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Abstract: To accurately depict inventory management over time, this paper introduces a fractional
inventory management model that builds upon the existing classical inventory management frame-
work. According to the definition of fractional difference equation, the numerical solution and phase
diagram of an inventory management system are obtained by MATLAB simulation. The influence
of parameters on the nonlinear behavior of the system is analyzed by a bifurcation diagram and
largest Lyapunov exponent (LLE). Combined with the related indexes of time series, the complex
characteristics of a quantization system are analyzed using spectral entropy and C0. This study
concluded that the changing law of system complexity is consistent with the LLE of the system. By
analyzing the influence of order on the system, it is found that the inventory changes will be periodic
in some areas when the system is fractional, which is close to the actual conditions of the company’s
inventory situation. The research results of this paper provide useful information for inventory
managers to implement inventory and facility management strategies.

Keywords: fractional-order discrete system; bifurcation diagram; complexity; chaos

1. Introduction

In management operations, queuing, inventory, planning and scheduling systems
produce chaos under different management decision rules. Inventory shows strong chaotic
characteristics with time; that is, inventory is neither periodic nor random [1]. Chaotic
behavior makes forecasting more difficult, leading to new tools development, to investigate
whether the time series data are chaotic [2–4].

As an important part of the supply chain, inventory is directly related to the interests
of enterprises. The ultimate goal of logistics is to minimize costs such as inventory ex-
penses. Lei et al. [5] simplified a three-dimensional discrete system into a two-dimensional
discrete system for the discrete inventory management model and analyzed the nonlinear
characteristics of the inventory management model using fractional complexity. Many
professional scholars have studied this model [6–9].

In 2001, Yao et al. [6] adopted the stability theory of differential equations and imple-
mented feedback control with a variable parameter structure to manage multi-parameter
inventory. They successfully controlled the chaotic model of inventory management.
In 2003, Yao et al. [6] and Chen et al. [7] analyzed the chaotic and periodic characteristics of
the inventory management system using a phase diagram. They improved the adaptive
control method based on the Lyapunov approach and used it to effectively control the
chaotic inventory management system. Hua et al. [8] conducted a study on a specific inven-
tory management model and proved that the system produces Neimark–Sacker bifurcation
and the asymptotic expression of the invariant ring at the fixed point, using discrete-time
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dynamic system theory. Concerning the inventory management model, Lei et al. [9] used
LSTM, CNN–LSTM, DLSTM, and other deep learning algorithms to predict the time series
data generated by the discrete inventory management model and found that LSTM was
better for inventory prediction.

Inventory management could be considered as a three-dimensional discrete chaotic
model [9]. Scholars have made fruitful achievements in discrete chaotic model [10–12].
Previous research [13–16] studied the classical tent discrete system from numerical analysis,
system model change, and application. According to the characteristics of the parameter
range of the tent map and the logistic map, Hua et al. proposed an interactive two-
dimensional chaotic map [17]. Hua et al. used one chaotic map to control the parameters
of another map dynamically, and they proposed a dynamic parameter modulation model.
The new map generated by this model was more sensitive to the initial value, and it had a
wider chaotic range [18]. After that, they built a variety of discrete chaotic systems [19–21],
such as the sin discrete system [21]. At present, the application of image encryption and
discrete memristor have become hot topics in the field of discrete nonlinear systems [22–26],
and the research on these two topics is based on the analysis of dynamics and complexity.

Research on the inventory management dynamics system has utilized the aforemen-
tioned discrete system. This raises questions as to whether the inventory management
system conforms to the characteristics of the integer-order discrete system and whether
other factors influence the system. Since integer order is a special fractional order case, it is
more accurate than integer order [27]. In other words, the fractional-order system model
includes integer order [28,29], making the fractional-order warehouse management model
a more comprehensive framework capable of capturing specific phenomena. Furthermore,
the fractional order system has short-term memory [27,30,31]. The fractional-order inven-
tory management model is related to the inventory resources in previous periods, which is
more consistent with the characteristics of inventory management resources. The fractional
model has been applied in many fields, such as a fractional-order COVID-19 model [32],
fractional-order DC motor system [33], fractional-order laser system [34], infectious disease
model, and many more.

In this study, we investigate the dynamics and complexity of a kind of fractional
inventory management system. The structure of the paper is as follows: Section 1 reviews
the discrete models of economy and inventory management, and it analyzes the recent
development of discrete chaotic models; then, according to the classical inventory man-
agement model, Section 2 constructs the fractional-order discrete inventory management
model, and numerical simulation illustrates the fractional-order discrete inventory manage-
ment model’s phase diagram. Section 3 displays the dynamic characteristics of the system
when the parameters q1, q, and r change, using a bifurcation diagram and the Lyapunov
exponent; Section 4 showcases the SE and C0 complexity algorithms results of system
complexity when the parameters change; finally, Section 5 gives the relevant conclusions of
this research work.

2. Fractional-Order Inventory Management System Model
2.1. Definition of Fractional-Order Discrete System

Definition 1 ([35]). There is a relationship g : Na → R and v > 0. We define fractional sums as

∆−v
a g(t) =

1
Γ(v)

t−v

∑
s=g0

(t − ξ(s))(v−1)g(s) (1)

g0 is the initial time, and ξ(s) = s + 1, Ng0 = {g0, g0 + 1, g0 + 2 · · · }. The descending factorial
function is t(v), which is defined as follows:

t(v) =
Γ(t + 1)

Γ(t + 1 − v)
. (2)
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Definition 2. For f (t) defined as Na, when v > 0 and v /∈ N, the difference of its Caputo type is
defined as

C∆v
a x(t) = ∆−(m−v)

a ∆mx(t)

=
1

Γ(m − v)

t−(m−v)

∑
s=a

(t − σ(s))(m−v−1)∆m
s x(s).

(3)

Among these, t ∈ Na+m−v, m = [v] + 1, and ∆m, where ∆m
a represents integer-order difference

with starting times of 0 and a.

Theorem 1. The fractional-order difference formula is [36]

c∆v
a x(t) = f (t + v − 1, x(t + v − 1)), (4)

where ∆kx(a) = ck, k = 0, 1, . . . , m − 1. Equation (4) continues to be equivalent to

x(t) = x0(t) +
1

Γ(v)

t−v

∑
s=a+m−v

(t − σ(s))(v−1) f (s + v − 1, x(s + v − 1)), (5)

where t ∈ Na+m, and the initial value x0(t) is defined as

x0(t) =
m−1

∑
k=0

(t − a)(k)

k!
∆kx(a). (6)

2.2. Numerical Solution of Fractional-Order Inventory Management System

According to Definitions 1 and 2 and the nonlinear discrete inventory management
dynamics model [2,6–9], the expression of the fractional inventory management system is
as follows:

c∆q1
a x(t) = s + p · z(t + q1 − 1)

c∆q1
a y(t) = q · x(t + q1 − 1) + r · y(t + q1 − 1) · z(t + q1 − 1)

c∆q1
a z(t) = 1 − x(t + q1 − 1)− y(t + q1 − 1) + z(t + q1 − 1).

(7)

Let the variable x represent the resources used for sales in stage t, and let y represent
the resources in stage t. A customer quantity z represents the enterprise’s inventory capital
in stage t, the parameter item s represents the base initially used for sales, p represents the
transfer rate of inventory capital, q is the ratio of product resources, and r is the efficiency
of inventory.

According to the definition of a fractional order of Caputo type, it is converted into a
fractional difference equation as follows:

x(t) = x(0) +
1

Γ(q1)

t−q1

∑
s=1−q1

(t − s − 1)q1−1[(s + p · z(s + q1 − 1))− x(s + q1 − 1)]

y(t) = y(0) +
1

Γ(q1)

t−q1

∑
s=1−q1

(t − s − 1)q1−1[(q · x(s + q1 − 1)

+ r · y(s + q1 − 1) · z(s + q1 − 1))− y(s + q1 − 1)]

z(t) = z(0) +
1

Γ(q1)

t−q1

∑
s=1−q1

(t − s − 1)q1−1[(1 − x(s + q1 − 1)− y(s + q1 − 1)

+ z(s + q1 − 1))− z(s + q1 − 1)].

(8)
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For convenience, when s + q1 ∈ N, let s + q1 = j and let kernel function
(t − σ(s))q1−1/Γ(q1) = Γ(t − s)/(Γ(q1)Γ(t − s − q1 + a)). Here, if the initial value point
a = 0 and the fractional order 0 < q1 < 1, Formula (9) can be rewritten as

x(t) = x(0) +
1

Γ(q1)

t

∑
j=1

Γ(t − j + q1)

Γ(t − j + 1)
· [s + p · z(j − 1)− x(j − 1)]

y(t) = y(0) +
1

Γ(q1)

t

∑
j=1

Γ(t − j + q1)

Γ(t − j + 1)
[q · x(j − 1) + r · y(j − 1) · z(j − 1)− y(j − 1)]

z(t) = z(0) +
1

Γ(q1)

t

∑
j=1

Γ(t − j + q1)

Γ(t − j + 1)
[1 − x(j − 1)− y(j − 1) + z(j − 1)− z(j − 1)].

(9)

Let q1 = 0.9, p = 0.43, q = 0.38, s = 0.11, and r = 0.625 in Equation (10). This study
uses MATLAB software to write a program to solve Equation (9), and obtain the trajectory
phase of the fractional-order inventory management system model, as shown in Figure 1.
It can be seen from the trajectory phase diagram that the system is a periodic trajectory.

Let q1 = 0.99, p = 0.43, q = 0.38, s = 0.11, and r = 0.625 in Equation (9). This study
uses MATLAB software to write a program, and solve Equation (9), to obtain the trajectory
phase of the fractional-order inventory management system model, as shown in Figure 2.
It can be seen from the trajectory phase diagram that the system is a chaos trajectory.

The source code of Equation (10) is in Appendix A.

Figure 1. Numerical phase diagram of the inventory management model of model (7), with q1 = 0.9:
(a) x − y attractor; (b) y − z attractor.

Figure 2. Numerical phase diagram of inventory management model of model (7) with q1 = 0.99:
(a) x − y attractor; (b) y − z attractor.
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3. Dynamics Analysis

In this section, the influence of parameters on discrete inventory system will be given
by a bifurcation diagram and largest Lyapunov exponent (LLE) spectrum. A bifurcation
diagram is obtained by capturing the maximum point of mapping, and LLE is obtained
by calculating a discrete sequence by the wolf method. Using the control variable method
means changing one parameter and fixing other parameters.

3.1. Fractional-Order q1 Change

First, change the fractional-order q1, the range of change is 0.9–1, and the other
parameters of the inventory management system are fixed. MATLAB draws the bifurcation
diagram and LLE diagram of the system, and the results are shown in Figure 3. As can
be seen from Figure 3, q1 ∈ [0.9, 0.97] is a periodic state, and q1 ∈ [0.97, 1] is a chaos state.
The fractional-order q1 affects the state of the system. When the fractional-order q1 is low,
the system is prone to cycle, which is consistent with the actual inventory system in special
circumstances. In most fractional-order regions, the system is in a periodic state. It can also
be seen from the figure that the LLE of the system is greater than zero when it is in a chaos
state; when the system is in a non-chaos state, the LLE is zero. Under the condition that the
inherent parameters of the system are fixed, the fractional order q1 can affect the state of
the inventory management model, and it can appear to cycle or chaos, which is in line with
the real inventory model.

Figure 3. Bifurcation diagram and LLE of inventory management model with parameter q1 variation:
(a) bifurcation diagram of the system; (b) LLE of the system.

3.2. Parameter q Change

The fractional order q1 = 0.99, changing the product resource rate q ∈ [0.2, 0.5], keeping
the other parameters of the inventory management system model unchanged, and drawing
the bifurcation diagram and the LLE of the system is shown in Figure 4. It can be seen
from Figure 4a that the q ∈ [0, 2, 0.35] system is periodic and that the LLE corresponding to
Figure 4b is equal to zero. When q ∈ (0.35, 0.44], the system is chaos, and the corresponding
LLE is greater than zero. However, when q ∈ (0.44, 0.49], the bifurcation diagram shows
that the system is periodic but that the LLE does not exist. When the bifurcation diagram
is drawn, the range of the coordinate axis Y axis is limited to [−0.5, 2.5]. The maximum
value of the y series of the system has reached 1036, and the system is a divergent system;
therefore, the LLE does not exist. At this time, the system appears to be in a divergent
state. Because the maximum value of the divergence is relatively large, we cannot obtain it;
therefore, the bifurcation diagram cannot be drawn by the variable maximum method. This
kind of phenomenon is common in continuous systems, especially when some parameters
are near zero.
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Figure 4. Bifurcation diagram and LLE of inventory management model with parameter q variation:
(a) bifurcation diagram of system; (b) LLE of the system.

3.3. Parameter r Change

The fixed fractional order q1 = 0.99, q = 0.38, the changing inventory efficiency
r ∈ [0.5, 0.7], and the other parameters of the inventory management system remain
unchanged. The bifurcation diagram and the LLE of the system are drawn by MATLAB
software, as shown in Figure 5. With the change of parameter r, the system presents complex
changes. It can be seen from the bifurcation diagram that when r = 0.5 ∼ 0.6, the system is
in a periodic state and the largest Lyapunov exponent is equal to zero. When r = 0.6 ∼ 0.65
is in chaos, the largest Lyapunov exponent is greater than zero, and when r = 0.65 ∼ 0.67
is in a periodic state, the LLE of the system is less than zero. When r = 0.67 ∼ 0.7, it can be
seen from the bifurcation diagram that the system is in a periodic and chaos region, the
LLE of the system does not exist for the same reason that the region of the LLE does not
exist when the parameter q changes: that is, the actual state of the system at this time is a
divergent system rather than in the LLE.

Figure 5. Bifurcation diagram and LLE of inventory management model with parameter r variation:
(a) bifurcation diagram of system; (b) LLE of the system.
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4. Complexity Analysis
4.1. SE Complexity Algorithm

In the spectral entropy (SE) method [28,37], a discrete Fourier transform is performed,
combined with the Shannon entropy algorithm, and the related results are obtained. The de-
tailed design process is as follows:

(1) Delete the average part of the system, this paper processes the sequence, and the
formula is as follows:

x(n) = x(n)− x̄, (10)

where x̄ = 1
N ∑N−1

n=0 x(n).
(2) Fourier transform: Using the basic definition of Fourier transform, Equation (11) is

transformed. The formula is as follows:

X(l) =
N−1

∑
n=0

x(n)e−j 2π
N nl =

N−1

∑
n=0

x(n)Wnl
N . (11)

Among these, l = 0, 1, 2, · · · , N − 1.
(3) Relative power spectrum: Take the first part of the sequence after the dispersion

processing, and use the Paserval algorithm to obtain the power spectrum of one of the
specific frequencies, as follows:

p(k) =
1
N
|X(k)|2. (12)

Among these, k = 0, 1, 2, · · · , (N − 1)/2. The total power of x(k) is defined as

ptot =
1
N

N/2−1

∑
k=0

|X(k)|2. (13)

The probability of the relative power spectrum can be expressed as

Pk =
p(k)
ptot

=
1
N |X(k)|2

1
N ∑N/2−1

k=0 |X(k)|2
=

|X(k)|2

∑N/2−1
k=0 |X(k)|2

. (14)

(4) Combining the Shannon entropy concept, the signal spectrum entropy expression is

se = −
N/2−1

∑
k=0

Pk ln Pk. (15)

In order to compare the complexity of signals conveniently, the results of spectral entropy
are normalized as follows:

SE(N) =
se

ln(N/2)
. (16)

It can be seen from the above transformation that the more unstable the power spec-
trum of the sequence changes, the less prominent the signal amplitude and the smaller the
complexity measurement value.

4.2. C0 Algorithm

The algorithm of the C0 complexity mainly calculates the regular signal and the
irregular signal in the sequence signal separately [28,38]. The specific calculation process is
as follows [28]:

(1) The signal is Fourier-transformed as follows:

X(k) =
N−1

∑
n=0

x(n)e−j 2π
N nk =

N−1

∑
n=0

x(n)Wnk
N . (17)

Among these, k = 0, 1, 2, · · · , N − 1.
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(2) Remove the irregular part of the sequence x(k), the square mean of x(k), as in
Equation (12).

Add a parameter r to Formula (18), leaving the part that exceeds the mean square
value R times, and assume that the value of the remaining part is zero, such that

X̃(k) =

{
X(k), |X(k)|2 > rGN

0, |X(k)|2 < rGN
. (18)

(3) Carry out an inverse Fourier transform to obtain

X̃(n) =
1
N

N−1

∑
k=0

X̃(k)e
2π
N nk =

1
N

N−1

∑
k=0

X̃(k)W−nk
N . (19)

(4) The formula for defining the C0 complexity is as follows:

C0(r, N) =
N−1

∑
n=0

|x(n)− x̃(n)|2/
N−1

∑
n=0

|x(n)|2. (20)

The algorithm of the C0 complexity is based on the fast Fourier transform (FFT).
The main idea is to keep the irregular sequence, so that the more irregular parts there are in
the sequence, the greater the C0 complexity.

4.3. C0 and SE Complexity of the Model

The definition of complexity is introduced above. In a chaotic system, we mainly describe
the complexity of the system sequence but not the complexity of the system structure equation.
From the application of a discrete chaotic system, the complexity of the system output value
is more important, and the complexity of the equation does not affect the output complexity.

In the same way as in the previous section, we change the fractional order of the system
to the same range, observe the complexity transformation of the system, and compare
the relationship between complexity and LLE. The complexity of the SE and the C0 is
shown in Figure 6. When the system is in the periodic state, the complexity of the SE and
of the C0 is at its smallest, and the periodic state is obvious when q1 = 0.9–0.97, which
should be expected by our inventory management system but rarely happens in practice.
After q1 > 0.97, with the increase of q, the complexity of the SE and of the C0 shows an
overall upward trend, which is consistent with the corresponding verification results, such
as the Lyapunov index spectrum and the bifurcation diagram (Figure 3). It is also consistent
with the complexity change of the SE and of the C0, but the complexity of the SE is relatively
high and that of the C0 is relatively low.

Figure 6. Complexity of system when q1 changes: (a) SE complexity; (b) C0 complexity.
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The fractional order q1= 0.99, changing the product resource rate q ∈ [0.2, 0.5], keeping
other parameters of the inventory management system model unchanged, and drawing
the complexity of the system, as shown in Figure 7. When q = 0.2,∼0.35, the system’s
complexity is unchanged and relatively small. At this time, the system is in a non-chaotic
state. When q = 0.35∼0.44, the complexity of the system is higher, it is increasing, and the
system presents a chaos state. At q = 0.44∼0.5, the system complexity appears blank,
indicating that this interval complexity does not exist and that the system is divergent;
therefore, the system complexity cannot be obtained. The change of the system complexity
in Figure 7 is consistent with the LLE change of the system in Figure 4.

Figure 7. System complexity when q changes: (a) SE complexity; (b) C0 complexity.

The fixed fractional order q1 = 0.99, q = 0.38, the changing inventory efficiency
r ∈ [0.5, 0.7], and the other parameters of the inventory management system remain
unchanged. The SE and C0 complexity of the system is drawn by MATLAB software,
as shown in Figure 8. When the system is in chaos, the complexity is high; the complexity
is less when the system is in cycle. The change of system complexity is consistent with
the change of the LLE of the system in Figure 5. In some intervals, the system is in a
divergent state; therefore, there is no LLE, and the corresponding complexity does not
exist. Compared with Lei et al. [5], this model is more similar to the actual inventory
situation. For example, during the inventory efficiency r = 0.6–0.65, the system is in a
periodic state, which does not conform to the basic inventory convention. In this paper,
the inventory efficiency r = 0.6–0.65, which is in a chaotic state and accords with the basic
inventory dynamics.

Figure 8. Complexity of systems of Equation (8) when r changes: (a) SE complexity; (b) C0 complexity.
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4.4. C0 and SE Complexity Space of Model

The above research is based on the system complexity given a single parameter change.
When two parameters change at the same time, it is important to study the state of the
system so that we can easily find the chaotic region and the periodic region of the system.

A complex space diagram with two parameters, the x axis and the y axis, represent
the two parameters, and color is used to represent complexity. Different colors have
different complexity. The complexity diagram is shown in Figure 9. The colors in the
diagram are dark blue, sky blue, light green, yellow, orange, red, and black, indicating the
complexity from low to high. The areas with high complexity are in the upper right of the
two graphs—that is, the areas with larger fractional order q1 and larger parameter r—and
the complex space graphs of the SE and of the C0 are the same. A complexity diagram can
offer useful information to warehouse managers to control inventory efficiency within a
certain range in inventory management.

Figure 9. Complex space diagram: (a) SE complex space diagram; (b) C0 complex space diagram.

5. Conclusions

In this work, we studied and analyzed the complex behavior of an inventory manage-
ment system. Based on the integer-order discrete inventory management system model,
a fractional-order inventory management system is constructed. Combined with the related
algorithms of the fractional-order difference equation, the phase diagram of the system
is simulated and verified by MATLAB. At the same time, bifurcation and the largest Lya-
punov exponent of the system are used to analyze the chaos dynamic characteristics when
the related parameters change. In order to further study the nonlinear characteristics of
the system, we use SE and C0 measurements to analyze the system’s complexity and con-
struct the complexity space diagram. The simulation results show that when the area of
fractional-order chaos is reduced, the quantity of the goods inventory in the warehouse
can be easily controlled. Practically speaking, when the fractional order can be reduced by
a more frequent record of goods in the warehouses, coupled with control by sales record
management, all these can raise the accuracy of inventory prediction. This study provides
theoretical support for inventory and facility managers to calculate and adjust inventory
plans. Thus, the results can provide practical information to stakeholders when they design
facility management strategies and the area a company needs to rent for inventory purposes
in the future.
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Appendix A

function Y=FODIMsystems ( p , q , s , r , q1 , q2 , q3 ,N)

g1=zeros ( 1 ,N) ;
g1 (1 )=gamma( q1 ) ;
for i =1 :N

g1 ( i +1)=g1 ( i ) * ( ( i −1+q1 )/ i ) ;
end

g2=zeros ( 1 ,N) ;
g2 (1 )=gamma( q2 ) ;
for i =1 :N

g2 ( i +1)=g2 ( i ) * ( ( i −1+q2 )/ i ) ;
end

g3=zeros ( 1 ,N) ;
g3 (1 )=gamma( q3 ) ;
for i =1 :N

g3 ( i +1)=g3 ( i ) * ( ( i −1+q3 )/ i ) ;
end
%% 3
x=zeros ( 1 ,N) ;
y=zeros ( 1 ,N) ;
z=zeros ( 1 ,N) ;
%% I n i t i a l c o n d i t i o n
x ( 1 ) = 1 ;
y ( 1 ) = 0 . 1 2 ;
z ( 1 ) = 0 . 1 3 ;
%% f r a c t i o n a l − o r d e r d i s c r e t e sys t em
for t =2 :N

for j =2 : t
X( j )= g1 ( t − j + 1 ) * ( s+p* z ( j −1)−x ( j − 1 ) ) ;
Y( j )= g2 ( t − j + 1 ) * ( q * x ( j −1)+ r * y ( j −1)* z ( j −1)−y ( j − 1 ) ) ;
Z( j )= g3 ( t − j +1)*(1 − x ( j −1)−y ( j −1)+z ( j −1)−z ( j − 1 ) ) ;

end
%% sum

x ( t )= x (1 )+(1/gamma( q1 ) ) * sum(X ) ;
y ( t )=y (1 )+(1/gamma( q2 ) ) * sum(Y ) ;
z ( t )= z (1 )+(1/gamma( q3 ) ) * sum(Z ) ;

end
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