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Abstract: With the continuous expansion of Unmanned Aerial Vehicle (UAV) applications, the threat
of icing on UAV flights has garnered increased attention. Understanding the icing principles and
developing anti-icing technologies for unmanned aircraft is a crucial step in mitigating the icing
threat. However, existing research indicates that changes in Reynolds numbers have a significant
impact on the physics of ice accretion. Icing studies on aircraft operating at high Reynolds numbers
cannot be directly applied to unmanned aircraft, and mature anti-icing/deicing techniques for
manned aircraft cannot be directly utilized for UAVs. This paper firstly provides a comprehensive
overview of research on icing for fixed-wing UAVs, including various methods to study unmanned
aircraft icing and the identified characteristics of icing on unmanned aircraft. Secondly, this paper
focuses on discussing UAV anti-icing/deicing techniques, including those currently applied and
under development, and examines the advantages and disadvantages of these techniques. Finally,
the paper presents some recommendations regarding UAV icing research and the development of
anti-icing/deicing techniques.
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1. Introduction

Recently, unmanned aircraft systems have been among the most significant develop-
ments in aviation. The Unmanned Aircraft Systems Roadmap 2005–2030 [1] reports that
over 250 UAV models are currently produced in 32 countries worldwide. Initially, drones
saw military use, undertaking tasks such as aerial combat and military reconnaissance,
because they were cost-effective, posed no threat to human life, and offered extended mis-
sion times and access to complex locations that manned aircraft could not reach. Predator,
Phoenix, and Global Hawk drones have all found military applications. More recently,
UAVs have demonstrated lengthy endurance capacity, increased safety, greater intelligence,
and flexibility. Together, these qualities can effectively address the drawbacks of unsafe, less
efficient, and costlier manual operations. Consequently, UAVs are increasingly being used
across civil fields for a range of tasks—such as electricity inspections, disaster assessments,
rescue operations, aerial photography and mapping, and logistics and delivery. Notably,
during heavy rain floods in China’s Henan Province in July 2021, the fixed-wing UAV
“Pterodactyl” provided emergency communication assistance to the affected populace,
facilitating emergency relief work in the disaster region [2]. Villeneuve [3] proposed the
concept and design of using the GRIFF 135 heavy-lift rotary drone to spray anti-icing fluid
on aircraft.

Currently, the drone industry is growing rapidly worldwide, with many countries
introducing policies to meet national needs. However, drone icing is becoming a significant
issue. Ice accretion on the leading edge of the wing alters the wing geometry and reduces
the aerodynamic performance of the UAV, causing reduced lift, increased drag, and a higher

Drones 2023, 7, 709. https://doi.org/10.3390/drones7120709 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7120709
https://doi.org/10.3390/drones7120709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0009-5252-8521
https://doi.org/10.3390/drones7120709
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7120709?type=check_update&version=2


Drones 2023, 7, 709 2 of 30

risk of stalling [4]. The potential of flight icing (as seen in Figure 1 [5]) may render UAVs
inoperable in icy weather and even result in crashes. During some military operations, 25%
of UAVs experienced icing, negatively impacting mission success [6]. Three U.S. Army
General Atomics MQ-1 Predator drones crashed due to icing in Afghanistan in 2001 and
2002, and the U.S. Army’s Northrop Grumman Global Hawk drone also crashed due to
icing during Operation Enduring Freedom in Afghanistan [7].
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To mitigate the flight risk posed to UAVs by icing, current anti-icing strategies include
grounding UAVs [8] or modifying their path planning [9]. Military missions, such as
those in Kosovo, have suspended the use of Hunter drones from October to April [10],
significantly inhibiting their operation in icing conditions. Existing anti-icing/deicing
methods used for manned aircraft (e.g., anti-icing liquid, pneumatic type, electric-thermal
type, etc.) are not entirely suitable for unmanned aircraft due to their complex structure,
large mass, or high energy consumption. There is a need to develop innovative anti-
icing/deicing strategies specifically for UAVs to mitigate the risk of icing. The United
States, Canada, Russia, China, France, Turkey, and several other countries are developing
anti-icing/deicing systems for UAVs, but further research is necessary, given that the
application of such technology on UAVs is less developed and less widespread than
on airplanes.

2. Methods of Studying Ice Accretion on a UAV

Research on icing has primarily focused on manned aircraft, wind turbines, and power
lines. It was not until the early 21st century that UAVs garnered attention. Studies on
icing in manned aircraft can be traced back to 1940, while research on icing in the domain
of UAVs is relatively new and limited [11,12]. The early work on UAV icing, specifically
discussed, was published by Siquig in 1990 [11], which is considered the first explicit
discussion of UAV icing. With the increasing widespread use of UAVs, there is a growing
demand for research in the field of UAV icing.

Compared to manned aircraft, UAVs are more susceptible to ice-related hazards due
to three main reasons [13]. Firstly, the troposphere holds most of the water vapor in the
atmosphere, experiencing complex airflow and weather phenomena like thunderstorms,
fog, and low-temperature clouds. Most drones operate within the troposphere. Icing events
for aircraft primarily occur during takeoff and landing phases, whereas many UAVs face
the risk of icing throughout their entire flight process. Secondly, the smaller size of UAVs,
including their wings and propellers, compared to larger aircraft means that ice of the same
thickness has a greater impact on UAVs, increasing the probability of stalling in advance.
Thirdly, limited energy resources and the absence of anti-icing/deicing capabilities in most
UAVs restrict their ability to prevent icing. The Reynolds number, a crucial distinction
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between UAV and manned aircraft icing, is generally lower for UAVs, significantly influenc-
ing the icing process. Therefore, conducting research on UAV icing is of vital importance
for safe UAV operations and designing effective anti-icing/deicing strategies. The rotation
of the propeller of a rotary-wing drone creates additional flow complexity [14], resulting in
different icing characteristics compared to fixed-wing drones. Due to limitations in length,
this article only introduces research on icing of fixed-wing UAVs.

Experimental studies and numerical simulations are the primary methods employed
in UAV icing research.

2.1. Experimental Studies

UAV icing tests are carried out mainly through flight and wind tunnel tests.

2.1.1. Flight Tests

Flight tests, the most effective method to obtain relevant data, are limited by test
weather conditions, continuous monitoring and hence, are rare.

In 2013, Bottyán [15] performed UAV flight icing tests on two different UAVs (an
ELBIT Skylark-I LE short-range UAV and a Northrop Grumman RQ-4 Global Hawk Block
30 high-altitude, long-endurance UAV) in the Carpathian Mountains in order to develop an
ice accumulation model. In 2016, Williams et al. [16] used a prefabricated ice-like material
glued to the wing of the Kahu-Hawk UAV for aerodynamics and stability tests. In 2017,
Matiychyk et al. [17] conducted a natural icing flight test with an M-10-2 “Oko” UAV. The
results showed that the leading edge of the wing, the leading edge of the tail, the video
antenna, and the airspeed sensor’s front surface were affected by icing. With a thickness of
approximately 1.5 mm on the leading edge of the wing, the test showed that icing led to a
40% increase in drag and a 10% increase in energy consumption for drone operation, as
per flight recorder analysis. Avery [18] performed three UAV flight tests in 2019 to confirm
the icing vulnerability of small UAVs during low-altitude flights. One test revealed ice
geometries formed on the UAV’s surface due to the flight flow field, which confirmed the
influence of pressure distribution on low-speed ice accretion physics. However, the lack
of cloud signature sensors precluded the determination of atmospheric water content. In
2021, Siddique [19] conducted tests on the Sky Hunter fixed-wing UAV in three different
weather conditions: windy, calm, and icy. Glaze ice was noticeable on the leading edge
of the wing, while overflow water could be observed on the wing surface. The propeller
was covered with a thick layer of ice. In comparison to calm wind conditions, the UAV
experienced a significant increase in power consumption by approximately 240% during icy
weather, resulting in a higher demand on battery power. In 2023, Han et al. [20] conducted
a flight test to examine the characteristics of in-flight icing and its impact on fixed-wing
UAV flight performance. During the flight, extensive ice structures were observed on
almost all exposed surfaces of the UAV, such as the wings, body, stabilizers, pitot tubes,
and propellers, with water backflow observed on the wing surface, as shown in Figure 2.
When completing the same flight task, the power consumption during icing conditions was
over 80% higher than when flying under normal non-icing weather conditions.

2.1.2. Lab Tests

A wind tunnel is an experimental device that artificially creates and controls airflow to
simulate gas flow around an entity, observe physical phenomena, and measure the effect of
airflow. It is a valuable tool for aerodynamic experiments and integral to vehicle research.
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Avery and Jacob [21] conducted icing tests of cylinders at low Reynolds numbers in a
cryogenic wind tunnel, comparing experimental and numerical results. Williams et al. [16]
investigated the RG-15 airfoil in the NRC Altitude Icing Wind Tunnel in 2017. Oswald
et al. [22] conducted an experimental study using 3D printed glaze shapes to analyze the
icing performance of a medium-sized fixed-wing UAV with the RG-15 airfoil at the largest
wind tunnel facility in the Karmen Institute, Belgium. The glaze shapes were derived from
previous icing wind tunnel experiments, with their 2D profiles shown in Figure 3. Finally,
the experimental results were compared with the FENSAP numerical results.
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Hann carried out three main experimental campaigns to gather ice shape data for UAV
wings at low Reynolds numbers. In spring 2019, Hann [23] conducted experiments at the
Cranfield icing wind tunnel on the RG-15 and NREL S826 airfoils. These tests yielded three
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different icing patterns: glaze, mixed, and rime ice, with Reynolds numbers around 105. In
fall 2019, Hann et al. [24,25] performed additional icing studies on the RG15 airfoil at the
VTT icing wind tunnel facility in Finland, focusing on glaze and mixed ice conditions. In
2020, Hann expanded the experimental study to the NREL S826 airfoil, conducted at the
Norwegian University of Science and Technology wind tunnel, investigating three different
icing conditions: glaze, mixed, and rime ice [26]. Li et al. [27] examined the dynamic ice
accumulation and unsteady heat transfer processes of NACA0012 airfoils of thermoplastic
materials and aluminum, respectively, under the same icing conditions in the icing research
wind tunnel at Iowa State University.

2.2. Numerical Studies

Improved computer processing power and new computational fluid dynamics tech-
niques have made numerical simulations a cost-effective and efficient way to study ice.
Some countries have developed mature icing simulation software [28–30], including
LEWICE in the United States, ONERA Icing Code in France, FENSAP-ICE in Canada,
and so on. However, these existing icing simulation tools are validated for manned aviation
under high Reynolds numbers [23], and further validation is needed to apply them for
UAV icing simulation under low Reynolds numbers [31]. In order to better simulate the
icing and anti-icing processes of UAVs, researchers have adopted two approaches; one is to
verify the effectiveness of existing simulation tools and choose the more suitable one; the
other is to develop new models.

2.2.1. Validation of Existing Simulation Tools

Hann [32] compared the panel-based LEWICE method to a modern CFD icing code,
FENSAP-ICE. Both codes were used to generate three characteristic 2D ice shapes (rime,
glaze, and mixed) at low Reynolds numbers on a NREL S826 wing. Figure 4 presents the
simulation results for both codes. Rime results were the most similar, with both codes
calculating a good match in the extent, direction, area, and overall shape of the ice, although
three differences could be detected. Glaze and mixed ice results showed significant differ-
ences between the two icing codes. All three icing conditions in FENSAP-ICE exhibited
leading-edge separation, with varying degrees of separation strength, weakest in rime and
strongest in mixed ice. As a panel method, LEWICE is not designed to capture separation
effects, which may fail to represent critical flow features adversely affecting the prediction
of ice shapes. Therefore, LEWICE seems more appropriate for the study of UAV icing and
aerodynamic losses under rime conditions.
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Yirtici et al. [33] performed numerical icing simulations for three NREL S826 airfoils
with different spreading ratios using the XFOIL [34] panel solver. XFOIL predicted larger
ice shapes under frost conditions compared to LEWICE. In addition, the XFOIL solver
predicted drag coefficients in good agreement with experimental data, but overpredicted
lift coefficients in the low angle of attack to the stall region.

Oswald et al. [22] used the FENSAP-ICE flow solver module and the one-equation
Spalart-Allmaras (SA) turbulence model for icing simulations of the RG-15 airfoil. The
clean RG-15 airfoil was simulated in steady-state 2D RANS CFD with flow transition
locations predicted by the software tool XFOIL. Flow transitions were assumed to be
triggered by ice accumulation. Simulation parameters are derived from experimental
conditions. Comparison of the numerical results with experimental data indicated that
the SA turbulence model seemed to be of limited applicability for estimating ice-induced
aerodynamic losses at low Reynolds numbers. Other higher-order turbulence models
such as Reynolds stress and nonlinear eddy viscosity models should be investigated for
numerical simulations.

Hann et al. [26] simulated the aerodynamic losses of the NREL S826 airfoil under icing
using SA and Menter’s k-ω SST turbulence models and compared them with experimental
data. The simulations matched well with experimental data for clean and streamlined icing
airfoils, but had limitations for complex ice shapes and stall prediction. Experimental stall
behavior was not captured by either model. The SA model overpredicted lift values, while
the k-ω SST model tended to underpredict the maximum lift angle and predict earlier stall.

The flow around UAVs operating at low Reynolds numbers (O(105)) is mainly lam-
inar, leading to laminar separation bubbles (LSBs) that affect lift, drag, and pitch values.
Muhammed and Virk [35] used k-ω SST and transitional k-ω SST turbulence models to
numerically simulate and evaluate their ability to predict LSBs on the RG-15 airfoil at a
Reynolds number of 1.07 × 105. The k-ω SST turbulence model predicted fully attached
flow at lower angles of attack but failed to predict LSBs. On the other hand, the transi-
tional k-ω SST turbulence model accurately predicted LSBs but with an earlier separation
onset time.

2.2.2. Developing of New Models

Bottyán [15] developed an onboard icing estimation method with a simple ice accumu-
lation model to examine the influence of airflow temperature, liquid water content (LWC),
wing geometry, and airflow velocity on UAV wing icing.

Szilder and McIlwain [36] investigated the impact of Reynolds number on the icing
process by using a morphogenetic icing method to derive an analytical model for UAV icing.
The model was combined with a CFD solver (which could predict the Stanton number)
and a droplet trajectory solver to simulate ice accretion on the NACA0012 2D airfoil in the
Reynolds number range of 5 × 104 to 5 × 106. Some of the model’s predictions were in
close agreement with experimental results.

Avery and Jacob [21] developed a cylindrical volume icing model called ALRIA in
Matlab to study UAV icing conditions. The ALRIA model was composed of droplet flow
fields and thermal equilibrium sections, including low Reynolds number formulas for
cylindrical components in the range of Re~3 × 105–8 × 105. During ALRIA’s development,
Avery enhanced the earlier work of Langmuir et al. [37] and derived a method to calculate
droplet collection efficiency as a function of the stagnation point angle. Avery and Jacob
subsequently conducted experiments, model simulations, and LEWICE3D simulations on
chosen scenarios to compare their results. As shown in Figure 5, comparative analysis
indicated that the ALRIA model was able to simulate ice accretion under dry and most wet
icing conditions, but it performed poorly for large and thick ice accretions.

Flight experiments are costly and have limited validation. Numerical icing simulation
software and wind tunnel tests have played an important role in solving aviation icing
issues and should also be applied to UAV icing. However, there is still not enough work
done in this new field. Additionally, existing experimental and numerical results often do
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not match, perhaps due to inaccurate simulations or errors in the tests. It is necessary to
continue research on UAV icing.
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3. Advances in UAV Icing Research

Like manned aircraft, UAV icing can be affected by conditions such as free stream
velocity, atmospheric temperature, LWC, median volume diameter of droplets (MVD),
angle of attack, Reynolds number, and so on.

3.1. Typical Icing Characteristics of UAVs

Many of the characteristics of UAV icing are the same as for manned aircraft, as shown
below. As the atmospheric temperature decreases, the ice changes from glaze to mixed ice
and finally to rime [38]. The mass of ice increases with rising temperature [39]. Changes
in the angle of attack cause changes in ice accretion position [16]. Increases in LWC and
MVD lead to a greater amount of ice accretion, and the shape of ice shifts from streamlined
to angular [38]. When investigating based on the FAR 25 Appendix C icing envelope, ice
accretion is a function of temperature, LWC, and MVD. As the MVD value increases, the ice
size decreases and eventually disappears due to the decrease in LWC [40]. When the LWC
is large, a considerable amount of latent heat must be removed to freeze the impacting
droplets completely, which is favorable for glaze. However, as the potential for latent heat
removal increases at lower temperatures, the temperature also plays an important role here.

However, most unmanned drones have some typical characteristics in icing, given
their differences from manned aircraft, such as lower Reynolds numbers, smaller flight
speeds, lower flight altitudes, smaller sizes, and different body materials.

In low Reynolds number flows, a bubble can form at the leading edge of the UAV
wing, which can cause laminar-to-turbulent flow transition. Low Reynolds numbers also
impact surface heat transfer and supercooled droplet trajectory, which can, in turn, affect
the airfoil icing process. Szilder and McIlwain [36] developed an icing analysis model for
drones in 2011 to study the effect of Reynolds numbers on icing behavior. With increasing
Reynolds numbers, while holding other parameters constant, ice transformed from feathery
rime to a combination of glaze and rime and eventually to solely glaze. Flight conditions
that resulted in glaze at high Reynolds numbers might result in rime at low Reynolds
numbers. Additionally, as the Reynolds number increased, mixed ice conditions tended to
occur at colder air temperatures and lower LWCs.

Szilder and McIlwain [36] also compared ice accretion at low and high Reynolds
numbers for specific flight distances, which was crucial for understanding actual flight



Drones 2023, 7, 709 8 of 30

situations of UAVs. At a specific flight distance, as the Reynolds number increased, the
relative ice accretion size significantly decreased while the actual ice mass increased. Low
Reynolds numbers are advantageous for rime formation that lowers aerodynamic losses,
but it also increases the relative thickness of ice, which raises aerodynamic losses. Therefore,
the changes in aerodynamic characteristics during UAV flight are dependent on specific
flight conditions.

The Reynolds number is a function of chord length and velocity. Bottyán et al. [15,41]
observed in 2013 that when the ambient temperature was −4.2 ◦C, an increase in airspeed
from 10 m/s to 130 m/s would cause icing behavior to change from less dangerous dry ice
to more dangerous horn ice. In addition, it was observed that the ice accretion rate increases
with speed, and the ice accretion thickness also increases with speed. However, the ice
thickness at the stagnation point decreases and disappears completely at higher speeds.
Hann and Johansen [24] studied the effects of chord length and velocity respectively on
UAV icing based on the FENSAP-ICE software. The study revealed that airspeed had
progressively increasing effect on rime, mixed, and glaze ice. Increasing airspeed slightly
increased the relative ice thickness of rime, enlarged the droplet impact area but does not
affect its streamlined ice shape. The impact of airspeed on mixed ice was different. As the
airspeed increased, the morphology of mixed ice transitioned from rime-like to glaze-like,
resulting in reduced ice thickness and significantly increased ice limit. The impact of
airspeed on glaze was similar to that on mixed ice. At lower wind speeds, glaze on the
airfoil had a streamlined shape, but it bore less resemblance to rime compared to low-speed
mixed ice conditions. At higher speeds, the glaze formation became more complex, and the
ice limit significantly increased.

The impact of chord length was consistent across the three types of ice formation, as
shown in Figure 6. Firstly, the relative ice thickness significantly increased for smaller wing
sections. Secondly, the relative ice limit was significantly increased. Thirdly, there was no
significant impact of chord length variation on ice geometry. Greater relative ice thickness
often indicates higher aerodynamic losses. This essentially means that unmanned aircraft
are much more sensitive to icing than manned aircraft, with icing conditions rated as “trace”
or “slight” for manned aircraft potentially being severe for small unmanned aircraft [42].
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Flying altitude affects UAV icing through changes in natural environment, including
lower temperature and atmospheric pressure at higher altitudes, varying liquid water
content and droplet size. In addition, the body material of drones also plays a role in icing,
with thermop materials releasing latent heat from melting much more slowly compared to
aluminum. Li [27] found that the surface temperature near the leading edge of the wing
of the UAV model using thermoplastic material is higher, the “heating” area is larger, the
surface water flow on the wing surface is more obvious, and more complex stream ice
structures are formed at downstream positions beyond the direct impact area of supercooled
water droplets.

3.2. Changes in Aerodynamic Characteristics Caused by Icing

Reynolds number significantly affects the quantity, location, and geometry of ice
accumulation, which are closely related to performance losses [4]. In 2007, Cistriani
et al. [43] studied the aerodynamic performance of an iced UAV wing in a wind tunnel.
Maximum lift was reduced by 30% compared to a clean wing. Hann et al. [44] demonstrated
that icing increased drag, decreased lift, and lowered maximum angle of attack. Also, Hann
et al. [32] analyzed aerodynamic performance penalties of the NREL S826 wing with rime,
glaze, and mixed ice. Overall, mixed ice showed severe performance degradation followed
by glaze and rime. Fajt [39], Hann [24], and Oswald [22,45] reported high aerodynamic
losses of the RG-15 airfoil in glaze ice conditions, with drag coefficient increasing up to
170%. Szilder and Yuan reported severe aerodynamic losses of the SD7037 airfoil in glaze
conditions [46]. Simulation results showed a maximum decrease in lift coefficient of 16%,
drag coefficient increasing up to 300%, a 12% decrease in pitch moment, and an early stall
at 9◦ (clean airfoil stalled at 11◦). Hann et al. [26] conducted an analysis on the aerodynamic
degradation of the NREL S826 airfoil at different Reynolds numbers during 2020. According
to Figure 7, glaze and horn ice formations resulted in the most significant drag loss, with a
corresponding 26% loss in lift and up to a 330% increase in drag coefficient at zero angle of
attack. This substantial drag increase and changes in lift occurred due to the occurrence
of large separation bubbles resulting from the horn geometry. The study found that the
geometric shape of ice was the cause of flight performance degradation, with more complex
ice formations causing more severe degradation in performance. The effect of Reynolds
number on the results appeared to be relatively small, and higher Reynolds numbers led to
greater lift and reduced drag levels.
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The laminar separation bubble (LSB) depends on the airfoil geometry and flow velocity,
and can be observed within the Reynolds number range of 5 × 104 to 3 × 106 [47]. When
formed, the LSB alters the behavior of the boundary layer, transitioning the flow from lami-
nar pre-separation to turbulent post-reattachment. As the angle of attack increases and the
separation bubble becomes smaller in length and thickness, the LSB moves upstream [35].
At low Reynolds numbers (defined as Re < 106), where the boundary layer is thicker and the
LSB is larger in size [48], the significance of laminar flow characteristics and LSB becomes
even more pronounced. It could potentially impact ice accretion and subsequently degrade
aerodynamic performance [48]. Additionally, observations by Oo [49] revealed that flow at
low Reynolds numbers experienced delayed reattachment, increased separation, and the
possibility of secondary separation bubbles. Such intricate flow patterns at low Reynolds
numbers may explain some of the “peculiar” phenomena encountered during UAV flights
under icing conditions.

In numerical simulations, icing causes a decrease in lift and an increase in drag across
the entire range of angle of attack values [26]. However, certain experiments reveal a
sudden increase in lift when the angle of attack reaches a specific value after entering the
stall zone. This lift increase could be due to the ice shape acting as a nose-down effect [50]
or localized separation bubbles [51]. As Reynolds number decreases, the lower inertia of the
boundary layer causes trailing edge separation to occur at a lower angle of attack, resulting
in a more significant impact on lift. It explains why this anomalous behavior occurs at all
Reynolds numbers, with the most prominent effect observed at low Reynolds numbers.
Seifert and Richert [52] observed a lesser lift increase in their experiments. Similar effects at
low Reynolds numbers were recorded by Jasinski et al. [53].

Ice-induced separation bubbles (ISBs) represent another type of airflow separation
that affects the aerodynamic characteristics of an iced airfoil. ISBs form downstream of ice
accretion at the leading edge, with their size increasing along with the angle of attack, while
the starting position remains constant. High-frequency oscillations can be observed in the
transitional region between ISBs and LSBs [54]. Both Oo [49] and Bragg [4] concluded that
ISBs and LSBs exhibit similar characteristics. Oo observed an increase in lift and a decrease
in drag for an iced airfoil compared to a clean airfoil (RG-15) under specific icing conditions.
The increase in lift can be explained by the previous section. As for the decrease in drag,
the authors attribute it to the relatively larger LSBs present on the clean airfoil compared to
the ice-induced separation bubbles.

Appendix A summarizes the main findings of the UAV icing study cited in this article.
Although research on UAV icing is currently insufficient, limited research progress indicates
that icing significantly deteriorates the aerodynamic performance of UAVs, resulting in
reduced lift, increased drag, and premature stall. The reduced maximum lift negatively
impacts the stability of UAVs, whereas the heightened drag coefficient results in greater
power consumption. These penalties in aerodynamic performance are likely to restrict
the range and endurance of UAVs, thereby impacting the successful execution of their
missions [55]. It further underscores the significance of developing anti-icing/deicing
technologies for UAVs.

4. Existing Anti-Icing/Deicing Techniques for UAVs

The ice protection system (IPS) helps to minimize the negative impacts of icing on
aircraft. Conventional aircraft deicing methods use coatings, chemicals, heat, and me-
chanics [56]. Chemical methods mainly utilize liquids, heat methods include gas heating
and electric heating, and mechanical methods refer to using force to separate the ice from
the substrate, including pneumatic and electric pulse methods. While these techniques
are well established for aircraft, they are relatively new when it comes to UAVs [31]. The
inherently limited payload and low available energy of UAVs necessitate lightweight and
low-energy IPSs. Therefore, the mature anti-icing/deicing techniques used on aircraft
cannot be directly applied to UAVs and require further assessment and improvement.
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The pneumatic deicing technique [56] utilizes a high-pressure air source to rapidly
expand expansion tubes on the wing surface to break up surface ice, which is then carried
away by external airflow. This method is systematic and requires high-pressure gas sources,
pressure valves, gas pipelines, and actuated expandable tubes, making it only suitable for
large aircraft. However, the entire system is relatively heavy and burdensome for UAVs,
and there is no available literature on its use for UAV ice protection.

The liquid anti-icing/deicing technique [57,58] utilizes liquid to reduce ice adhesion
to aircraft surfaces or lower the freezing point of water on the surface. Although pri-
marily used for ground anti-icing of aircraft, some aircraft carry liquid and have specific
spraying devices to apply liquid for anti-icing/deicing during flight. The “weeping wing”
system [59] on the RQ-1B drone [60] continuously pumps a deicing liquid film onto the
wing, and liquid is also used for anti-icing/deicing on the MQ-9B UAV [61]. However, this
method has a restricted effective time and requires significant liquid consumption, which
is too heavy for drones. Therefore, the method is not ideal for anti-icing/deicing.

The hot air anti-icing/deicing technique [62] utilizes heated air from the engine to
warm aircraft components and prevent icing. This method is well established and predom-
inantly used for large passenger or military transport aircraft. However, UAVs typically
rely on electricity as their power source and are incapable of providing a hot air supply.
Consequently, this technique is not suitable for UAVs.

Coatings [63–65] primarily aim to reduce the adhesion strength of water or ice to
surfaces, making it challenging for ice to form or adhere to the structure’s surface, thus
facilitating ice removal. Although coatings are energy-efficient, they cannot completely
prevent icing. Their effectiveness is limited to delaying the freezing of water droplets on
the coating surface [66,67]. Currently, researchers are striving to combine passive anti-icing
techniques like coatings with active anti-icing/deicing methods such as heating to enhance
overall anti-icing/deicing performance [68,69].

The electric anti-icing/deicing technique utilizes electric heating elements to convert
electrical energy into heat energy. This process warms the aircraft’s skin or components,
thus achieving the desired anti-icing/deicing effect [70,71]. Anti-icing and deicing are two
different modes of an electric heating system. The anti-icing mode applies continuous heat
to the surface of a structure to prevent ice formation and is primarily used for components
where ice formation is not allowed. The deicing mode allows ice to accumulate on the
surface until a certain amount is reached, and then applies heat to melt it. The electric
heating technique is lauded as an effective anti-icing/deicing method due to its high
heating efficiency, precise control, and adaptable configuration. The Gulfstream Pilot Oper-
ating Handbook [72] suggests that the electric anti-icing system, operating continuously
under icing conditions, should maintain a surface temperature of roughly 38 ◦C–54 ◦C.
Consequently, a high power supply may be needed to satisfy enhanced anti-icing require-
ments [73,74]. For instance, a typical general aviation aircraft’s anti-icing area, which
utilizes a pad heater, is around 0.90 m2, and necessitates around 23,250 W/m2 of energy to
attain the anti-icing temperature. This energy requirement is challenging for any aircraft
to handle, let alone drones that have limited energy resources for anti-icing/deicing. The
Chinese Wing Loong II drone uses an electric anti-icing system on its wings while simulta-
neously employing anti-icing coatings to decrease power usage [75]. However, with the
emergence of fully electric aircraft, the electric anti-icing/deicing system will enter a new
era of development.

Electric pulse deicing technique leverages the interaction between the magnetic field
generated by the pulse coil circuit and the induced magnetic field of the metal skin sur-
face. The interaction leads to high-frequency skin vibrations that remove ice from the
surface [76,77]. Russia employed this technique successfully on IL-76 and IL-86 aircraft. In
recent years, the Orion UAV was also equipped with an electric pulse system to manage
icing hazards [78]. This system offers low energy consumption and high efficiency but has
its limitations. Composite material skins pose a challenge for this technology because of
the difficulty in generating induced magnetic fields.
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Few anti-icing techniques are available for unmanned aerial vehicles, which face
struggles in handling severe icing conditions. Table 1 lists the application and pros and
cons of using traditional aircraft anti-icing technologies on UAVs.

Table 1. Application of conventional aircraft anti-icing/deicing techniques to UAVs.

Techniques Pros Cons Applications

Pneumatic type Simple operation and low cost Large mass, easily damaged
pneumatic sleeve ——

Liquid No energy consumption Large mass, short effective time RQ-1B UAV
MQ-9B UAV

Hot air Air source available on aircraft No air source on drones ——

Coating No energy consumption Short effective time Wing Loong II UAV

Electric type Good anti-icing/deicing effect
and mature system

High energy consumption with
overflow ice Wing Loong II UAV

Electric pulse type Low energy consumption and
good deicing effect

Composite materials are not easy
to generate magnetic fields Orion UAV

5. Exploring Ice Mitigation Techniques for UAVs

Given that anti-icing/deicing techniques for drones are not yet sufficiently developed,
scientists are actively working on developing ice mitigation techniques that are UAVs.

5.1. Airfoil Optimization

It seems that structural optimization offers a solution to minimize ice accretion on
UAVs at the source.

Ghisu et al. [79] incorporated icing conditions into the optimization process for a
general aviation airfoil. They considered the uncertainty of the ice accretion location and
employed an adaptive polynomial chaos method for quantifying the uncertainty. The
method computed how airfoil performance varied with the given changes in ice accretion
location. The findings indicated that obtaining the optimal lift coefficient configuration
came at the expense of a significant negative pitching moment and a 10% increase in drag
coefficient in comparison to a clean wing. It is important to note that the ice shape in their
optimization process remained fixed rather than occurring naturally from the icing process.

Li et al. [80] conducted a study in which they optimized a supercritical airfoil to
consider the effects of icing. Their results demonstrated a 16.5% increase in the maximum
lift coefficient for the icing airfoil at a drag coefficient of 3.7 during cruise conditions.
However, the optimization process utilized a fixed ice shape and neglected variations in
ice shape that corresponded to the airfoil and icing conditions. Dai et al. [81] proposed
an objective optimization method to design ice-resistant airfoils, balancing performance
between clean and icing conditions. The optimized configuration displayed considerable
improvement in icing performance, indicating a 9.95% increase with a maximum lift
coefficient of 4.133 during icing conditions.

Li et al. [40] utilized the Radial Basis Function—Enhanced Differential Evolutionary
algorithm to perform two rounds of optimization on a specific UAV. In the initial bi-objective
optimization, net lift-to-drag ratio and icing stall performance were considered. The results
indicated that the optimal “cruise optimal” design improved the maximum lift coefficient
for icing conditions by 18% compared to the traditional “icing optimal” design. During the
second optimization, fluctuations in atmospheric icing conditions were taken into account
since they significantly affect aerodynamic performance. Environmental parameters were
regarded as uncertainties, and a Probability Density Function was assumed. To evaluate
the maximum lift coefficient due to varying environmental parameters, the Nonintrusive
Polynomial Chaos Expansion formula was utilized. Finally, the mean and variance of the
resulting maximum lift coefficient were employed as objectives in the collection of data.
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Figure 8 showed that the resulting “Polynomial Chaos Expansions optimal” airfoil had
improved icing performance, with a 6.7% increase in maximum lift coefficient.
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5.2. Flight Optimization

Vukit [82] suggested that the most effective approach for avoiding the dangers of
natural icing is through precise prediction of conditions that trigger icing and avoiding
such conditions. According to several researchers, the weather research and forecasting
(WRF) model is capable of accurately predicting meteorological conditions that lead to
icing [83]. By combining the WRF model with proxy models [84], a safe envelope or graded
safety zones icing in the target area can be generated. This offers crucial data support for
optimizing UAV paths.

Narum et al. [85] developed an optimal path planning algorithm for a hybrid electric
UAV with an electrical anti-icing/deicing system, using given meteorological forecasts as
input data. Particle swarm optimization was used for energy consumption and overall
time usage optimization. Multiple simulated datasets were used to test the algorithm. Path
planning optimization considering meteorological forecasts for such platforms resulted in
a 43% energy efficiency improvement or a 42% flight time reduction between two points,
compared to standard straight-line cruising flights.

5.3. Coatings

Several methods have been suggested for minimizing ice adhesion, such as “air film
isolation” represented by superhydrophobic (SHP) surfaces [86–88], “oil film isolation”
represented by slippery liquid-infused porous surfaces (SLIPS) [89–91], and “water film
isolation” represented by hydrophilic lubrication layers [92,93] and electrically heated coat-
ings [94,95]. Although coatings have proved to be highly effective for anti-icing purposes,
their insufficient durability remains a major drawback.

SHP surfaces have been able to passively reduce interfacial adhesion and promote
droplet shedding, demonstrating excellent anti-icing performance. Ye et al. [96] created a
hydrophobic coating system composed of fluorinated organic siloxane material for UAV
icing protection that exhibited a contact angle θ ≥ 115◦ according to experimental mea-
surements. It is important to keep coating thickness within 20 nm to avoid compromising
UAV endurance with excess weight. For possible application of SHP surfaces in anti-icing
on metallic unmanned aircraft wings, Luo et al. [97] used electrostatic spraying and melt
molding processes to make PEEK-PEEK/PTFE/k-SiO2 composite coatings on the surface
of 7075Al alloy, employing PTFE and PEEK as physically blended materials infused with
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modified hydrophobic silica (k-SiO2) particles. The composite coatings exhibited SHP
characteristics, retaining excellent mechanical strength even after 51 abrasion cycles and
50 peeling cycles with 3M tape. Moreover, in addition to remarkable self-cleaning proper-
ties, water droplets completely froze on the SHP coating at −15 ◦C within 940 s, which is
43.5 times slower than on a standard 7075Al alloy surface.

The concept of SLIPSs, initially introduced by Wong et al. [98], has gained popularity
as a passive anti-icing solution. On SLIPSs, ice is isolated by a thin oil film retained within
the porous structure, which substantially reduces ice adhesion through the “solid-oil-solid
contact model”. To demonstrate the potential for anti-icing, Kim et al. [89] developed
aluminum-based SLIPSs that effectively prevent ice/frost accumulation by facilitating
the removal of condensation water and achieving ultra-low ice adhesion. Li et al. [99]
combined this surface with electrothermal technology to create a slippery liquid-infused
porous electric heating coating (SEHC). Dynamic anti-icing tests revealed that SEHCs
reduced energy consumption by 23% compared to dry porous electric heating coatings,
and 11% compared to SHC porous heating coatings. Continuous high-speed jetting tests,
static deicing/deicing cycles, and dynamic anti-icing tests confirmed that SEHCs exhibit
superior durability compared to SHC porous electric heating coatings.

Similar to SHP surfaces and SLIPSs, ice on the water-based lubrication layer is also
isolated by a water film within the structure. Inspired by ice skating, Chen et al. [92]
used dopamine-modified hyaluronic acid to create anti-icing coatings with water-based
lubrication layers under mild conditions. Moreover, thanks to the non-selective adhesion
property of dopamine, this coating can be used on almost all types of solid surfaces.
Dou et al. [93] grafted hydrophilic dihydroxymethyl propionic acid onto a polyurethane
substrate to provide hydrophilicity to the coating, which absorbs moisture to isolate ice from
the surface. Environmental tests conducted at −53 ◦C revealed that the water lubrication
layer remained intact, and the ice adhesion strength persisted even after 30 deicing and
icing cycles, confirming durability. Alternatively, electric heating coatings use Joule heating
to melt ice, forming a water film that creates “water film isolation” conditions.

5.4. Electric Heating for Anti-Icing/Deicing

UAVs rely on IPSs that are lightweight and energy-efficient [31]. Electric systems are
well suited for unmanned aircraft due to their maturity, nature, and ease of retrofitting
onto existing airframes [100]. However, traditional electric heating systems consume a
significant amount of energy, which necessitates measures to reduce energy consumption
in order to make them suitable for unmanned aircraft. These measures primarily involve
selecting materials with improved heating performance, optimizing processes, and imple-
menting more reasonable designs. System optimization often involves a combination of
multiple measures.

5.4.1. Selection of High-Quality Materials

Carbon-based materials, such as carbon nanotubes (CNTs) and graphene, which
exhibit excellent conductivity and thermal conductivity, are ideal options for utilizing the
conductor’s Joule heating effect to de-ice unmanned aircraft [73,101].

In 2013, Buschhorn et al. [73] created a CNT-based IPS that only requires 1 kW/m2

of power to prevent icing under mild icing conditions. Yao et al. found that a carbon
nanotube network/carbon fiber composite structure could effectively de-ice within 15 s at a
constant power density of 4.9 kW/m2 [102]. Zhao developed an electric heating coating by
incorporating multi-walled CNTs into polyurethane/paraffin composites, demonstrated a
positive temperature coefficient effect, and could automatically control the maximum tem-
perature during heating, thereby protecting the temperature-sensitive composite substrate
and saving electricity [101].

In addition, the conductivity of graphene-modified carbon fiber/polyether ether
ketone composites was around 0.1 S/m, resulting in a 35% increase of Joule heating-to-
deicing energy conversion efficiency [103]. Glass fiber bundles coated with graphene
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displayed low electrical resistance (~1.7 Ω/cm) and rapid temperature rises (from −0.1 ◦C
to 27.3 ◦C within 5 min) when exposed to a 10 V voltage [104].

Cortés et al. discovered that 3D printed circuits utilizing graphene nanosheets and
carbon nanotube-reinforced resin are effective for anti-icing purposes [105]. Fluorinated
decylated graphene nanoribbon films, a fresh design that merges the low polarizability
fluorocarbons and the exceptional electrical conductivity of graphene nanoribbons, are
anticipated to offer structural components effective anti-icing/deicing performance [106].

Hexagonal boron nitride is another exceptional heating material due to its high thermal
conductivity, superior thermal and chemical stability, and mechanical strength, making it an
excellent choice [107]. Since carbon-based materials are capable of shielding electromagnetic
waves [108], anti-icing/deicing systems with high radio frequency (RF) transmission rates
are necessary to ensure proper functioning of RF equipment, such as radar domes and
antennas. In 2020, Hwang et al. proposed an RF transmission heating system for deicing,
and its deicing effect was demonstrated by applying a voltage of 40 V to the system at a
temperature of −20 ◦C [109].

5.4.2. Search for Cost-Effective Manufacturing Processes

The conductivity and thermal properties of carbon fibers allow them to serve as direct
heating elements in electric heaters, eliminating the need for separate heating elements.
This simplifies the integration of anti-icing/deicing systems into drones, reducing com-
plexity and cost. However, numerous challenges arise from the techniques employed
in manufacturing carbon-based heaters, including high costs, energy-intensive processes,
limited lifespan, and additional weight on composite materials [110–113]. These factors con-
sequently restrict the applications of carbon-based materials. Consequently, it is imperative
to improve manufacturing technology.

Idris [114] employed extrusion printing technology to produce electrical contact points
on carbon fibers during the manufacturing of heating devices. The results revealed that
the heater was successfully produced, achieving high temperatures suitable for deicing.
The proposed carbon fiber heater was estimated to increase costs by only USD 0.03/cm2.
Vertuccioa et al. [110] adopted expanded graphite to create flexible expanded graphite foils
through a straightforward and eco-friendly solvent casting process with the addition of
PVA. Karim et al. [104] first synthesized scalable amounts of graphene-based ink using the
microfluidic exfoliation technique, then utilized the dip-drying solidification coating tech-
nique to manufacture highly conductive graphene-based glass fiber yarns. Both techniques
are simple, scalable, and extremely suitable for industrial applications. Xu et al. [115] used
a casting technique to produce laminated flexible pressure-sensitive adhesive graphene-
based composite heaters with exceptional joule heating performance, thermal stability,
electrical anisotropy, and mechanical properties. The heater was lightweight and envi-
ronmentally friendly, enabling it to be used as a custom-shaped flexible deicing heater
for various substrates. At a low power of roughly 2.1 W and a bias voltage of 6 V, the
heating temperature peaked at 142.9 ◦C. In addition, the casting method employs simple
equipment, has high production efficiency, yields uniform film performance, and is well
established in industry.

5.4.3. Design of System Layout

UAVs possess restricted available energy, ensuring the careful design of the electric
heating system and minimizing heat for the operating system.

Developed by the Norwegian University of Science and Technology’s Autonomous
Marine Operations and Systems Center and commercialized by UBIQ Aerospace [100],
D•ICE is an electric IPS that implements a heating zone made of carbon fiber. Figure 9b [116]
depicts the basic composition of D•ICE, exhibiting a continuously heated special heating
zone located at the separation strip by the leading edge of the stagnation point, which is
utilized to reduce the energy consumption required for deicing [117]. The strip boosts the
aerodynamic force that acts on the ice, enhancing ice removal efficiency. The typical width
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of the separation strip is 2–3 mm. Since 2013, D•ICE has been integrated into various styles
and sizes of fixed-wing UAVs, then tested in icing wind tunnels and during flight.
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parting strip [116].

During autumn 2018, D•ICE was tested at the Cranfield icing wind tunnel to iden-
tify the minimum heat flux needed to maintain an ice-free surface under two different
weather conditions by gradually decreasing the system’s power supply [100]. In autumn
2019, the VTT icing wind tunnel facility tested two layouts of the D•ICE system (refer to
Figure 9). These experiments were conducted for mid-size fixed-wing UAVs operating at
low Reynolds numbers (Re = 8–9 × 105). By adopting separation strips, deicing energy
requirements reduced by 50% when compared to traditional deicing systems. For separa-
tion strip systems, higher angles of attack resulted in shorter deicing times, reducing such
duration by approximately 20–30%.

Roy et al. [118] designed and developed an integrated electrothermal anti-icing system
using a thin etched foil heating film. The system was integrated into the leading edge of
a CFRP laminate wing of a UAV. Simulated icing flight conditions included an airflow
velocity of 102 m/s, an air temperature of −6.65 ◦C, an MVD of 20 µm for water droplets,
an LWC of 0.78 g/m3, and an exposure time of 600 s. The study investigated different
IPS heat flux values ranging from 0 to 10 kW/m2. Two IPS designs were considered, one
with 5 heating film units and another with 15 units in the leading edge region. The results
revealed that the 15 heating film IPS design with a film heat flux of 7.5 kW/m2 achieved
complete anti-icing functionality, maintaining a wing surface temperature distribution
between 0–13 ◦C.

Sørensen et al. [119] developed a temperature-controlled anti-icing/deicing system for
the airfoil of the X8 Skywalker UAV. The system structure is shown in Figure 10. The core
of the system is a coating made of carbon nanomaterials graphene and carbon black, which
provides anti-icing functionality. The thermocouple and humidity sensor are responsible for
sensing the surface temperature of the airfoil leading edge and the environmental humidity,
respectively. Power delivery to the coating is controlled by an Arduino microcontroller
based on feedback from the thermocouple and humidity sensor. Different coating layouts
were studied within a temperature range of −25 ◦C to +25 ◦C. Experiments showed that a
layout in which the coating covers the entire length of the wing was preferred, and that
the solution was capable of rapidly raising the surface temperature when needed (deicing)
and maintaining a roughly constant temperature when needed, while keeping energy
consumption within the weight and cost constraints imposed by the small size of the UAV.
Sørensen and Johansen [120] investigated the heat flow produced by electric IPS when
integrated into small UAVs. The temperature along the heat source was non-uniform under
a fixed power supply of 10 kW/m2. The results suggested that utilizing smart methods
could be advantageous in reducing power consumption to a minimum.
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5.4.4. Combining with Coatings

When compared with traditional anti-icing/deicing systems, hybrid anti-icing/deicing
systems that utilize hydrophobic coatings and electric heating systems offer higher en-
ergy efficiency, making them ideal for use in UAVs. There has been a significant rise in
publications related to hybrid electric systems over the last few decades [121,122].

Zhao [95] employed multi-walled CNTs as heating materials, acrylic resin clear varnish
as coating materials, and hydrophobic SiO2 nanoparticles to create an SHP coating. Anti-
icing experiments demonstrated that the multilayer coating not only accomplished low-
temperature anti-icing (around 7 ◦C), but also had efficient electric heating and anti-icing
performance. In comparison to conventional electric heating methods, the multilayer
coating could reduce anti-icing energy consumption by up to 58%.

Bogoslov et al. [123] developed an integrated electrically heated anti-icing system (IE
AIS) that relies on fluorescent film. The IE AIS features a 50 µm fluoroplastic film that
functions as a passive anti-icing coating, and a 300 µm thick conductive fluoroplastic film
that serves as the heating element. In to these components, the system also includes an
electrical current and thermal insulation layer connected to a control system, alongside
temperature-sensitive components specifically designed for aircraft parts. By making use
of IE AIS, energy necessary for surface deicing could be decreased by 30% as compared to
currently available electrically heated anti-icing systems.

Battelle [124] developed a technique that incorporates CNTs into both the barrier
and paint layers. When an electric current runs through it, the system acts as a resistive
heating coating and creates a highly conductive heating surface. This approach provides
several benefits compared to traditional ice-removal systems. Firstly, it is lightweight and
requires low power. Secondly, the method utilizes established coating application processes,
enabling its direct application to the UAV fuselage.

Yan et al. [125] proposed an anti-icing solution that adds a surface insulation layer,
metal heating layer, and bottom insulation layer under a biomimetic anti-icing structural
layer to obtain a hybrid anti-icing skin. The biomimetic anti-icing layer, inspired by Qinling
giant bamboo, is a multilayer non-uniform high and nanoscale structure. The metal heating
layer is made of constantan, which has high resistivity and thermal conductivity and good
ductility and bendability. Flight tests demonstrated the excellent performance of this hybrid
anti-icing system.

Zhu [126] created a low-energy SHP electric heating anti-icing skin for a UAV by
combining a polyimide SHP surface with an electric heating film. Figure 11a shows the
production process. In order to optimize the energy utilization of the anti-icing skin, electric
wire structures were designed for different regions of the airfoil model to generate differing
power densities. The overall design, including the size and regions of the SHC electric
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heating skin, is depicted in Figure 11b. Region I, located at the front of the upper wing
surface, is 90 mm long and responsible for anti-icing/deicing. Region II is 30 mm long and
covers the leading edge of the wing, acting as a hot knife and requiring higher power density
than the upper and lower wing surfaces. Region III, 40 mm long, is responsible for anti-
icing/deicing the bottom of the wing. Anti-icing wind tunnel experiments demonstrated
significant benefits for the SHC electric heating skin over ordinary electric heating skins,
with reductions in energy consumption of 52%, 68.8%, and 89.9%, respectively, during three
different icing conditions. Test conditions were very similar to those at the University of
Quebec [70], with their anti-icing skin yielding reductions of just 13.3% and 34.2%, making
the results from Zhu better than those from the University of Quebec.
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5.5. Piezoelectric Deicing

The piezoelectric deicing technique has also been developed for aviation [127]. When
the current flows in one direction, the piezoelectric crystal bends. Thus, there are two ways
for piezoelectric materials to achieve deicing: one is when high-frequency AC is applied
to piezoelectric actuators [128], the substrate vibrates at a very high frequency, and the
stress generated destroys the ice and substrate; the other is to let the piezoelectric substance
work in the low-frequency band and excite the resonant frequency of the structure [129].
Piezoelectric systems have the advantages of small volume, light weight, arbitrary shape,
and low energy consumption [130,131], but piezoelectric materials are prone to fatigue
and have a relatively short service life. Overall, the piezoelectric technique is a promising
deicing method.

Palacios [132,133] utilized piezoelectric patches to generate ultrasonic shear stress at
high frequencies, studied the combination of hydrophobic coatings with ultrasonic deicing
systems [134], and designed a piezoelectric deicing system [135] effective in promoting
shedding ice layers ranging from 1.4 to 7.1 mm thick and under different icing conditions.
Budinger [136] compared a ceramic deicing system with Langevin prestressed piezoelectric
transducers to find an interesting compromise solution for an ultrasound-based piezoelec-
tric deicing device.

Meanwhile, Venna et al. [129,137–139] used piezoelectric ceramics to excite low-
frequency modes (below 1000 Hz) while Struggle et al. [140] performed similar experiments
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which proved successful deicing at 307 Hz. Villeneuve [128] designed a low-frequency
piezoelectric deicing system for thinned Bell 206 main rotor blades and Bell 206 tail rotor
blades, and demonstrated its deicing performance in an icing wind tunnel. For all struc-
tures, the power input of the actuator was less than 19 kW/m2. Palanque [141] developed
an electromechanical resonance deicing system based on low-frequency piezoelectric actua-
tors, and proved that the prototype had an effective deicing performance with low peak
power consumption (less than 10 kW/m2) and fast deicing.

Surface acoustic wave (SAW) deicing employs piezoelectric material and shows
promise as a deicing method due to its ability to provide localized heating, on-site control
low power consumption, and system integration. It is achieved by applying high-frequency
electrical signals to patterned interdigit electrodes on a piezoelectric substrate, which gener-
ates surface vibrations via the reverse piezoelectric effect [142,143]. Heat generation results
from both the Joule heating of the interdigitated electrodes and the dielectric losses in the
piezoelectric substrate [144,145]. The sketch of the SAW-induced melting process of glace
ice aggregates is shown in Figure 12 [146].
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Figure 12. Sketch of the SAW-induced melting process of glace ice aggregates: (a) initial deicing
process: the SAW interacts with the ice, creating regions of high stresses. A thin water film forms
in the high-stress region; (b) melting process: the SAW efficiently leaks into the water-film. The ice
melts at the well-defined interface with the water; (c) active anti-icing process: the ice is completely
melted. (BL: Boundary layer) [146].

Zeng et al. [147] experimentally demonstrated that SAWs can reduce ice adhesion.
Nampoothiri et al. [148] deiced microliter-sized droplets with low-power SAW actuation
using interdigitated electrodes on a piezoelectric (LiNbO3) substrate, suggesting the future
development of efficient SAW-based deicing systems. Jacob et al. [146] demonstrated
that energy-efficient deicing and prevention of ice formation could be achieved for larger
volume piezoelectric substrates using high-frequency thickness-shear acoustic vibrations,
with reduced ice adhesion. Jacob also attempted to transfer the deicing capability to
low-thermal conductivity base materials.

5.6. Plasma Anti-Icing/Deicing

With the increasing research on active plasma flow control [149], attention has re-
cently turned to the heating effect of the dielectric barrier discharge (DBD) actuator [150].
Especially, surface dielectric barrier discharge (SDBD) plasma has been found to be a
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promising approach for efficient anti-icing due to its high heating performance, low energy
consumption, quick response, and high efficiency [151].

Some studies have shown that plasma actuators are effective anti-icing/deicing
devices, and nanosecond dielectric barrier discharge (NSDBD) plasma actuators have
been found to perform better than alternating current DBD plasma actuators [152–155].
Zhu et al. [156,157] investigated the heating performance of NSDBD and demonstrated
that it can heat up quickly and has an ice-proof heating effect. Wei et al. [158,159] showed
that NSDBD had excellent anti-icing performance, removing an average ice thickness of
3 mm within 4 s and preventing further ice formation in the plasma protection zone.

Furthermore, Niu et al. [160] simulated the anti-icing effect of the NSDBD plasma
actuator located at the NACA0012 wing leading edge. The simulation results demonstrated
that the plasma actuator produced high-temperature air that covered the anti-icing area of
NACA0012, preventing ice formation. Niu observed that higher peak voltage and pulse
frequency of the plasma actuator led to better anti-icing performance, and directional
arrangement optimization of the plasma excitation device could also improve its anti-icing
capability. Thus, Niu concluded that the NSDBD plasma anti-icing technique was effective
and could be used to develop anti-icing systems for unmanned aircraft.

Gao [161] developed a set of nanosecond pulse (ns-) SDBD plasma anti-icing devices
for a certain type of all-weather small UAV. The working principle of ns-SDBD plasma actu-
ators is as shown in Figure 13 [162]. The device has 8 kV voltage output, 200 A maximum
output current, and 20 kHz heavy-frequency working capability and was designed with
aircraft load, energy consumption, and anti-icing effectiveness as the top priorities. The
experiment demonstrated that the device had anti-icing performance under specific icing
conditions. The team plans to continue developing more compact, lighter, and durable
anti-icing devices in the future.
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5.7. Synthetic Thermal Jet for Anti-Icing/Deicing

Since the mid-1990s, synthetic jet technology, also known as zero-mass-flux jet technol-
ogy, has become a popular topic in flow control research. The technology synthesizes jets
by combining controlled vortex structures. Synthetic jets are considered one of the most
promising active flow control methods because of their advantages such as zero mass flow
rate, low energy consumption, quick response, and flexible control [163]. The piezoelectric
synthetic jet actuator (PSJA) was first proposed by Glezer, Smith, and their research team at
Georgia Institute of Technology in the 1990s, attracting researchers from all over the world
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due to its simple structure and high instantaneous pressure rise, making it potentially
suitable as an ice breaker [164].

In 2013, Nikisha creatively proposed using a heated bottom synthetic jet actuator array
to effectively control ice formation, studying the impact of parameters such as bottom
heating, heating temperature, inflow temperature, droplet size, and distribution on ice
formation [165–167]. Li designed a synthetic thermal jet actuator in 2015, based on a
synthetic dual jet actuator [168,169]. The synthetic thermal actuator was to melt ice crystals
on a cold surface in experiments on deicing principles, confirming the feasibility of deicing
using synthetic thermal jets.

In 2017, Jiang [170] designed a novel electromagnetic synthetic dual jet actuator (as
shown in Figure 14) for a specific UAV. By conducting fundamental experimental research
on deicing an ice-covered wing using synthetic hot jets, it was found that the hot jet
was more effective in reducing deicing time, by 25.0% up to 36.4%, when compared to
pure heating deicing. Additionally, a 90◦ jet angle exhibited the most significant deicing
effect, due to minimal momentum loss and enhanced heat transfer. Liu et al. added an
impact rod structure to the traditional PSJA to improve its deicing performance in flight
environments [171]. Furthermore, Gao et al. proposed a novel deicing strategy in which
electric heating first eliminates the adhesion forces and then the PSJA discharge fractures
the ice [172]. The PSJA operation only accounted for an insignificant 0.27% of the entire
system’s energy consumption and did not cause any surface bending.
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In general, the above-mentioned methods each have advantages and disadvantages.
Airfoil and flight optimization as well as coatings are energy-efficient but only offer reduc-
tions or delays in icing. Electric heating systems have great anti-icing/deicing capabilities
but consume more energy. Piezoelectric deicing can result in alterations to the surface
shape of the aircraft. Plasma and synthetic thermal jet methods are not yet mature and
lack practical applications. However, these methods are not mutually exclusive and can
be combined. Under a framework of airfoil optimization, multiple anti-icing/deicing
measures can be integrated, such as coatings with electric heating, synthetic thermal jet
with electric heating, and piezoelectric with coatings. In conclusion, additional research
and optimization are necessary to develop an outstanding anti-icing/deicing system for
unmanned aircraft.

6. Discussions

Scholars have made advancements in studying the icing phenomenon and anti-
icing/deicing techniques for UAVs, but there is still much progress to be made in effectively
addressing icing challenges.

Currently, the academic community lacks a comprehensive understanding of the UAV
icing phenomenon, particularly in relation to the complex flow behavior at low Reynolds
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numbers, which remains unexplained accurately thus far. The most prominent methods for
studying ice accretion are the icing wind tunnel experiment and numerical icing simulation.
While existing icing numerical codes can reliably predict the accumulation of rime ice,
they struggle to provide accurate forecasts for glaze and mixed ice due to the involvement
of intricate physical factors. In addition, the icing wind tunnel tests on drones are not
enough, and the mutual evidence between wind tunnel tests and numerical simulations
is still insufficient. This lack of information not only makes it harder to understand icing
on drones, but it also affects the assessment of anti-icing/deicing techniques. Considering
the time-consuming and challenging nature of developing new icing numerical codes, as
well as the existing codes’ reliability, it is advisable to develop new models specifically
for unmanned aircraft icing, apply them to the existing codes, and conduct extensive
experiments to validate them.

On the contrary, the anti-icing/deicing system for UAVs must satisfy specific condi-
tions such as low weight, minimal power consumption, and minimal aerodynamic design
changes, due to constraints such as limited available energy, small size, light payload, and
susceptibility to icing. However, some traditional anti-icing/deicing techniques cannot
be used on drones, while others, although usable, cannot meet the above requirements.
Therefore, developing an innovative approach becomes necessary when creating a novel
anti-icing/deicing system for UAVs. Significantly improving the performance indicators of
traditional techniques is not the only way. Developing new techniques is one approach,
and considering the coupling of multiple ice mitigation techniques is also a good choice. In
addition, the cost of anti-icing/deicing systems also needs to be considered.

7. Conclusions

The article provides a review of current knowledge regarding the icing phenomenon
and anti-icing/deicing methods for fixed-wing UAVs. Previous studies show that UAV
icing is similar to manned aircraft icing, but unique characteristics can arise due to the
low Reynolds number, low flight speed, small size, low altitude, and different materials
of most UAVs. In the limited research on UAV icing, it is still evident that icing poses
severe hazards to UAVs. However, the existing anti-icing/deicing technology cannot meet
the need of drones. The article discusses ice mitigation technology being explored and
emphasizes the need for lightweight and energy-saving systems to reduce icing impact and
ensure all-weather UAV operation.
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Appendix A

Appendix A provides a summary of the research section of the main text. It includes
selected content and is not exhaustive. Table A1 presents research on the icing principles
and characteristics of drones. Table A2 presents ice mitigation techniques directly relevant
to drones in Section 5.
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Table A1. A tabular summary for UAV icing research.

Researchers Year Research Method Major Achievement or Key Findings

Bottyán et al. [15] 2013 Flight tests A UAV ice accretion model was developed.

Williams et al. [16] 2017 Flight tests and lab tests The ice shapes differed significantly from those on
high Reynolds number airfoils.

Matiychyk et al. [17] 2017 Flight tests
The energy consumption of unmanned aerial

vehicles increased after icing.
Siddique [19] 2021 Flight tests

Han et al. [20] 2023 Flight tests

Avery [18] 2019 Flight tests The geometric shape of ice driven by the flight flow
field appeared on the surface of the drone.

Avery and Jacob [21] 2022 Numerical simulation and lab tests A cylindrical volume icing model called ALRIA was
established and validated.

Oswald et al. [22] 2022 Numerical simulation
The Spalart Allmaras turbulence model was limited
in its applicability to estimating aerodynamic losses

caused by ice at low Reynolds numbers.

Hann et al. [24] 2019 Numerical simulation and lab tests

The influence of airspeed on frost, mixed ice, and
glaze increased sequentially. The relative ice

thickness and relative ice limit of smaller airfoils
significantly increased.

Hann et al. [26] 2020 Numerical simulation and lab tests

Spalart Allmaras and Menter’s k-ω SST model had
limitations in simulating complex ice shapes and

stall. More complex icing caused greater
degradation of flight performance. As the Reynolds

number increased, lift increased while drag
decreased.

Li et al. [27] 2019 Lab tests The surface water reflux on the wing surface using
thermoplastic materials was more pronounced [25].

Hann [32] 2018 Numerical simulation
LEWICE and FENSAP-ICE showed good

consistency in simulating frost ice, while glaze and
mixed ice showed significant differences.

Yirtici et al. [33] 2020 Numerical simulation
The resistance coefficient predicted by XFOIL

method was in good agreement with experimental
data, while the lift coefficient was not.

Muhammed and
Virk [35] 2023 Numerical simulation

Transition k-ω SST turbulence model could
accurately predict LSB, but it predicted an earlier

separation start time.

Szilder and
McIlwain [36] 2011 Numerical simulation

A UAV ice accretion model was developed. As the
Reynolds number increased, ice changed from frost

ice to mixed ice, and finally became clear ice.

Fajt et al. [39] 2019 Numerical simulation Rising temperature caused an increase in ice mass.
Ice caused an increase in resistance.

Cistriani et al. [43] 2007 Lab tests Ice caused a decrease in lift.

Hann et al. [44] 2017 Numerical simulation Ice accumulation increased drag while reducing lift
and maximum angle of attack.Szilder et al. [46] 2015 Numerical simulation

Oo et al. [49] 2020 Lab tests At low Reynolds numbers, flow reattachment
delayed and separation increased.
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Table A2. A tabular summary for ice mitigation techniques of UAVs.

Subject Researchers Year Research Method Major Achievement or Key
Findings

Airfoil optimization Li et al. [40] 2022 RADE algorithm
“PCE” airfoil had improved icing

performance, with a 6.7% increase in
maximum lift coefficient.

Flight optimization Narum et al. [86] 2020 Particle swarm
optimization

A 43% energy efficiency
improvement or a 42% flight time

reduction between two points.

Coatings

Ye et al. [97] 2021 Lab tests
A hydrophobic coating system that
exhibited a contact angle θ ≥ 115◦

was created.

Luo et al. [98] 2021 Lab tests
The PEEK-PEEK/PTFE/k-SiO2

composite coatings for drone metal
surfaces were created.

Electric heating combining
with coatings

Hann et al. [117] 2021 Lab tests The better design for layout of
D•ICE was found.

Roy et al. [119] 2021 Numerical simulation
and lab tests

An integrated electrothermal
anti-icing system using a thin etched
foil heating film was designed and

developed.

Sørensen et al. [120] 2015 Numerical simulation
and lab tests

A temperature-controlled
anti-icing/deicing system for the

airfoil of the X8 Skywalker UAV was
designed.

Yan et al. [127] 2023 Lab tests and flight tests An anti-icing Skin with Micro-nano
Structure was designed and tested.

Zhu [128] 2018 Lab tests A low-energy SHP electric heating
anti-icing skin was created.

Plasma Gao [164] 2021 Lab tests A set of ns-SDBD plasma anti-icing
device was created.

Synthetic thermal jet Jiang [172] 2017 Lab tests A novel electromagnetic synthetic
dual jet actuator was designed.
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