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Abstract: In this article, we propose a new fractional-order delay-coupled FitzHugh-Nagumo neu-
ral model. Taking advantage of delay as a bifurcation parameter, we explore the stability and
bifurcation of the formulated fractional-order delay-coupled FitzHugh-Nagumo neural model.
A delay-independent stability and bifurcation conditions for the fractional-order delay-coupled
FitzHugh-Nagumo neural model is acquired. By designing a proper PD? controller, we can effica-
ciously control the stability domain and the time of emergence of the bifurcation phenomenon of the
considered fractional delay-coupled FitzHugh-Nagumo neural model. By exploiting a reasonable
hybrid controller, we can successfully adjust the stability domain and the bifurcation onset time of the
involved fractional delay-coupled FitzHugh-Nagumo neural model. This study shows that when the
delay crosses a critical value, a Hopf bifurcation will arise. When we adjust the control parameter, we
can find other critical values to enlarge or narrow the stability domain of the fractional-order delay-
coupled FitzHugh-Nagumo neural model. In order to check the correctness of the acquired outcomes
of this article, we present some simulation outcomes via Matlab 7.0 software. The obtained theoretical
fruits in this article have momentous theoretical significance in running and constructing networks.

Keywords: fractional-order coupled FitzHugh—-Nagumo neural model; stability; Hopf bifurcation;
PDP controller; hybrid controller

1. Introduction

The human brain consists of thousands of neurons that are connected with each
other in a very complex network of neurons [1]. In order to grasp the inherent essence
of neurons, many researchers have shown significant interest in establishing appropriate
neural network models to uncover the laws of interaction among them. Generally speaking,
the following canonical models are often used to describe the interaction among different
neurons: the Hodgkin—-Huxley model [2], the Morris—Lecar model [3], the Hindmarsh-
Rose model [4], the FitzHugh-Nagumo model [5], and the integrate-and-fire model [6,7].
In particular, the FitzHugh—-Nagumo model is an important model that displays strong
oscillation and bifurcation under appropriate parameters. The FitzHugh-Nagumo model
comes from the simplified version of the canonical Hodgkin-Huxley model [1] that depicts
the dynamics of neurons and the dynamics of excitable systems in various areas, such as
solid-state physics and chemical reaction kinetics [8]. The FitzHugh-Nagumo model has
been greatly used in computational neuroscience and nonlinear dynamics [1]. Nowadays,
many valuable works on the dynamics of various FitzHugh-Nagumo models have been
carried out and many excellent fruits have been reported. For example, Demina and
Kudryashov [9] dealt with the meromorphic solution of a FitzHugh-Nagumo system via
Nevanlinna’s theory of differential systems. He et al. [10] explored the existence and
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stability of order-1 and order-2 periodic solutions to a FitzHugh-Nagumo neuron system,
with state-dependent impulses via the fixed point of Poincaré mapping and geometric
analysis skills. Zheng and Shen [11] carried out an analysis of Turing instability caused
by the random network in the FitzHugh-Nagumo system. Gani and Ogawa [12] focused
on the instability of periodic traveling wave solutions to a FitzHugh-Nagumo system in
excitable media. For more related topics on this aspect, one can see [13-17].

In 2015, Anderson Hoff et al. [18] dealt with the numerical bifurcation issue of the
following coupled FitzHugh-Nagumo neural model:

dwq (t 1
dlt( ) _ a(wz +wy — 3w1> + b(wy — ws),
dZUQ(t) _ 1 (w1 s ,37/02),
dt a 1)
dw;t(t) =a <w4 + w3 — wg + b(ws —wy),
dZU4(t) 1
dt — a(w3—0(+,8W4),

where wq (t) and w3 (t) denote the voltage across the cell membrane of a neuron at time
t; wy(t) and wy(t) denote the recovery state of the resting membrane of a neuron at time
t; o, B,a denote parameters; and b denotes the coupling strength between the network
elements. For more details, one can see [18,19].

In many cases, time delay often exists in FitzHugh-Nagumo neural systems due to
the postponement of signal propagations of different neurons. Based on this viewpoint,
Jia et al. [20] proposed the following delay-coupled FitzHugh-Nagumo neural model:

dwl(t> _a(w2+wl _ 1w1> +b(wl W3(t_9))/
dt 3
dwat) L at ),
dt o (2)
90) g -+ s Jud) bt 6 0),
dwg(t) 1,
it~ gt et puw),

where 0 stands for the delay. By discussing the characteristic equation of system (2),
Jia et al. [20] set up the stability and bifurcation conditions for system (2). Moreover, due
to the normal form theorem and center manifold theory, the Hopf bifurcation nature
is analyzed.

Note that all the works explored above merely deal with the first-order FitzHugh-
Nagumo neural models. At present, fractional calculus is a very valuable tool used in
depicting the memory traits and hereditary peculiarities of different materials and evolution
processes [21-28]. Fractional calculus has been used in many areas, such as mechanics,
different kinds of physical waves, finance, neural networks, secure cryptography, auto-
control, etc. [29,30]. Recently, abundant studies on fractional dynamical models have been
published. For instance, Li and Yan [31] discussed the Hopf bifurcation control issue in a
fractional delayed predator—prey system with disease and cannibalism. Kao and Li [32]
explored the asymptotic multistability and local S-asymptotic w-periodicity in fractional
neural network models with impulse. Luo et al. [33] handled the fixed-time control issue
in a fractional chaotic model due to the backstepping approach. Jin et al. [34] set up
delay-dependent and order-dependent criteria on stability and stabilization in fractional
memristive neural network models with delay. For more details, one can see [35-39].

Relying on the exploration above and in order to depict the memory trait and hered-
itary peculiarities of the voltage across the cell membrane of a neuron and the recovery
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state of the resting membrane of a neuron, we modify model (2) as the fractional-order
delay-coupled FitzHugh—-Nagumo neural model, as follows:

dlw (t) _ 1 3
prraiald w2+w1—§wl + b(wy —w3(t—0)),
q
d UJZ(t) — _l(wl —DC—F,sz),
dtq a
dwa(t) _ Lot s — (0 ©
7_[1 w4—|—w3—§w3 + b(ws —wy (£ —0)),
dqW4(t) o 1

0 < g < 1denotes a constant. All other parameters of model (3) have identical implications
to those in model (1). Clearly, model (3) and model (1) own the identical equilibrium point.

Periodic oscillation is a vital dynamical peculiarity in delayed FitzHugh-Nagumo
neural models. The delay-driven Hopf bifurcation is a special periodic oscillation. The
delay-driven Hopf bifurcation plays a vital role in designing neural networks. Thus, it
has received great attention from many scholars. However, many works on delay-driven
Hopf bifurcation are only concerned with integer-order dynamical models. The study on
the delay-driven Hopf bifurcation of fractional-order dynamical models is reversely rare.
Recently, some articles have focused on the delay-driven Hopf bifurcation of fractional-
order dynamical systems. For example, Amine et al. [40] analyzed the stability and Hopf
bifurcation of a fractional tumor virotherapy system with delay. Xu et al. [41] revealed the
impact of both delays on Hopf bifurcation in fractional four-dimensional neural networks.
Huang et al. [42] considered the stability and bifurcation behaviors of fractional-order
ring-structured neural networks. Alidousti [43] investigated the stability and delay-driven
Hopf bifurcation in a fractional-order predator—prey scavenger system. For more details,
one can see [44-50].

While some authors have investigated the delay-driven Hopf bifurcation in fractional-
order dynamical models, numerous unresolved questions still remain to be addressed. For
example, the challenge of designing a suitable controller to adjust the stability domain and
the timing of bifurcation generation in fractional-order delayed FitzHugh-Nagumo neural
models stands out. This motivates us to seek the delay-driven Hopf bifurcation and its
control issue of fractional-order FitzHugh—-Nagumo neural models.

In this work, we explore the following key aspects:

(i) The stability and bifurcation phenomena of system (3).

(ii) The PDP? controller used to control the stability domain and the timing of the bifurca-
tion generation of system (3).

(iii) A hybrid controller to adjust the stability domain and the timing of the bifurcation
generation of system (3).

The elementary framework in this article is as follows. Section 2 provides a basic
theory about fractional dynamical equations. Section 3 explores the stability and bifurcation
problem of model (3). Section 4 explores the Hopf bifurcation control issue of model (3) due
to the PDP controller. Section 5 investigates the Hopf bifurcation control issue of model
(3) due to the hybrid controller. Section 6 carries out software simulations to verify the
correctness of the acquired key outcomes of this article. Section 7 concludes this article.

2. Preliminaries

In this segment, we list some necessary definitions and lemmas on fractional calculus,
which will be applied in the following proof. Denote R = {y|y > 0,y € R}.
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Definition 1 ([51]). Define the Caputo fractional-order derivative as follows:

1 x 10 (s)
DU = =g | e

where 1(x) € ([x0,%),R),T(s) = [y x°* e Xdy, x > xoandk € Z* k-1 < q < k.

The Laplace transform of the Caputo fractional-order derivative is given by
L{DN(t);s} =s1L(s) — Y 877U (0),m-1<g<me Z",
j=0
where £(s) = £{I(t)}. Especially, if |1)(0) = 0,j = 1,2, - - ,m, then L{D7I(t);s} = s1L(s).

Definition 2 ([52]). (w1, Wax, W3s, Way) is said to be an equilibrium point of system (3) if

1
w?*) + b(wl* - w3*) =0,

a(wz* + Wiy — 3

1
_E(wl* —a+ Pwyy) =0,

4
a <w4* + w3y — ;wg*) + b(wz, —wyy) =0,
1
— (w3 —a+ Pg,) =0
Lemma 1 ([53,54]). Consider the fractional-order dynamical system as follows:
dlu(t) B
F 1(t,u(t)), u(0) = uo, (5)

where g € (0,1] and I(t,u(t)) : RT x R" — R™. The equilibrium point of system (5) is locally

asymptotically stable if every eigenvalue w of algtl;”)

larg(w)| > %.

evaluated near the equilibrium point obeys

Lemma 2 ([55]). Consider the following fractional-order dynamical system as follows:

dny,(t
dfl;l( ) _ aVi(t —611) + 1o Ta(t — 612) + - - + 11 Va(t — 014),
a2y, (t
2(t) _ LiVi(t —01) + 10To(t — 022) + - - + Iy Vu(t — 024),
dtiz (6)
dimy, (t
dtiqnn() = lnlvl(t - enl) + 11127—2(1L - 9n2) + -+ lnnVn (t - enn)/

where 0 < q; < 1(i = 1,2,---,n), the initial values Vi(t) = wi(t) € C[—maxy;6,0],
t € [-maxy;6,0],k1=1,2,---,n. Set

1/‘71 — llle—l/gll _1126—1/912 . —llne_Vgln
— Iy e Vo V2 — |ppe V02 ... Ly VP
_lnleivgnl —ln2€7V9n2 e gqn — Znnefl’enn

then the null solution of Equation (7) is said to be Lyapunov-asymptotically stable if every root of
det(A(v)) = 0 admits a negative real part.
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3. Bifurcation Issue

In this segment, we explore the stability trait and Hopf bifurcation phenomenon of
system (3). According to [20], we know that if

(A1) > V3,8€(0,1)

holds, then system (3) admits a unique positive equilibrium point Wy (w1, W2, W3x, Was),
where w1, Wox, W34, W4, Obey

1
a(wz* + Wy — gwf*> + b(wy, —wsy) =0,

v ®)

The linear system of Equation (8) near Wy (w1, Wos, W3s, W4y ) can be expressed as

dq;"th(f) = (a+b — awi, )wi (1) + aws (t) — bws(t - 6),

d‘i;u;(t) _ _%wl(t) - ng(t), o
dﬂ;v;q(t) =(a+b-— awg*)w3(t) + awy(t) — bwy (£ — 0),

dﬂ;v:q(f) — ,%z@(t) - gm;(t).

The associated characteristic equation of (9) reads as follows:

sT—(a+b—aw?) —a be*? 0
1 s14 £ 0 0 _
det be~st 0" s1- (a+b—auwi)) —a =0. (10)
0 0 % sq+§
Applying (10), one obtains
s¥ 4 0153 + 15571 + 4357 + ag + (a55*T + agsT + ay)e > =0, (11)
where
a = % —2a —2b +a(w?, +u3,),
B> 2 2y _ 28 2
= 5= 7(a+b—uwl*) - 7(a+b—uw3*)
+(a+b—aw?)(a+b—awi,)+2,
2 2
az = 7/57(41+b7aw%*)7a—2u+b7aw%*)
+é(a+b—aw2 Y(a+b—aw} )—ﬁ—z(a—&-b—uw2 )
a 1% 3% a2 3
+g(a—o—b—aw%*)(a—kb—aw%*)—(a+b—aw§*), (12)
B O i 2 2
ap=1- E(a+bfaw1*) + a—z(a+bfazul*)(a+b7uw3*)
- g(ajtbfaw%*),
a5 = *hz,
2
as = 2P0 ,
a
2
ay = E
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Assuming that s = i) = ¢(cos § + isin §) is a root of (11), we obtain

9™ (cos 27 + i sin2q7) + a1 ( T isin 3qu>
+a2¢*(cos gt + i singrr) + az? (cos % +isin %)
+ay + [a5¢2‘7(cos gt +isingr) + agp’ (cos % +isin %) + a7]

X (cos2¢f — isin2¢f) = 0,
which leads to

{ A1(¢) cos2¢0 + Ar(¢) cos2¢0 = —Az(¢p),
Az (¢) cos2¢8 — Aq(¢) sin2¢8 = —As(¢),

where
A1(9) = b1 + by + b3,
A1(9) = byg™ + bsg,
A1(§) = bed™ + by + bgp™ + bogT + by,
A1() = b119* + b1o¢™ + b1z + brag,
where
by = ascosqrm,
by = ag cos Zan/
b3 =4ay,
by = assingrr,
bs = ag sin Zan/
be = cos2qm,
by = aq cos 3‘177[,
and

bg = ap cosqrm,
2

by = a3 cos ﬂ,

2
bip = ay,
b1 = sin2qm,
b12 = a1 sin Equn,
b13 = ap sinqr(,

2
b14 = as sin %

It follows from (14) that
AL () + A3(¢) = A3(9) + AL(9),

which results in

1% + o™ + c3¢°7 + g™ + 5™ + @™ + 079 + g + 9 = 0,

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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where
¢ = b2 b3,
ca = 2(beb7 + b11b12),
c3 = bj + bTy +2(bebs + b11b13),
c4 = 2(bsbg + b7bg + b1b14 + b12b13),
¢5 = b§ + by — b — b + 2(bebio + bybo + biobia), (20)
¢ = 2(bybrg + bgbo + bizbis — 2b1by — 2bybs),
c7 = b3 + b3, — b3 — b3 4 2(bgbyg — b1b3),
cs = 2(bob1g — babs),
cg = b3y — b3.

Denote
Q(¢) = c19™ + 2™ + 3™ + cap™ + 5™ + o™ + c7¢™ +cs¢? +co (21)
and

5(4)) = C1(P8 + C2(P7 + C3(,b6 + C4475 + C5(P4 + C6¢3 + C7()l§2 +cgp +c9 (22)

Lemma 3. (i)  Suppose that ay +ay # 0and ¢, > 0(k =1,2,---,9), then Equation (11) does
not admit any roots with a zero real part.

(ii)  Suppose that c9 > 0 and 3 g9 > 0, obeying S(co) < 0, then Equation (11) admits at least
two couples of purely imaginary roots.

Proof. (i) Inview of (21), we obtain the following:

d%@ = 8qc1¢™ ! + 79c29”1 " + 6qcsp® ! + 5gcsg™ !

+4gesp*1 + 3>t + 2g07¢* T + geggpt L (23)

Since ¢; > 0(] =,2,- - - ,8), one obtains d%(f) >0,V ¢ > 0. Apart from Q(0) = c9 > 0,
one knows that Equation (19) admits no positive real root. In view of a4 + a7 # 0, one
understands that s = 0 is not the root of (11). This concludes the proof of (i).

(ii) Clearly, S(0) = c9 > 0,5(co) < 0(go > 0) and limgy ;4o %’ﬁ) = +o0; then, there
exist g1 € (0,69) and G2 € (go, +o0) obeying S(g1) = S(¢2) = 0, and Equation (19)
admits at least both positive real roots. So, (11) admits at least two couples of purely

imaginary roots. This ends the the proof of (ii).
O

Assume that Equation (19) admits eight positive real roots ¢;(i = 1,2,---,8). It
follows from (14) that

1 _Au(¢i) As(¢i) + Az (¢i) As(i)
0 = 2%, larccos( 2(g) + A (gy) ) + 2k |, (24)
wherek =0,1,2,---,i=1,2,---,8. Let
b= min {67} ¢ = 9lo=a; (25)

Next, the following assumption is needed:
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(Az) Up1Upy + UppUpy > 0, where
49 —1 3g—1
U11—4E](P4ql (qz ) +3qa¢3q1 (qz )
+ 2ga; 4)2‘7 ! 7(217 ; DL + qa3<pgfl cos L —21)71
+ <2qu59§ql cos (ZCF%W + qa69871 cos (qzl)ﬂ) €os 2¢0 0
_ 29 —1 _ -1
+ <2qa50§q ! sin M + qa69g ! sin (qz)ﬁ> sin 2¢y6o,
4g —1 _ 3g—1
— 496" sin (49 . )7 +3ga1¢2 L sin (3¢ . )7
21 (29— 17 1. (g-Dm
+ 2qa2¢, > +gazp, ~sin 5 26)

<2qa o2 ¢ @ + qagp] " cos (‘721)”) sin 2¢00o

29 -1 - -1
(an5<p2q 1 M—Fq%% Lin (5’2)7[> cos 2¢060,
qr

Uy = 2¢y (1154)5'1 cos g7t + a64>g cos — + a7> sin 2¢00p

2
T
+ 2¢9 (aypéq sing7 + aé(Pg sin %) cos 2¢pby,

Uy = —2¢9 (11547(2)‘7 cos g7t + a6¢g cos % + 117) cos 2¢gbp
+ 2¢9 (a54)§q sing7 + a64)g sin %) sin 2¢00p.
Lemma 4. Let s(6) = (1(0) + i{2(0) be the root of Equation (11) near 6 = 6y, obeying
01(680) = 0,22(60) = go, then Re %] ‘9:90@:4;0 >0

Proof. Due to (11), one obtains the following:

d
(4qs4q*1 +3ga1s27 1 4 2qars?1 1 +- qagsq”) £

+ (an552" Ly gagsT™ 1) 29 —250

—2¢ 20 (ZGQ + s) (a55%1 + ags + az) = 0.

Using (27), we obtain the following:

where

Then,

[32}1 _Wi(s) 0

Ui (s) = (4qs4‘7_1 +3qars¥T71 4 2ga,5%171 4 qa3sq_1)
+ (21751552‘7_1 + qaésq_l)e_zse,

Up(s) = 2se~ 2 (a5s2‘7 + ags? + 117).

_ Ul + Uil
U3, + Uz

6=00,9=¢o

(27)

(28)

(29)

(30)
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By (A3), we have the following:

ds
R .
e{ [ 7 0] } >0 (31)
6=00,¢=o
O
Next, we provide the following assumption:
(A3) The following inequalities hold:
Il =a4 >0,
as 1
I, = det 0,
2 8{034—&6 a2+a5:|>
ay 1 0 (32)
Il =det| a3 +ag ax+as a, >0,
0 ag+ay; az+ ag
Iy = (a3 + a¢)I13 > 0.

Lemma 5. If 6 = 0 and (A3) is satisfied, then system (3) remains locally asymptotically stable.
Proof. When 6 = 0, then (11) becomes the following:
M+ @ A% + (ay + as5)A% + (a3 + ag)A + ag + a7 = 0. (33)

Due to (A3), one knows that every root A; of (33) obeys |arg(A;)| > 57 (i = 1,2,3,4). Thus,
Lemma 5 is correct. [

Related to the discussion above, the following outcome is lightly acquired as follows:

Theorem 1. If (A1)-(A3) are fulfilled, then the positive equilibrium point Wo (w1, Wa«, W3, Was )
of system (3) remains locally asymptotically stable if  falls into the range of [0, 6y). Moreover, system
(3) generates a Hopf bifurcation around the positive equilibrium point Wy (w1, Wax, W3, Wys )
when 6 = 0.

4. Bifurcation Control via the PD? Controller

In this segment, we handle the Hopf bifurcation control aspect of system (3) via the
PDP controller. In view of the idea in [56,57], we design the following PD? controllers:

p(6) = pyla(t) —ws,) + p, TV Z2), en

and p t
ot) = py(wa(t) —wy.) +pg D) 5)

where p; # 1and p, stand for the derivative control parameter and the proportional control
parameter, respectively. Adding the two controllers, p(t) and o(t), to the second equation
and the fourth equation of system (3), respectively, we have the following:

d9wq (t 1

e ”<w2 e 3“’?> +b(wy — ws(t ),
dTwo, (t 1 (s (8) — o

dtzq( ) _ —(wy — &+ Pwz) + pp(wa(t) — wz*PfWM,

F att (36)

dws (t

dii]()_a<w4+w3 3w>+bw3_wlt—9)),
dlwy(t) 1 (w4 () — way)

i a(w3 — 0+ Pwy) + pp(wa(t) — way) R
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Clearly, system (36) has the same equilibrium point as that of system (3). The linear
system of Equation (36) near Wy (w1, W, W3, W4, ) can be expressed as follows:

dTwq (¢
Zlutl‘i( ) = (a+b—aw?,)wy (t) + awy(t) — bws(t — 6),
quUz(t) o 1 1 ﬁ
ati a1 *Pd)Wl(t) 1—pg (ﬂ br Jealt (37)
dTws (¢
Z)fq( ) (a+b—aw3, ws(t )+aw4( ) — bwy(t - 6),
dql,{)4(i') . 1
et a1 —Pd)w3(t) 1—p4 ( pp)
The associated characteristic equation of (37) reads as follows:
sT—(a+0b—aw?) —a be=s? 0
T 1 ) s + %7‘)” 0 0
a(l—pqg —Pd —
det be~? 0 sT—(a+b—awl)) —a 0. (38)
1 u a2 Pp
0 0 a(1—pg) ST+ 4=, —pd
Applying (38), one obtains the following:
s¥ 4 d15% 4 dps?T + d3sT 4 dy + (ds5s2 + dgsT + dy)e 20 =0, (39)
where )
dy = ————— —2a—2b+a(w?, +w3,),
i (. + i)
E o\ L (E-p
dy=[2—F) —2( "2 ) (a+b—auw?,
2 (1_Pd> <1_Pd>( 1)
£ Pr 2
_o|a_I'P _
2 Ty (a+b—aws,)
+(a+b—aw?)(a+b—aws,) +2,
dy = ———— —(a+b—aw?)
1—
a( ; pa) (40)
o Pp 2
a+b—awi,
(1 - pd> ( 2)
1
+ ———(a+b—aw?)(a+b—awi,
11(1 —Pd)( 1 )( 3 )
E_ o\
a r
a+b—aws,
(B
1
+ ———(a+b—aw?,)(a+b—awi,
a(l _Pd)( 1 )( 3 )
—(a+b—aui,),
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and

dy=1-—

a(l— pg 1—pq4

x (a+b—awt)(a+b—aws,)

ﬁ_ 2
)(a+baw%*)+<” Pp)

(a+b— awg*),

a1 pa)
41
b= 12, (41)
2b2
do= 2,
°~ a(l—pa)

2
b (E=ew)
1—pa
Assuming that s = igp = ¢(cos § + isin ) is a root of (39), we obtain the following:

@*(cos 2q7t + isin2q7r) + dy > (cos 36’7” +isin 3q27'6)
+dy* (cos g7t + i singrr) + d3¢" (cos % +isin %)
+dy + [d5§02'7(cos grt +isingrm) + dgg" (cos % + isin %) + d7}

X (cos2¢f — isin2¢0) = 0, (42)

which leads to
{ B1 (@) cos2¢0 + By (¢) cos2¢0 = —Bs(¢), (43)

By (¢) cos2¢0 — By (@) sin2¢0 = —By(¢),

where

) =e190* + ey + e3,

) = s + 59, m
) = ecp™ + 797 + e 9®1 + €9 + e10, 44
)

=e11 <P4’7 + 612(P3q +e139% + 1497,

where
e] = dscosqm,
2
ey = dg cos an,
ez = dy,
eqs = dssingr,
27t
2 7
ep = COS2gTT,
37
2 7
eg = dp cosqr, (45)
2
e9 = d3 cos an,

e5 = dg sin

ey = dq cos

e10 = dy,

e11 = sin2qrr,

391
2 7

e13 = dp singrr,

27t
R

e1p = d1 sin

€14 — dg, sin
It follows from (43) that

Bi(9) + B3(9) = B3(¢) + Bi(9), (46)
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which results in

Fi9M+ fog" + 39 + fag™ + 59 + fo@™ + fr9M + fi@" + fo =0, (47)

where
fA=e+e
f2 = 2(ese7 + e11€12),
f3 = €5 + efp + 2(eqes + e11613),
fa = 2(ege9 + e7es + er1e14 + e12€13),
f5 = €§ + ei3 — ef — ef + 2(ese10 + €79 + e12613), (48)
fo = 2(eze1p + eseq + e13e14 — 2e1e2 — 2e4e5),
fr=ed+e, — ek — e+ 2(egern — e1e3),
fs = 2(ege10 — e2e3),
fo= 6’%0 - "é

Denote
R(p) = fi¢* + 297" + f50° + 19”0 + f50™ + fog™ + fr0™ + fop" + fo  (49)
and

T(9) = f19® + 20" + f30° + a9° + fs9* + fo0” + f79” + fap + fo (50)

Lemma 6. (i)  Suppose that dy +dy # 0and fi > 0(k =1,2,---,9), then Equation (36) does
not have any roots with a zero real part.

(i)  Suppose that fo > 0and 3 &y > 0 obey T(&o) < O, then Equation (36) admits at least two
couples of purely imaginary roots.

Proof. (i) Inview of (49), we obtain the following:

dR
dgp) =80f19™ " +70f20"1"1 + 6qf39% " +50f49%

+4qf50" 1+ 3qf60> 1 + 29 f707 7 + qfat (51)

Since f; > 0( =,2,- -+ ,8), one obtains % >0,V ¢ > 0. Apart from R(0) = fo > 0,
one knows that Equation (47) admits no positive real root. In view of d4 + d7 # 0, one

understands that s = 0 is not the root of (36). This concludes the proof of (i).

(ii) Clearly, T(0) = fo > 0,T(&) < 0(& > 0) and limg_s1c0 2 = foo, then there
y 2 dg

exist & € (0,¢p) and & € (o, +00), obeying T(&1) = T (&) = 0, then Equation (47)
admits at least both positive real roots. So, (36) admits at least two couples of purely

imaginary roots. This concludes the proof of (ii).
O

Assume that Equation (47) admits eight positive real roots ¢;(i = 1,2,---,8). It
follows from (43) that

Bi(p;)Bz(@; Bo(@;)By(@;
«9]1.:i arccos | — 1(9)) §(<p])+ i((p]) 4(9) + 2|, (52)
2¢; Bi(¢j) + By (o))
where! =0,1,2,---,j=1,2,---,8. Let
P— 1 Q p—
0. = ._min ,8{9] b @0 = @lo=p.- (53)

Next, the following assumption is needed:
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(Ag) V11Vog + ViaVap > 0, where

(49 —-1)m
2

+ quzgoéq*l cos w +qdzp} " cos ~———

+ (qu5 goéq*1 cos 2q-1)m

Vi1 = 4(74)35]*1 cos

+ <2qd5 (péq_l sin 2g—n

Vis = 4qgy" " sin g~

+ quzq)(z)q*l sin (2q-Dr + ngq)ofl sin ———~—

29q-1__ (2q-1)m
-1, (2q-1)m -1

Vo1 = 2¢9 (d5goéq cos g7t + dg (pg cos % —+ dy) sin 20

%) cos 2¢o0+,

ar
2
qrc) sin 2¢o0x.

+2¢o (d5q)éq sin g7 + de @] sin

Voo = —2¢9 (d5 goéq cos 47 + de @ cos — + d7) cos 2¢0

2

+2¢o (d5qo(2)q sin g7 + de @] sin

- (qu5g00 oS ———— + qd6q)g_1 cos (6]21)7T> sin 20

+ <2qd5(p0 sin ~———— +qdsp, sin (q—zl)n> cos 2B,

(54)

Lemma 7. Let s(8) = 7(0) + ita(0) be the root of Equation (39) near 6 = 6., obeying

> 0.

Tl(e*) =0, TZ(G*) = 9o, then Re{%] 0="0+,9=¢¢

Proof. Due to (39), we obtain the following:

ds

(49571 + 3qdys™ 1 + 2051 4 gyt 1) 2

d
+ (qu5sz’471 + qdésqfl) £6*259
—2¢™ 20 (2129 + s) (ds5s%1 + dgs + d7) = 0.

Using (55), we obtain the following:

[dsr _Vi(s) @

do Va(s) s
where

Vi(s) = (4qs4‘7_1 +3qd;3771 4 2qdps*1! + ngsq_l)

+ <2qd552q71 + qd6sq*1)e*259,

Va(s) = 2se~ 20 <d552‘7 + dgs? + d7).
Then,
R{jg} :R{m - YuV + ViV

6=0.,9=po 2 ntVan

(55)

(56)

(57)

(58)
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By (A4), we have the following:
ds] !
Re{ Ll@} } > 0. (59)
0=0:,9=90
O
Next, we provide the following assumption:
(As) The following inequalities hold:
H1=4d4 >0,
dy 1
Ey = det 0,
2 e|:d3+d6 d2+d5:|>
dy 1 0 (60)

[1]

det| ds+dg dp+ds dy >0,
0 dy+d7; dz+dg

By = (d3s +dg)E3 > 0.

3

Lemma 8. If 0 = 0and (As) are satisfied, then system (36) remains locally asymptotically stable.

Proof. When 0 = 0, then (36) becomes
M+ diA3 4 (dy + d5)A% + (d3 + dg)A 4 dy +d7 = 0. (61)

By virtue of (As), one knows that every root A; of (61) obeys |arg(A;)| > *5
(j=1,2,3,4). Thus, Lemma 8 is correct. [J

Relying on the discussion above, the following outcome is lightly acquired:

Theorem 2. If (A1), (A4), (As) are fulfilled, then the positive equilibrium point Wy (w1, Wos, W3,
Wy ) of system (36) remains locally asymptotically stable if 6 falls into the range of [0, 0,) and system
(36) will generate a Hopf bifurcation around the positive equilibrium point of Wo (w1, Wax, W3x, Was ),
when 0 = 0,.

5. Bifurcation Control via Hybrid Controller

In this segment, we design a proper hybrid controller, including state feedback and
parameter perturbation to control the Hopf bifurcation of system (3). Following the idea
of [46,50], we obtain the following fractional-order controlled FitzHugh-Nagumo neu-
ral model:

dqzl”;q(t) - a<w2 +wy — ;w?) + b(wy —ws(t —90)),

dqf;:q(t) =K {i(wl —a+ ﬁwz)} + xofwa(t — 6) — wa(t)],

dTws(t) 1 ©
dtg"i :a(w4+w3— 3wg) +b(ws —wy(t —0)),

dqf;ifqm =K {—i(ws —a+ ﬁm)} + ro[wy (t — 6) — wy(t)],
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where k1, k; are feedback gain parameters. Clearly, system (62) owns the same equilibrium
point as that of system (3). The linear system of Equation (62) near Wy (w1, Wa., W34, Was)
can be expressed as follows:

dTwn (¢
dth( ) = (Ll +b— aw%*)wl (t) + LIZUz(t) - bw?)(t - 9)/
dTwo (t x K
dtzfi( ) _ _%wl(t) - (al + K2>w2(t) + K212 (t - 6),
63
dTws(t) 2 ©
Frra (a+b—aws, )ws(t) + aws(t) — bwq (t —6),
dTwy (t i
dfq( : = —;lw (t) — <ﬁ +K2>w4(t) + Kowy (t — ).
The associated characteristic equation of (63) reads as follows:
s —a* —a be=s? 0
v s+ B —ke 0 0 B
det]  po—so 0 §1 — 6 —a =0 (64)
0 0 v 8T B — keSO
where
& =a+b—awi,,
* K1
= ﬁT t2 65
L (65)
S =a+b—awi,
Applying (64), one obtains the following:
s¥ + €15% + €571 + €357 + €4 + (€557 + €65* + €757 + eg)e
+ (€952 + €1957 + €11)e 20 + 156730 = 0, (66)
where
€1 =2(f"—a"),
€ =0"(a" — B7) —a"pT + p(B" — 207,
63 — 06*‘8*5* +‘3*[5*(1X* _‘B*) _ “*’3*] +a,}/*,
€4 = tX*(IB*)Zé* _ {1’)/*5*,
€5 = _2K2/
€6 = a"Kky + 120" — By — Kp (BT —20"), 67)
€7 = B (" Ky + K20") — 010" — 12 [0% (a* — B*) — " B¥],
€s = —2Kkpf " 6%,
€9 = K3,
€10 = —[b2 + K%(OCZKZ + Kzé*)],
€11 = a*x36* — b* B,
€12 = b2K1.

In view of (66), we have the following:

(s + €157 + €257 + €357 + €4)e*? + (e55%7 + €55%7 + €757 + €3)
+ (€952 + €1987 + 611)6759 + eppe >0 =0, (68)
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Assuming that s = i9 = 9(cos § + isin § ) is a root of (68), we obtain
4 3 3qm 3qm
[19 1(cos2gm +isin2qm) + €197 cos —— 5 +isin -
+€,0% (cos g7t + i sing7r) + €301 (cos qz +isin %)
. 3 .. 3
+€4} (cos 86 + i sin 09) + €507 <COS % +isin T)
+e68% q Ekid an
601 (cos g + isingrm) + €707 cos -— 5 +isin > ) tes
+[€98 (cos g7t + i sin g7r) + €100 (cos qz +isin %) +eq1]
X (cos 90 — isin ¥6) + €12(cos 200 — isin296) = 0, (69)
which leads to
Cq cos 90 + Cp sin 96 + €15 cos 286 = C3, (70)
Cyqcos 99 4 Cssin 960 — €15 sin 290 = Cg,
where
Cr = MO + 9T + 30°7 + 1497 + 155,
C = 17619417 + 777193q + 778192[7 + 17919‘7,
Cs = 111087 + 1110°7 + 171207 + 113, 1)
Cy = 114 + ;158> + 17168 + 171797,
Cs = g™ + 11987 + 17209 + 7197 + 1722,
Co = 112387 + 17249°7 + 172587,
where
71 = COS 24T,
3qm
12 = €1 COS T,
73 = (€2 + €9) cos g,
s
114 = (€3 + €19) cos o
15 = €4 + €11,
ne = —sin2gm
. 3qm
N7 = —€1sI ——,
g = —(e2 — €9) sinqn;r
119 = — (€3 — €19) sin %,
3qm
10 = —€5COSs T,
11 = —€6COS(TT,
qrt
12 = —€7COs 7,
13 = —€s, (72)
114 = sin2qr,

3qm

15 = €1 sin T,

16 = (€2 + €9) singrr,
. qm

117 = (€3 + €10) sin 5

18 = OS2,

M9 = €1COS ——,

1720 = (€2 — €9) cos g7,

N1 = (€3 — 610) cos

22 = €4 — €11,

7/

. oqrm
1723 = —€s5SsIn T,
o4 = —€gSINgTT,

. qm
N5 = —€781N ——.

2



Fractal Fract. 2024, 8, 229

17 of 38

By the first equation of (70), we have the following:

Cycos 80+ Cy (i V1~ cos? 199) tepn(2c0s? 99— 1) = G5, (73)
which results in the following:
p1 cos* 96 + iy cos® 90 + 3 cos® 90 + piy cos 90 + ps = 0, (74)

which results in the following:

p1 = dedy,
p2 = 2e12 (0% 4 1728%7 4 13671 4 17487 + 115),
pz = —2€12(1108 + 1118%7 + 171207 + 113)
+ (1160* + 1770%1 4 175 9%1 4 17997)2
+ (" + 128%0 + 173077 + 17487 +115)°, (75)
pas = =2(n108>7 + 7119°7 + 71287 + 113)
X (84 +1720% + 530% + 487 + 175),
ps = (11087 + 1110%7 + 11207 + 713 + €12)
— (168*1 + 1178%1 + 15 8%1 + 11987).

By computer, we can solve cos 90 from (74). Here, we assume the following;:
cos 90 = ¥1(9), (76)

where ¥ (9) stands for a function with respect to ¢. In the same way, we can also gain the
expression of sin #0. Here, we assume the following:

sin 99 = ¥, (9), (77)

where ¥;(9) stands for a function with respect to d. Due to (76) and (77), we obtain
the following:
Y2(0) +¥3(0) = 1. (78)

By (78), we can solve the expression of ¢ (say ¢y). Making use of (76), and obtain
the following:

o) = %[arccos‘?l(ﬂ) +2In],1=0,1,2,---. (79)
0
Let
0, = i o)y, 80
o {l:of,?,;%,.‘.}{ } (80)

Therefore, (66) admits a pair of imaginary roots +it%y when 6 = 6,. Now, we prepare
the following assumption:
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(As) Z11Z21 + Z12Z2 > 0, where
le _ 4q194q 1 (4‘7; ) +3q6 193‘1 1 (3q ; 1)7[
+ 2g€ ﬁzq te 7(211 ; L + qe319871 cos L _21)7T
3q€5193‘7 1 (3q — 1) + 3q 192‘7 1 (zq - 1)7-[
2 2
- -1 -1
+q€7193 ! cos (‘12)”} cos B0, + {3(16 193{4 Lsi w
+3q¢€6 19214 Ui @ + qeyﬂgfl sin (q—zl)n} sin 9pf,
(81)
29 —1 _ -1
(qugﬁzq ! M + qeloﬁg ! cos (qz)ﬂ) cos 2890,
<2q69192q Lsi (2[7_%)” + qeloﬁ(qfl sin (q—zl)n) sin 20y6,,
4 1) -1
212—45]194‘71. (qz) _|_3q 193‘71- (qu)n
2g—1 _ -1
+ 2g€, 02q Lsi 7( q 5 )n+q€3198 1sinL 5 )7
-1 29 —1
3q€ l93q 1 (3‘] ) +3q 192‘7 1 ( q )7-[
2 2
and
_ -1 -1
—l—qeyﬁg ! cos (qz)rt} sin 96, + {31765193‘1 Lsi M
2-1 . (2q—1)7 -1 (g-Dm
+3qe60,"  sin — +qe70; " sin BT cos 9y0,
(2q69192q M + qeloﬂgfl cos (q—zl)ﬂr) sin 290,
(2q€9192q Lsi M + qeloﬁgfl sin (11—21)71> cos 28,0,
7y = <e5z9 7 cos 3[; + €65%1 cos qrt + €7l9q cos % + €8> g sin 9p0,
(582 3qm 2 9] 978 8- cos 90
5 sin — 5 + €457 sin g7t 4 €79 sin 3 0 COS Upt (82)

+2 (em?éq cos g7t + 610198 cos % + e1l> O sin 296,
-2 (egﬁéq sing7 + 610198 sin ﬂ) 9 cos 2090, + 38p€1n sin 38q0,,

3q7T
Zoy = <e519 cos Z + €65%7 cos qm + €7l9q cos % + €8> U cos B0,
3qrm
+ <€5l9 T sin Z + €65%7 sin qr + €7l9q sin qz) Y9 sin 90,
+2 (6919(2)q Cos 7T + 610198 cos % + €11> Uy cos 28946,

+2 (6919(2)q sing7 + 610198 sin %) U sin 20460, + 38p€q2 sin 39¢0..

Lemma 9. Let s(6) = @1(0) + ic02(0) be the root of Equation (66) near 6 = 6, obeying
@1(0s) = 0,@2(0,) = o, then Re[%]

> 0.
0=0,,0=0
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Proof. Due to (66), one obtains the following:
49-1 3g-1 29—1 1\ ds
(4qs 1775 4 3ge15”7 " 4+ 2q€25™1™ " + gess” )@
ds
3g—-1 q—1 g—1\%° —s6
+<3q€5s +3geesT " + gezs )d@e
d
—2¢~% (dZG + S) (€557 + €45°1 4 €757 + €3)
ds
2q—1 g—1\ %2 ,—2s0
+<2q€95 + geqps )dee
d
e~ <d;9 + s) (6952q + €1087 + 611>
epe (g +5) =0 (83)
12 d9 M
Using (83), we obtain the following;:
ds1' z 0
dsi_Zls) 6 (54)
dae Zr(s) s
where
Z1(s) = 4gs*71 4 31531 + 2ge2?17 ! + gezst?
+ (3’>c]e5s3‘7_1 + 3geqsT 1 + qeysq_l)e_s‘9
2q—1 q—1Y\,—2s6
+ (qugs + ge1s )e , (85)
Z5(s) = se™0 (5537 4 €521 + €757 + €3)
+ 2567256 (6952q + €10$q + 611>
+ 3861267359.
Then,
Z Z117Z VALY
Re ds _ Re 1(s) _ ZnZn +ZuZyp (86)
de Z5(s) 72 +72
0=0,,0=1) 0=0,,,9=1 21 22
By (Ag), we have the following:
ds]7t
R — .
e{ Lw} } >0 (87)
6=0,,9=1
O
Next, we provide the following assumption:
(A7) The following inequalities hold:
(Dl =€1 > 0,
@, = det €1 ! >0,
€3+€g+€190 €+ €5+ €9
€1 1 0 (83)
O3 =det| e3+ €4+ €19 €y + €5+ €9 €1 >0,
0 €4+e€gt+€11 €1 €3+€6+ €10
Dy = (€3 + €4+ €10)D3 > 0.

Lemma 10. If 0 = 0 and (Ay) is satisfied, then system (66) remains locally asymptotically stable.
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Proof. When 6 = 0, then (66) becomes

A+ €A% + (€2 + €5+ €9)A% + (€3 + €6+ €10)A + € +eg+ €11 +ep =0.  (89)

qrt

By virtue of (A7), one knows that every root A; of (5.28) obeys |arg(A;)| > &
(j =1,2,3,4). Thus, Lemma 10 is correct. [J

Relying on the discussion above, the following outcome is lightly acquired.

Theorem 3. If (A1), (A¢), (A7) are fulfilled, then the positive equilibrium point Wy (w1, Wos,
W3y, Way ) Of system (62) remains locally asymptotically stable if 6 falls into the range of [0, 6.,) and
system (62) will generate a Hopf bifurcation around the positive equilibrium point
Wo (W14, Wos, W3k, Way ) When 0 = Os.

Remark 1. The choice of the PD controller and the hybrid controller depends on the fractional-order
dynamical models. By analyzing the characteristic equation of the controlled model and carrying
out computer simulations, then we decide on the choice of controllers. Compared with the previous
controllers, the advantages of the PD controller and the hybrid controller lie in their more flexible
parameter adjustment. Of course, their disadvantages lie in the computational complexity of the
distribution of characteristic roots for the corresponding characteristic equations.

Remark 2. Jia et al. [45] investigated the stability and bifurcation of integer-order system (2). In
this paper, we explore the stability and bifurcation of fractional-order system (3). Different from
model (2), a fractional-order parameter is added in model (3). The characteristic equation of model
(3) is more complex than that of model (2). In addition, two different controllers are designed to
control the stability and Hopf bifurcation. The analysis of model (3) enriches the bifurcation theory
of the fractional-order dynamical system, to some degree.

6. Simulation Outcomes

In this section, we use the standard Euler methods [47] to carry out numerical simulations.

Example 1. Consider the following FitzHugh—Nagumo neural model:

dw991 (¢t
L() =0.33 (wz +wy — 1w?) + 1.5(ZU1 — ZU3(1L — 9)),

A4+0.91 3
dwy” (t) 1
08T = a3 (w1~ 1.88+0.18w,),
dwd (t) 1, (90)
— = 0.33| wy + w3 — §w3 +1.5(ws3 — wq (t — 0)),
dwg'(t) 1
09T = a3 (s — 1.88+0.18uwy).

One can lightly see that system (90) admits a unique positive equilibrium point Wy (w1, Wos,
W3y, Wa, )=Wo(1.8382,,1.8382,0.2322). Due to the Matlab software, one can lightly obtain
¢o = 0.7499 and 6y = 0.62. We can check that (Aq)—(Az) of Theorem 1 are satisfied. Thus, when
6 € [0,0.62), then the positive equilibrium point Wy (1.8382,0.2322,1.8382,0.2322) of system (90)
remains locally asymptotically stable. Select § = 0.6 < 8y = 0.62. The simulation outcomes are
presented in Figure 1. One can see from Figure 1 that if 0 is less than the delay point 6y = 0.62, then
wi(t) — 1.8382,wy(t) — 0.2322, ws(t) — 1.8382, wy(t) — 0.2322, respectively, as t — oo.
When 6 crosses the delay point 8y = 0.62, then system (90) loses its stability and generates a cluster
of periodic solutions (namely, Hopf bifurcations) at around Wy(1.8382,0.2322,1.8382,0.2322).
Select 8 = 0.635. The simulation outcomes are presented in Figure 2. One can see from Figure 2
that © is greater than the delay point 6y = 0.62, then (w1 (t), wa(t), w3(t), wa(t)) is a periodic
oscillatory state around Wy(1.8382,0.2322,1.8382,0.2322). To further illustrate the Hopf bifur-
cation situation, we present the corresponding bifurcation plots (see Figures 3—6). Depending on
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Figures 3—6, we can understand the relationship between 0-wq, 6-w,, 6-ws, 6-wy, respectively.
Obviously, the bifurcation value of system (90) is 0.62. Furthermore, the quantitative relation
between ¢y and 6y is provided via Table 1.
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Figure 1. Simulation outcomes of system (90) involving 8 = 0.6 < 0y = 0.62. The positive equilibrium
point Wy (1.8382,0.2322,1.8382,0.2322) of system (90) remains locally asymptotically stable.
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w,(t) -1 05

Figure 2. Simulation outcomes of system (90) involving 6 = 0.635 > 6y = 0.62. show that System
(90) generates a cluster of periodic solutions (namely, Hopf bifurcations) at around the positive
equilibrium point Wy (1.8382,0.2322,1.8382, 0.2322).

-6

Figure 3. Bifurcation figure of system (90): The delay, 0, versus the variable, w;. The bifurcation value
is 6y = 0.62.

30

251

20

Figure 4. Bifurcation figure of system (90): The delay, 8, versus the variable, w,. The bifurcation value
is 6 = 0.62.
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Figure 5. Bifurcation figure of system (90): The delay, 8, versus the variable, w3. The bifurcation value
is 8y = 0.62.

30
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Figure 6. Bifurcation figure of system (90): The delay, 8, versus the variable, w4. The bifurcation value
is 6y = 0.62.

Table 1. The quantitative relation between ¢y and 6 of system (90).

$o 0o
0.1805 0.1231
0.3488 0.2519
0.4602 0.3452
0.6169 0.4879
0.6324 0.5027
0.7499 0.6200
0.8753 0.7543
0.9402 0.8276
1.0220 0.9238

Remark 3. In order to achieve local asymptotic stability, we explore the characteristic equation of
system (90) according to Section 3. In view of Theorem 1, we know the local asymptotic stability
condition of system (90).

Remark 4. In the simulation, since 0 < q < 1, we can choose the arbitrary q, which falls into the
range of (0,1). In this section, we choose q = 0.91. Of course, we can choose (0.1,0.5). For this
case, we can also carry out the numerical simulations for this value for q € (0.1,0.5). Here, we omit
it. But this does not affect the verification of Theorem 1.

Example 2. Consider the following fractional-order controlled FitzHugh—-Nagumo neural model:
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d0‘91W1 t 1
dtTl() =0.33 <wz +wy — gwﬁ) +1.5(wy — ws(t—0)),
d0491w2(t) 1 4091 (wz(t) _ wz*)
T2 o (w1 1 — Wy, 2\l ),

7091 933 (wq —1.88 +0.18w3) + pp (w2 (t) — wai) + pa 7091 1)
d%lws (t) 1 4
et = 0.33( w4 + w3 — 33 +1.5(w; —wy(t—0)),
d%lwy (t) 1 dO9 (wy(t) — wa)
T = g3 (s — 188+ 0.18w4) + 0 (wa (1) — wa) + 0 oo

One can lightly see that system (91) admits a unique positive equilibrium point Wy (w1, Wos,
W3y, Way ) = Wo(1.8382,1.8382,0.2322). Set p, = 0.2, 04 = 0.8. Due to the Matlab software, one
can lightly obtain ¢y = 0.6877 and 6, = 0.76. We can check that (A1), (As), (As) of Theorem 1 are
satisfied. Thus, when 6 € [0,0.76), , then the positive equilibrium point Wy(1.8382,0.2322,1.8382,
0.2322) of system (91) remains locally asymptotically stable. Select 6 = 0.75 < 0, = 0.76. The
simulation outcomes are presented in Figure 7. One can see from Figure 7 that if 0 is less than the de-
lay point, 6, = 0.76, then w1 (t) — 1.8382, w,(t) — 0.2322, w3(t) — 1.8382, w4 (t) — 0.2322,
respectively, as t — oco. When 0 crosses the delay point, 0, = 0.76, then system (91) loses
its stability and generates a cluster of periodic solutions (namely, Hopf bifurcations) at around
W5 (1.8382,0.2322,1.8382,0.2322). Select 0 = 0.8. The simulation outcomes are presented
in Figure 8. One can see in Figure 8 that if O is greater than the delay point, 6. = 0.76,
then (w1 (t), wa(t), w3 (t), wy(t)) remains a periodic oscillatory state around Wy(1.8382,0.2322.,
1.8382,0.2322). To further illustrate the Hopf bifurcation situation, we present the corresponding
bifurcation plots (see Figures 9-12). Depending on Figures 9—12, we can understand the relationship
among 6-w1, 6-wy, 0-w3, and 6-wy, respectively. Obviously, the bifurcation value of system (91) is
0.76. Furthermore, the quantitative relation between ¢y and 6 is presented in Table 2.
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Figure 7. Simulation outcomes of system (91) involving 6 = 0.75 < 6, = 0.76. The positive equilib-
rium point Wy (1.8382,0.2322,1.8382,0.2322) of system (91) remains locally asymptotically stable.
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Figure 8. Simulation outcomes of system (91) involving 8 = 0.8 > 6, = 0.76.: System (90) generates a
cluster of periodic solutions (namely, Hopf bifurcations) at around the positive equilibrium point
Wo(1.8382,0.2322,1.8382,0.2322).

6 I I I I I

Figure 9. Bifurcation figure of system (91): The delay, 8, versus the variable, w;. The bifurcation value
is 6, = 0.76.

9

8t

Figure 10. Bifurcation figure of system (91): The delay, 0, versus the variable, w,. The bifurcation
value is 6, = 0.76.
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Figure 11. Bifurcation figure of system (91): The delay, 6, versus the variable, w3. The bifurcation
value is 6, = 0.76.

9

8k

Figure 12. Bifurcation figure of system (91): The delay, 6, versus the variable, w4. The bifurcation
value is 65 = 0.76.

Table 2. The quantitative relation between ¢ and 6, of system (91).

Po 0.
0.2103 0.1789
0.2790 0.2467
0.3383 0.3092
0.4566 0.4456
0.0993 0.5672
0.6089 0.6453
0.6877 0.7600
0.7268 0.8199
0.8112 0.9562

Example 3. Consider the following fractional-order controlled FitzHugh-Nagumo neural model:

A%, (t 1
Wll() — 033 <w2 oy — §w§> F15(wy —ws(t—6)),

0.91
7wl _ T 1y~ 188+ 0.18ws) | + kaluwa(t — 6) — wa(t)]

41091 033

10 1 (92)
et~ 0.33 <W4 + w3 — §w§> +1.5(ws —wy (t —90)),
dOA91w ¢ 1
Wﬂ() =K {—@(u@ —1.88 + 0.18w41)} + o [wy (t — ) — wy(8)].
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One can lightly see that system (92) admits a unique positive equilibrium point
Wo (W14, Wos, W3x, Was) = Wp(1.8382,,1.8382,0.2322). Set k1 = 4.2,k = 0.2. Due to the
Matlab software, one can lightly obtain 0y = 0.2976 and 6, = 0.46. We can check that
(A1), (A¢), (A7) of Theorem 1 are satisfied. Thus, when 6 € [0,0.46), then the positive
equilibrium point Wy(1.8382,0.2322,1.8382,0.2322) of system (92) remains locally asymp-
totically stable. Select § = 0.45 < 8, = 0.46. The simulation outcomes are presented in
Figure 13. One can find from Figure 13 that if 0 is less than the delay point, 6, = 0.46, then
wi(t) — 1.8382,wy(t) — 0.2322,ws(t) — 1.8382,wy(t) — 0.2322, respectively, as t — oo.
When 0 crosses the delay point, 0., = 0.46, then system (92) loses its stability and generates a cluster
of periodic solutions (namely, Hopf bifurcations) at around Wy(1.8382,0.2322,1.8382,0.2322).
Select 0 = 0.473. The simulation outcomes are presented in Figure 14. One can find from Figure 14
that O is greater than the delay point, 6., = 0.46, then (w1 (t), wa(t), w3(t), wa(t)) remains in a
periodic oscillatory state at around W(1.8382,0.2322,1.8382,0.2322). To further illustrate the
Hopf bifurcation situation, we present the corresponding bifurcation plots (see Figures 15-18). De-
pending on Figures 15—18, we can understand the relationship between 6-wq, -w,, 6-w3, and 6-wy,
respectively. Obviously, the bifurcation value of system (92) is 0.46. Furthermore, the quantitative
relation between Oy and 0., is presented in Table 3.
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Figure 13. Simulation outcomes of system (92) involving 8 = 0.45 < 0, = 0.46. The positive equilib-
rium point Wy (1.8382,0.2322,1.8382,0.2322) of system (92) remains locally asymptotically stable.
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w,()

Figure 14. Simulation outcomes of system (92) involving § = 0473 > 6, = 0.46.: System (92)
generates a cluster of periodic solutions (namely, Hopf bifurcations) at around the positive equilibrium
point Wy (1.8382,0.2322,1.8382,0.2322).

-6

Figure 15. Bifurcation figure of system (92): The delay, 0, versus the variable, w;. The bifurcation
value is 6, = 0.46.
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Figure 16. Bifurcation figure of system (92): The delay, 6, versus the variable, w,. The bifurcation
value is 6, = 0.46.
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Figure 17. Bifurcation figure of system (92): The delay, 6, versus the variable, w3. The bifurcation
value is 6, = 0.46.
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Figure 18. Bifurcation figure of system (92): The delay, 6, versus the variable, w4. The bifurcation
value is 6, = 0.46.

Table 3. The quantitative relation between ¢y and 6., of system (92).

B 0o
0.1071 0.1542
0.1879 0.2789
0.2358 0.3563
0.2976 0.4600
0.3525 0.5562
0.3934 0.6303
0.4482 0.7328
0.5092 0.8513
0.5496 0.9327

Remark 5. According to the simulation outcomes of Examples 1-3, we know that the bifurcation
values of system (90), system (91), and system (92) are 6y = 0.62,0, = 0.76, and 6, = 0.46,
respectively, which implies that (i) we can enlarge the stability domain and postpone the timing of
bifurcation generation of the Hopf bifurcation of system (90) via the PDP controller and (ii) we can
narrow the stability domain and advance the timing of bifurcation generation of the Hopf bifurcation
of system (90) via the hybrid controller.

7. Conclusions

Depending on earlier studies, we formulate a novel fractional-order coupled FitzHugh—
Nagumo neural model with delay. By analyzing the characteristic equation of the formu-
lated fractional-order coupled FitzHugh-Nagumo neural model, we discuss the stability
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and Hopf bifurcation issue. A delay-independent criterion on stability and Hopf bifurcation
for the considered coupled FitzHugh—-Nagumo neural model is obtained. Due to the two
effective controllers (PD? controller and hybrid controller), the stability domain and the
Hopf bifurcation onset time of the formulated fractional-order coupled FitzHugh-Nagumo
neural model are successfully dominated. The influence of delay on the stability domain
and the Hopf bifurcation onset time is displayed. The acquired theoretical outcomes of this
study possess great theoretical value in operating and designing networks. By adjusting
the control parameter and time delay, we can effectively control the stability domain and
the time of bifurcation onset in neural networks. The control techniques can also be applied
to control the stability and bifurcation behavior of other neural networks. In addition,
we can control the stability domain and the bifurcation onset time in model (3) via other
controllers. This will be explored in future work.
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