respectively.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 13 of 19

network compared to segmenting the entire part, which is clearly noticeable in the results
within the same dataset (mIoU 73.33% for the top layer, versus 99.74% for the back-
ground). Shell segmentation has the lowest score (mIoU 55.31%). This, apparently, is due
to the variety of geometric shapes and the lack of a characteristic texture that the infill and
support areas have. The segmentation efficiency of individual part elements depends on
their geometric complexity and the key factor for effective semantic segmentation is the
number of image–mask pairs. With the developed open-source methodology, this data-
base can be significantly expanded by end users, which will lead to increased segmenta-
tion accuracy among all available categories.

To analyze the influence of style transfer (ST) on semantic segmentation, separate
CNN training of three datasets of one part was carried out (Figure 14). Synthetic and real
datasets consist of 49 and 36 image–mask pairs, respectively.

Figure 14. Datasets for the style transfer influence analysis. (a) Synthetic data. (b) Real data. (c) Real
data after style transfer. The upper row shows sample images and the lower row illustrates the
corresponding ground truth masks.

To compare the domains, we used t-distributed stochastic neighbor embedding (t-
SNE) [79,80] projections of the normalized bottleneck layers of trained U-Net models (Fig-
ure 14). The nonlinear dimensionality reduction technique was applied to 512-dimen-
sional normalized vectors in the narrowest parts of the trained models to visualize the
affinity of the domains in latent feature space. As can be seen from Figure 15a, the feature
space of the real domain (orange) is getting closer to synthetic data (blue) after the image-
to-image style translation (black).

Figure 14. Datasets for the style transfer influence analysis. (a) Synthetic data. (b) Real data. (c) Real
data after style transfer. The upper row shows sample images and the lower row illustrates the
corresponding ground truth masks.

To compare the domains, we used t-distributed stochastic neighbor embedding
(t-SNE) [79,80] projections of the normalized bottleneck layers of trained U-Net mod-
els (Figure 14). The nonlinear dimensionality reduction technique was applied to 512-
dimensional normalized vectors in the narrowest parts of the trained models to visualize
the affinity of the domains in latent feature space. As can be seen from Figure 15a, the
feature space of the real domain (orange) is getting closer to synthetic data (blue) after the
image-to-image style translation (black).

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 14 of 19

Figure 15. Domain comparison via t-SNE projections (a), and segmentation performance before and
after style translation (b).

In addition to t-SNE projections, the segmentation performance of the real image data
after ST was also analyzed (Figure 15b). The heatmap columns represent the data on
which the neural network model was trained, and the rows stand for the input data to
which segmentation was applied. The highest mIoU, as expected, was observed in those
datasets on which the model was trained. When converting the real input data into ST
using image-to-image translation, however, the segmentation score increased from
61.10% to 75.19% for the model trained solely on synthetic data. This parameter is the most
valuable, since in real conditions, training a convolutional network on real data may not
be possible due to the lack of ground truth masks. This indicates that the ST method as a
precursor to domain adaptation can significantly improve real 3D printing image segmen-
tation in situations where a model trained on synthetic data may be the only tool available.
The sample results of image segmentation before and after style translation are shown in
Figure 16.

As can be seen from Figure 16, real-to-synthetic style transferring reduces the satura-
tion of the incidental filament strings and reflections on the printing platform, which, in
turn, affects the results of semantic segmentation. Image-to-image translation, therefore,
could be a powerful tool in further improving segmentation performance through domain
adaptation techniques.

This work continues the previous authors’ research on the use of physical rendering
and demonstrates the significant potential of using synthetic data and machine learning
in the field of additive manufacturing. Due to the relative simplicity of virtual printing
and training data generation, segmentation of the contours of a manufactured part can be
performed at every stage of its creation using a single camera in an arbitrary position. This
reduces the requirements for camera calibration and eliminates the need to use visual
markers to tightly bind the image frame to the coordinate system of the 3D printing space.
It also offers the flexibility to be used on any type of 3D printing system with the addition
of an after-market camera.

The limitations of the developed method are the need to create synthetic images and
increase the training dataset for each new manufactured part, as well as the implementa-
tion of transfer learning to improve the segmentation accuracy. Additional research is also
required in the field of domain adaptation applications based on existing state-of-the-art
techniques [81–83].

Together with edge-based markerless tracking [84,85], the developed technique can
become an integral part of a 3D printing control and monitoring system such as OctoPrint
[86]. In the future, this will make it possible to implement an inline comprehensive system
for recognizing the type of part being produced and determining its location and orienta-
tion in the workspace, as well as for tracking its manufacturing deviations.

Figure 15. Domain comparison via t-SNE projections (a), and segmentation performance before and
after style translation (b).

J. Manuf. Mater. Process. 2024, 8, 66 14 of 19

In addition to t-SNE projections, the segmentation performance of the real image data
after ST was also analyzed (Figure 15b). The heatmap columns represent the data on which
the neural network model was trained, and the rows stand for the input data to which
segmentation was applied. The highest mIoU, as expected, was observed in those datasets
on which the model was trained. When converting the real input data into ST using image-
to-image translation, however, the segmentation score increased from 61.10% to 75.19% for
the model trained solely on synthetic data. This parameter is the most valuable, since in
real conditions, training a convolutional network on real data may not be possible due to
the lack of ground truth masks. This indicates that the ST method as a precursor to domain
adaptation can significantly improve real 3D printing image segmentation in situations
where a model trained on synthetic data may be the only tool available. The sample results
of image segmentation before and after style translation are shown in Figure 16.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 15 of 19

Figure 16. The results of image segmentation before and after style translation. Real-to-synthetic
style transfer reduces the saturation of the incidental filament strings and reflections on the printing
platform, which, in turn, affects the results of semantic segmentation.

5. Discussion and Conclusions
The proposed method is a novel approach to segmenting key regions of a part during

its fabrication utilizing the information in the G-code and synthetic image data. The se-
mantic segmentation framework for additive manufacturing can enhance the visual anal-
ysis of manufacturing processes and allow the detection of individual manufacturing er-
rors, while significantly reducing the requirements for positioning accuracy and camera
calibration.

The results of this work will allow the localization of 3D-printed parts in captured
image frames, as well as the application of image processing techniques to the parts’ struc-
tural elements to follow the tracking of manufacturing deviations. The use of image style
transfer is of significant value for further research in the field of adapting the domain of
synthetic renders to real images of 3D-printed products.

The methodology demonstrated achieved the following mIoU scores for the synthetic
test datasets: entire printed part, 94.90%; top layer, 73.33%; infill, 78.93%; shell, 55.31%;
support, 69.45%. Increasing the number of image–mask pairs used for training neural net-
works will improve segmentation accuracy. The results illustrate the effectiveness of the
developed method, but also indicate the need for additional experiments to eliminate the
synthetic-to-real domain gap.

This research presents ways to expand the number of segmentation categories by us-
ing the information in the G-code about the characteristics of separate extruded sections.
Further study, however, is required to analyze the impacts of material and texture
shaders, as well as lighting and rendering parameters, on segmentation efficiency.

Figure 16. The results of image segmentation before and after style translation. Real-to-synthetic
style transfer reduces the saturation of the incidental filament strings and reflections on the printing
platform, which, in turn, affects the results of semantic segmentation.

As can be seen from Figure 16, real-to-synthetic style transferring reduces the satura-
tion of the incidental filament strings and reflections on the printing platform, which, in
turn, affects the results of semantic segmentation. Image-to-image translation, therefore,
could be a powerful tool in further improving segmentation performance through domain
adaptation techniques.

This work continues the previous authors’ research on the use of physical rendering
and demonstrates the significant potential of using synthetic data and machine learning
in the field of additive manufacturing. Due to the relative simplicity of virtual printing
and training data generation, segmentation of the contours of a manufactured part can
be performed at every stage of its creation using a single camera in an arbitrary position.

J. Manuf. Mater. Process. 2024, 8, 66 15 of 19

This reduces the requirements for camera calibration and eliminates the need to use visual
markers to tightly bind the image frame to the coordinate system of the 3D printing space.
It also offers the flexibility to be used on any type of 3D printing system with the addition
of an after-market camera.

The limitations of the developed method are the need to create synthetic images and
increase the training dataset for each new manufactured part, as well as the implementation
of transfer learning to improve the segmentation accuracy. Additional research is also
required in the field of domain adaptation applications based on existing state-of-the-art
techniques [81–83].

Together with edge-based markerless tracking [84,85], the developed technique can
become an integral part of a 3D printing control and monitoring system such as Octo-
Print [86]. In the future, this will make it possible to implement an inline comprehensive
system for recognizing the type of part being produced and determining its location and
orientation in the workspace, as well as for tracking its manufacturing deviations.

5. Discussion and Conclusions

The proposed method is a novel approach to segmenting key regions of a part during
its fabrication utilizing the information in the G-code and synthetic image data. The seman-
tic segmentation framework for additive manufacturing can enhance the visual analysis of
manufacturing processes and allow the detection of individual manufacturing errors, while
significantly reducing the requirements for positioning accuracy and camera calibration.

The results of this work will allow the localization of 3D-printed parts in captured
image frames, as well as the application of image processing techniques to the parts’
structural elements to follow the tracking of manufacturing deviations. The use of image
style transfer is of significant value for further research in the field of adapting the domain
of synthetic renders to real images of 3D-printed products.

The methodology demonstrated achieved the following mIoU scores for the synthetic
test datasets: entire printed part, 94.90%; top layer, 73.33%; infill, 78.93%; shell, 55.31%;
support, 69.45%. Increasing the number of image–mask pairs used for training neural
networks will improve segmentation accuracy. The results illustrate the effectiveness of the
developed method, but also indicate the need for additional experiments to eliminate the
synthetic-to-real domain gap.

This research presents ways to expand the number of segmentation categories by
using the information in the G-code about the characteristics of separate extruded sections.
Further study, however, is required to analyze the impacts of material and texture shaders,
as well as lighting and rendering parameters, on segmentation efficiency.

Revealing this system to end users will allow constant expansion of the synthetic
image database for subsequent neural network training and improvement of segmentation
results. Integrating it with web-based 3D printing control systems can help to perform
layer-wise analysis of manufactured parts, and also help to classify and track failures based
on their bonding to a particular area of the model.

Author Contributions: Conceptualization, A.P. and J.M.P.; methodology, A.P. and J.M.P.; software,
A.P., H.S. and H.D.; validation, A.P., H.S. and H.D.; formal analysis, A.P. and J.M.P.; resources, A.P.
and J.M.P.; data curation, A.P., H.S. and H.D.; writing—original draft preparation, A.P., H.S., H.D. and
J.M.P.; writing—review and editing, J.M.P. and A.P.; visualization, A.P., H.S. and H.D.; supervision,
J.M.P.; project administration, J.M.P. and A.P.; funding acquisition, J.M.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Thompson Endowments and the Natural Sciences and
Engineering Research Council of Canada.

Data Availability Statement: The data and source code for this project can be obtained from the
Open Science Framework (OSF) repository, under J.M. Pearce, A. Petsiuk, Synthetic-to-real com-
posite semantic segmentation in additive manufacturing; OSF Source file repository. Available at
https://osf.io/h8r45 (accessed on 27 March 2024).

https://osf.io/h8r45

J. Manuf. Mater. Process. 2024, 8, 66 16 of 19

Acknowledgments: The authors would like to thank Heinz Lopmeier for permission to use his code
as a basis template for G-code parsing, as well as Doug Everett and Kenneth Jiang for access to
Spaghetti Detective’s user performance database.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of all Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [CrossRef]

[PubMed]
2. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs From

Land Into the Ocean. Science 2015, 347, 768–771. [CrossRef] [PubMed]
3. Laplume, A.O.; Petersen, B.; Pearce, J.M. Global value chains from a 3D printing perspective. J. Int. Bus. Stud. 2016, 47, 595–609.

[CrossRef]
4. Petersen, E.E.; Pearce, J.M. Emergence of home manufacturing in the developed world: Return on investment for open-source

3-D printers. Technologies 2017, 5, 7. [CrossRef]
5. Pearce, J.M.; Qian, J.Y. Economic Impact of DIY Home Manufacturing of Consumer Products with Low-cost 3D Printing from

Free and Open Source Designs. Eur. J. Soc. Impact Circ. Econ. 2022, 3, 1–24. [CrossRef]
6. Hunt, E.; Zhang, C.; Anzalone, N.; Pearce, J.M. Polymer recycling codes for distributed manufacturing with 3-D printers. Resour.

Conserv. Recycl. 2015, 97, 24–30. [CrossRef]
7. Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications.

Procedia Manuf. 2019, 35, 1286–1296. [CrossRef]
8. Global 3D Printing Filament Market By Material, By Type, By End Use, By Region, Competition, Forecast & Opportunities, 2024.

May, 2019. Available online: https://www.reportbuyer.com/product/5778909/global-3d-printing-filament-market-by-material-
by-typeby-end-use-by-regioncompetition-forecast-and-opportunities-2024.html (accessed on 10 January 2024).

9. Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. Life-cycle economic analysis of
distributed manufacturing with open-source 3-D printers. Mechatronics 2013, 23, 713–726. [CrossRef]

10. Sharp, S.; 3DQue Systems, Vancouver, BC, Canada. Personal communication, 4 June 2022.
11. Kang, H.D. Analysis of furniture design cases using 3D printing technique. J. Korea Contents Assoc. 2015, 15, 177–186. [CrossRef]
12. Bow, J.K.; Gallup, N.; Sadat, S.A.; Pearce, J.M. Open source surgical fracture table for digitally distributed manufacturing. PLoS

ONE 2022, 17, e0270328. [CrossRef]
13. Novak, J.I.; O’Neill, J. A design for additive manufacturing case study: Fingerprint stool on a BigRep ONE. Rapid Prototyp. J. 2019,

25, 1069–1079. [CrossRef]
14. Petsiuk, A.; Lavu, B.; Dick, R.; Pearce, J.M. Waste Plastic Direct Extrusion Hangprinter. Inventions 2022, 7, 70. [CrossRef]
15. Woern, A.L.; Byard, D.J.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Fused particle fabrication 3-D printing: Recycled

materials’ optimization and mechanical properties. Materials 2018, 11, 1413. [CrossRef]
16. Oleff, A.; Kuster, B.; Stonis, M.; Overmeyer, L. Process monitoring for material extrusion additive manufacturing: A state-of-the-art

review. Prog. Addit. Manuf. 2021, 6, 705–730. [CrossRef]
17. Ceruti, A.; Liverani, A.; Bombardi, T. Augmented vision and interactive monitoring in 3D printing process. Int. J. Inter. Des.

Manuf. 2017, 11, 385–395. [CrossRef]
18. Nuchitprasitchai, S.; Roggemann, M.C.; Pearce, J.M. Factors effecting real-time optical monitoring of fused filament 3D printing.

Prog. Addit. Manuf. J. 2017, 2, 133–149. [CrossRef]
19. Johnson, A.; Zarezadeh, H.; Han, X.; Bibb, R.; Harris, R. Establishing in-process inspection requirements for material extrusion

additive manufacturing. In Proceedings of the Fraunhofer Direct Digital Manufacturing Conference, Berlin, Germany, 16–17
March 2016.

20. Hurd, S.; Camp, C.; White, J. Quality assurance in additive manufacturing through mobile computing. In Mobile Computing,
Applications, and Services: 7th International Conference, MobiCASE 2015, Berlin, Germany, 12–13 November 2015; Springer: Cham,
Switzerland, 2015; pp. 203–220.

21. Jeong, H.; Kim, M.; Park, B.; Lee, S. Vision-Based Real-Time Layer Error Quantification for Additive Manufacturing. In
Proceedings of the International Manufacturing Science And Engineering Conference, Los Angeles, CA, USA, 4 June 2017.

22. Wasserfall, F.; Ahlers, D.; Hendrich, N. Optical In-Situ Verification of 3D-Printed Electronic Circuits. In Proceedings of the 2019
IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019;
pp. 1302–1307. [CrossRef]

23. Straub, J. 3D printing cybersecurity: Detecting and preventing attacks that seek to weaken a printed object by changing fill
level. In Proceedings of the Dimensional Optical Metrology and Inspection for Practical Applications VI, Anaheim, CA, USA,
9 June 2017. [CrossRef]

https://doi.org/10.1126/sciadv.1700782
https://www.ncbi.nlm.nih.gov/pubmed/28776036
https://doi.org/10.1126/science.1260352
https://www.ncbi.nlm.nih.gov/pubmed/25678662
https://doi.org/10.1057/jibs.2015.47
https://doi.org/10.3390/technologies5010007
https://doi.org/10.13135/2704-9906/6508
https://doi.org/10.1016/j.resconrec.2015.02.004
https://doi.org/10.1016/j.promfg.2019.06.089
https://www.reportbuyer.com/product/5778909/global-3d-printing-filament-market-by-material-by-typeby-end-use-by-regioncompetition-forecast-and-opportunities-2024.html
https://www.reportbuyer.com/product/5778909/global-3d-printing-filament-market-by-material-by-typeby-end-use-by-regioncompetition-forecast-and-opportunities-2024.html
https://doi.org/10.1016/j.mechatronics.2013.06.002
https://doi.org/10.5392/JKCA.2015.15.02.177
https://doi.org/10.1371/journal.pone.0270328
https://doi.org/10.1108/RPJ-10-2018-0278
https://doi.org/10.3390/inventions7030070
https://doi.org/10.3390/ma11081413
https://doi.org/10.1007/s40964-021-00192-4
https://doi.org/10.1007/s12008-016-0347-y
https://doi.org/10.1007/s40964-017-0027-x
https://doi.org/10.1109/COASE.2019.8842835
https://doi.org/10.1117/12.2264575

J. Manuf. Mater. Process. 2024, 8, 66 17 of 19

24. Kutzer, M.D.; DeVries, L.D.; Blas, C.D. Part monitoring and quality assessment of conformal additive manufacturing using image
reconstruction. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018. [CrossRef]

25. Chen, Z.; Horowitz, R. Vision-assisted Arm Motion Planning for Freeform 3D Printing. In Proceedings of the 2019 American
Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 4204–4209. [CrossRef]

26. Shen, H.; Du, W.; Sun, W.; Xu, Y.; Fu, J. Visual detection of surface defects based on self-feature comparison in robot 3-D printing.
Appl. Sci. 2020, 10, 235. [CrossRef]

27. Malik, A.; Lhachemi, H.; Ploennigs, J.; Ba, A.; Shorten, R. An application of 3D model reconstruction and augmented reality for
real-time monitoring of additive manufacturing. Procedia CIRP 2019, 81, 346–351. [CrossRef]

28. Petsiuk, A.; Pearce, J.M. Open source computer vision-based layerwise 3D printing analysis. Addit. Manuf. 2020, 36, 101473.
[CrossRef]

29. Petsiuk, A.; Pearce, J.M. Towards smart monitored AM: Open source in-situ layer-wise 3D printing image anomaly detection
using histograms of oriented gradients and a physics-based rendering engine. Addit. Manuf. 2022, 52, 102690. [CrossRef]

30. Spaghetti Detective. Available online: https://www.obico.io/the-spaghettidetective.html (accessed on 10 January 2024).
31. The Spaghetti Detective Plugin. Available online: https://github.com/TheSpaghettiDetective/OctoPrintTheSpaghettiDetective

(accessed on 10 January 2024).
32. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A

Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [CrossRef] [PubMed]
33. Blender: The Free and Open Source 3D Creation Suite. Available online: https://www.blender.org (accessed on 10 January 2024).
34. Csurka, G.; Volpi, R.; Chidlovskii, B. Unsupervised Domain Adaptation for Semantic Image Segmentation: A Comprehensive

Survey. arXiv 2021, arXiv:2112.03241.
35. Farahani, A.; Voghoei, S.; Rasheed, K.; Arabnia, H.R. A Brief Review of Domain Adaptation. In Advances in Data Science and

Information Engineering. Transactions on Computational Science and Computational Intelligence; Springer: Cham, Switzerland, 2021.
36. Imbusch, B.; Schwarz, M.; Behnke, S. Synthetic-to-Real Domain Adaptation using Contrastive Unpaired Translation. arXiv 2022,

arXiv:2203.09454.
37. Li, P.; Liang, X.; Jia, D.; Xing, E.P. Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption. arXiv 2018,

arXiv:1801.01726.
38. Lee, S.; Park, E.; Yi, H.; Lee, S.H. StRDAN: Synthetic-to-Real Domain Adaptation Network for Vehicle Re-Identification. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA,
13–19 June 2020.

39. Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp.
2242–2251. [CrossRef]

40. Ulku, I.; Akagund, E. A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D Images. Appl. Artif.
Intell. 2022, 36, 2032924. [CrossRef]

41. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset
for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.

42. Richter, S.R.; Vineet, V.; Roth, S.; Koltun, V. Playing for Data: Ground Truth from Computer Games. arXiv 2016, arXiv:1608.02192.
43. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images

for Semantic Segmentation of Urban Scenes. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3234–3243. [CrossRef]

44. Nikolenko, S.I. Synthetic Data for Deep Learning. SOIA; Springer: Cham, Switzerland, 2021; Volume 174. [CrossRef]
45. de Melo, C.M.; Torralba, A.; Guibas, L.; DiCarlo, J.; Chellappa, R.; Hodgins, J. Next-generation deep learning based on simulators

and synthetic data. Trends Cogn. Sci. 2022, 26, 174–187. [CrossRef] [PubMed]
46. Ward, D.; Moghadam, P.; Hudson, N. Deep Leaf Segmentation Using Synthetic Data. arXiv 2018, arXiv:1807.10931.
47. Boikov, A.; Payor, V.; Savelev, R.; Kolesnikov, A. Synthetic Data Generation for Steel Defect Detection and Classification Using

Deep Learning. Symmetry 2021, 13, 1176. [CrossRef]
48. Valizadeh, M.; Wolff, S.J. Convolutional Neural Network applications in additive manufacturing: A review. Adv. Ind. Manuf. Eng.

2022, 4, 100072. [CrossRef]
49. Banadaki, Y.; Razaviarab, N.; Fekrmandi, H.; Sharifi, S. Toward Enabling a Reliable Quality Monitoring System for Additive

Manufacturing Process using Deep Convolutional Neural Networks. arXiv 2020, arXiv:2003.08749.
50. Saluja, A.; Xie, J.; Fayazbakhsh, K. A closed-loop in-process warping detection system for fused filament fabrication using

convolutional neural networks. J. Manuf. Proc. 2020, 58, 407–415. [CrossRef]
51. Jin, Z.; Zhang, Z.; Gu, G.X. Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing

Processes Using Artificial Intelligence. Adv. Intell. Syst. 2019, 2, 1900130. [CrossRef]
52. Brion, D.A.J.; Pattinson, S.W. Generalisable 3D printing error detection and correction via multi-head neural networks. Nat.

Commun. 2022, 13, 4654. [CrossRef]

https://doi.org/10.1115/DETC2018-85370
https://doi.org/10.23919/ACC.2019.8814699
https://doi.org/10.3390/app10010235
https://doi.org/10.1016/j.procir.2019.03.060
https://doi.org/10.1016/j.addma.2020.101473
https://doi.org/10.1016/j.addma.2022.102690
https://www.obico.io/the-spaghettidetective.html
https://github.com/TheSpaghettiDetective/OctoPrintTheSpaghettiDetective
https://doi.org/10.1109/TPAMI.2021.3059968
https://www.ncbi.nlm.nih.gov/pubmed/33596172
https://www.blender.org
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1080/08839514.2022.2032924
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1007/978-3-030-75178-4
https://doi.org/10.1016/j.tics.2021.11.008
https://www.ncbi.nlm.nih.gov/pubmed/34955426
https://doi.org/10.3390/sym13071176
https://doi.org/10.1016/j.aime.2022.100072
https://doi.org/10.1016/j.jmapro.2020.08.036
https://doi.org/10.1002/aisy.201900130
https://doi.org/10.1038/s41467-022-31985-y

J. Manuf. Mater. Process. 2024, 8, 66 18 of 19

53. Wong, V.W.H.; Ferguson, M.; Law, K.H.; Lee, Y.T.; Witherell, P. Segmentation of Additive Manufacturing Defects Using U-Net.
ASME J. Comput. Inf. Sci. Eng. 2022, 22, 031005. [CrossRef]

54. Cannizzaro, D.; Varrella, A.G.; Paradiso, S.; Sampieri, R.; Chen, Y.; Macii, A.; Patti, E.; Di Cataldo, S. In-Situ Defect Detection of
Metal Additive Manufacturing: An Integrated Framework. IEEE Trans. Emerg. Top. Comput. 2022, 10, 74–86. [CrossRef]

55. Davtalab, O.; Kazemian, A.; Yuan, X.; Khoshnevis, B. Automated inspection in robotic additive manufacturing using deep
learning for layer deformation detection. J. Intell. Manuf. 2022, 33, 771–784. [CrossRef]

56. Pearce, J.M.; Petsiuk, A. Synthetic-to-Real Composite Semantic Segmentation in Additive Manufacturing. OSF Source File
Repository. Available online: https://osf.io/h8r45 (accessed on 10 January 2024).

57. Thingiverse: An Open Catalog of Computer-Aided Designs for 3D Printing. Available online: https://www.thingiverse.com
(accessed on 10 January 2024).

58. MatterControl: 3D Printing Software. Available online: https://www.matterhackers.com/store/l/mattercontrol/sk/
MKZGTDW6 (accessed on 10 January 2024).

59. Lopmeier, H. Blender-Gcode-Importer. Available online: https://github.com/Heinz-Loepmeier/Blender-Gcode-Import (ac-
cessed on 10 January 2024).

60. Blender: Shader Nodes Library. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/index.html
(accessed on 10 January 2024).

61. Blender: Noise Texture Node. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/noise.
html (accessed on 10 January 2024).

62. Blender: Voronoi Texture Node. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/
voronoi.html (accessed on 10 January 2024).

63. Blender: Principled BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/principled.
html (accessed on 10 January 2024).

64. Blender: Glossy BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/glossy.html
(accessed on 10 January 2024).

65. Blender: Diffuse BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/diffuse.html
(accessed on 10 January 2024).

66. Blender: Transparent BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/
transparent.html (accessed on 10 January 2024).

67. Blender API. Available online: https://docs.blender.org/api/current/index.html (accessed on 10 January 2024).
68. Blender Compositing. Available online: https://docs.blender.org/manual/en/3.4/compositing/index.html (accessed on 10

January 2024).
69. Blender: Object Pass Index. Available online: https://docs.blender.org/manual/en/3.4/render/layers/passes.html (accessed on

10 January 2024).
70. Blender Cycles. Available online: https://docs.blender.org/manual/en/3.4/render/cycles/index.html (accessed on 10 Jan-

uary 2024).
71. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
72. Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going Deeper with Nested U-Structure for

Salient Object Detection. arXiv 2020, arXiv:2005.09007. [CrossRef]
73. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. UNet 3+: A Full-Scale Connected UNet

for Medical Image Segmentation. arXiv 2020, arXiv:2004.08790.
74. Toldo, M.; Michieli, U.; Zanuttigh, P. Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and Clustered

Embeddings. arXiv 2020, arXiv:2011.12616.
75. Yang, J.; Li, C.; An, W.; Ma, H.; Guo, Y.; Rong, Y.; Zhao, P.; Huang, J. Exploring Robustness of Unsupervised Domain Adaptation

in Semantic Segmentation. arXiv 2021, arXiv:2105.10843.
76. Guo, X.; Yang, C.; Li, B.; Yuan, Y. MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in

Semantic Segmentation. arXiv 2021, arXiv:2103.05254.
77. Buda, M. U-Net for Brain Segmentation. 2019. Available online: https://pytorch.org/hub/mateuszbudabrain-segmentation-

pytorchunet (accessed on 10 January 2024).
78. Battocchio, F. U-Net Architecture for Multiclass Semantic Segmentation. 2020. Available online: https://github.com/France1

/unet-multiclasspytorch (accessed on 10 January 2024).
79. Hinton, G.E.; Roweis, S.T. Stochastic Neighbor Embedding. In Advances in Neural Information Processing Systems; Becker, S., Thrun,

S., Obermayer, K., Eds.; MIT Press: Cambridge, CA, USA, 2002; Volume 15.
80. van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
81. Xu, T.; Chen, W.; Wang, P.; Wang, F.; Li, H.; Jin, R. CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation.

arXiv 2022, arXiv:2109.06165.
82. Xie, B.; Li, S.; Li, M.; Liu, C.H.; Huang, G.; Wang, G. SePiCo: SemanticGuided Pixel Contrast for Domain Adaptive Semantic

Segmentation. arXiv 2022, arXiv:2204.08808. [CrossRef] [PubMed]

https://doi.org/10.1115/1.4053078
https://doi.org/10.1109/TETC.2021.3108844
https://doi.org/10.1007/s10845-020-01684-w
https://osf.io/h8r45
https://www.thingiverse.com
https://www.matterhackers.com/store/l/mattercontrol/sk/MKZGTDW6
https://www.matterhackers.com/store/l/mattercontrol/sk/MKZGTDW6
https://github.com/Heinz-Loepmeier/Blender-Gcode-Import
https://docs.blender.org/manual/en/3.4/render/shader_nodes/index.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/noise.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/noise.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/voronoi.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/voronoi.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/principled.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/principled.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/glossy.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/diffuse.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/transparent.html
https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/transparent.html
https://docs.blender.org/api/current/index.html
https://docs.blender.org/manual/en/3.4/compositing/index.html
https://docs.blender.org/manual/en/3.4/render/layers/passes.html
https://docs.blender.org/manual/en/3.4/render/cycles/index.html
https://doi.org/10.1016/j.patcog.2020.107404
https://pytorch.org/hub/mateuszbudabrain-segmentation-pytorchunet
https://pytorch.org/hub/mateuszbudabrain-segmentation-pytorchunet
https://github.com/France1/unet-multiclasspytorch
https://github.com/France1/unet-multiclasspytorch
https://doi.org/10.1109/TPAMI.2023.3237740
https://www.ncbi.nlm.nih.gov/pubmed/37819799

J. Manuf. Mater. Process. 2024, 8, 66 19 of 19

83. Hoyer, L.; Dai, D.; Van Gool, L. HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation. arXiv 2022,
arXiv:2204.13132.

84. Han, P.; Zhao, G. A review of edge-based 3D tracking of rigid objects. Virtual Real. Intell. Hardw. 2019, 1, 580–596. [CrossRef]
85. Wang, B.; Zhong, F.; Qin, X. Robust edge-based 3D object tracking with direction-based pose validation. Multimed. Tools Appl.

2019, 78, 12307–12331. [CrossRef]
86. OctoPrint: An Open Source 3D Printer Controller Application. Available online: https://octoprint.org (accessed on 10 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.vrih.2019.10.001
https://doi.org/10.1007/s11042-018-6727-5
https://octoprint.org

	Introduction
	Background
	Methods
	Creation of Synthetic Image Datasets
	Semantic Image Segmentation
	Image-to-Image Translation

	Results
	Discussion and Conclusions
	References

